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� Nitrous oxide flux estimated from
discrete measurements have un-
known uncertainty.

� This uncertainty is location-specific
for regular-interval sampling.

� Rule-based sampling yields better
and less costly estimates than regular
sampling.

� The performance of rule-based sam-
pling is location and system specific.
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Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux
measurements have unknown uncertainty. We used outputs from simulations obtained with an agro-
ecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a
known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation),
College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter
wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing
were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We “sampled”
the fluxes using a fixed interval (1e32 days) or a rule-based (decision tree-based) sampling method. Two
types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a
predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified
with Random Forest. The decision trees were inverted to be used as rules for sampling a representative
number of members from each terminal node. The uncertainty of the annual N2O flux estimation
increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at
College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval
rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods
provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling
events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-
based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the
same absolute bias of 0.2 kg N ha�1 yr�1 in estimating cumulative N2O flux. These results suggest that
f year; Tavg, average air temperature; R, cumulative rainfall (and irrigation); I, net water inflow; SIN, total soil inorganic
r; HI, high input rule-based; LI, low input rule-based.
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using simulation models along with decision trees can reduce the cost and improve the accuracy of the
estimations of cumulative N2O fluxes using the discrete chamber-based method.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nitrous oxide (N2O), a potent greenhouse gas (GHG), is mostly
emitted from agricultural soils (IPCC Climate Change, 2007). This
gas is produced through microbe-mediated processes, chiefly
nitrification and denitrification (Firestone and Davidson, 1989). The
temporal patterns of N2O fluxes from agricultural soils are highly
variable due to their episodic and transient nature, with marked
diurnal and seasonal variations (Jacinthe and Dick, 1997; Smith
et al., 2001; Flessa et al., 2002; Parkin, 2008). These emission
events may occur in response to rainfall, irrigation, thawing, tillage,
nitrogen (N) fertilization, and organic matter addition (Clayton
et al., 1997; Oates et al., 2016; Reeves et al., 2016). Peak emission
events can contribute about half of the growing season N2O flux
(Parkin and Kaspar, 2006). The high temporal variability makes the
estimation of cumulative N2O flux uncertain if measurements are
not frequent or continuous (Parkin, 2008). However, assessing the
impact of different management practices on N2O emissions re-
quires an accurate estimation of the cumulative flux.

In addition to the temporal variation, N2O emissions vary
spatially (Saha et al., 2016). Both time and space variations in N2O
fluxes are regulated by soil oxygen concentration (Smith and
Dobbie, 2001), soil temperature (Parkin and Kaspar, 2006; Zhang
et al., 2016), carbon (C) and mineral-N availability (Gillam et al.,
2008), and microbial diversity (Regan et al., 2011). Weather con-
ditions alter all these factors, causing a marked inter-year vari-
ability of N2O fluxes from the same soil and management practices
(Dobbie et al., 1999; Burchill et al., 2014). Since we have a limited
ability to predict how these factors will drive N2O emissions,
sampling at representative times with time-discrete monitoring
methods is challenging.

Soil N2O flux is commonly measured by the non-steady state
closed chamber method (Hutchinson and Mosier, 1981). This
method is temporally discontinuous and usually applied onweekly
to monthly fixed intervals (Dobbie and Smith, 2003). Low fre-
quency sampling can miss a short-lived peak in-between sampling
events, which will cause an underestimation of the cumulative flux.
Thus, sampling at regular weekly or bi-weekly intervals does not
ensure an accurate estimation of cumulative N2O flux (Barton et al.,
2015). It also adds samplings in periods with little N2O emission.
Furthermore, the same fixed interval sampling may produce a
different uncertainty in cumulative flux estimates in different lo-
cations (Barton et al., 2015), or in the same location in different
years, a variation that is as yet unknown. Automated chambers
(Smith and Dobbie, 2001) and micrometeorological techniques
(Wagner-Riddle and Thurtell, 1998) can provide high frequency
measurements. However, these are expensive and have low spatial
resolution which limits their use in plot-scale replicated studies or
remote areas.

What is the best way to define an N2O flux sampling strategy
that minimizes uncertainty and cost in a given location? We pro-
pose to answer this question by a novel approach of using an
agroecosystem simulation model as a tool to determine the error of
different sampling strategies in estimating cumulative N2O flux in a
given location and set of management practices. Simulationmodels
of agroecosystems typically operate on a daily or sub-daily time
step, providing detailed outputs of the water and N balance
components in the soil-plant system for many years. As long as the
models satisfactorily represent the N2O emission patterns and their
drivers, the results can be conceived as surrogates of daily chamber-
based flux measurements. The simulation outputs can be
“sampled” with different strategies and determine which ones
render the lowest uncertainty and cost at a given location and
management system.

We further propose to apply statistical methods such as Clas-
sification and Regression Trees (CART, Breiman et al., 1984) and
Random Forests (RF) (Breiman, 2001; Liaw and Wiener, 2002) to
the daily simulation output to cluster the daily N2O fluxes into
groups that can be identified by specific properties (for example,
precipitation, evapotranspiration or N fertilization rate in prior
days). These properties can become rules for sampling, leading to a
decision support tool for field N2O monitoring. This strategy is
hereafter referred to as rule-based sampling.

Our goal is to combine the output of simulation models with
statistical methods to design a robust strategy for N2O sampling
that is less expensive than regular fixed interval sampling. The
research questions are: 1) How do different fixed interval sampling
frequencies affect the uncertainty in estimating cumulative N2O
flux? 2) Does the relative error of a given sampling frequency vary
across soil, climate, and management scenarios? 3) Is it possible to
use simulation models to build decision tree based N2O sampling
strategies that are cost effective? To answer these questions, we
simulated and analyzed N2O emissions in four sites in the United
States (US) with diverse soil, climate, management practices, and
temporally distinct N2O emission patterns.
2. Materials and methods

2.1. Cycles model description

Cycles is a process-based, multi-year, multi-crop, and multi-soil
layer simulation model that runs at a daily time step, with hy-
drology simulated with an adaptive sub-daily time step. It produces
daily outputs of N2O flux along with other biogeochemical fluxes.
Cycles has modules to represent plant growth based on radiation
and transpiration use efficiency (St€ockle et al., 2008), coupled soil C
and N cycling (White et al., 2014), soil water infiltration and
redistribution, and the effect of management practices on biogeo-
chemical processes. Cycles can simulate monoculture rotations,
polycultures, and relay crops. The inputs required to run Cycles are:
i) latitude, elevation, and daily weather data, ii) layer-by-layer
initial soil profile properties (layer thickness, texture, bulk den-
sity, hydraulic properties, organic matter), iii) crop sequence, and
iv) management operations (fertilization, irrigation, residue addi-
tion, tillage, harvest). Earlier tests of CropSyst (St€ockle et al., 2003)
and C-Farm (Kemanian and St€ockle, 2010) are applicable to Cycles
as they share several modules; however, the N2O emission algo-
rithm in Cycles has been modified recently to accommodate N2O
emissions from nitrification.

Cycles simulates N2O flux from nitrification and denitrification.
For each soil layer, the amount of N2O derived from nitrification
depends on the amount of ammonium nitrified and the air filled
porosity, which is calculated from soil porosity and volumetric
water content. The N2O derived fromdenitrification depends on the

http://creativecommons.org/licenses/by-nc-nd/4.0/
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amount of N denitrified, nitrate concentration, aeration factor, and
microbial respiration. The aeration factor is a power function of the
layer air filled porosity and clay concentration.
2.2. Simulated sites description

We selected four sites in the US: Ames, IA (Midwest corn-belt);
College Station, TX (east central Texas plains); Fort Collins, CO
(irrigated high plains), and Pullman, WA (rainfed wheat production
in the Columbia Plateau). For two of the sites, Ames (Jarecki et al.,
2008; Parkin, 2008) and Fort Collins (Halvorson and Del Grosso,
2013), there are published records of N2O fluxes along with soil
N, water, and management practices, which allows validating the
simulated results. For College Station and Pullman, common man-
agement practices were followed. Temperature and precipitation
were obtained from NOAA stations at each location. The dew point
temperature was assumed to be the minimum temperature. Solar
radiation and wind speed were obtained from NASA's Prediction of
Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov).
Ames has a humid continental climate with cold winter; College
Station is subtropical, with mild winter and warm and hot summer
with highly variable and intense rainfall events; Fort Collins is
semi-arid with lower precipitation, mostly in the summer; and
Pullman is semi-arid with dry summer and wet fall, winter, and
spring (Table S1). An initial soil profile database was obtained from
the National Cooperative Soil Characterization Database (http://
ncsslabdatamart.sc.egov.usda.gov). Major soil types according to
USDA classification system were Canisteo clay loam (Typic Endoa-
quolls) at Ames, Burleson silty clay loam (Typic Endoaquolls) at
College Station, Fort Collins clay loam (Aridic Haplustalf) at Fort
Collins, and Palouse silt loam (Ultic Haploxerolls) at Pullman. The
sites that were simulated varied in soil organic matter (range
20e45 g kg�1) and clay content (range 170e400 g kg�1) in the top
15 cm soil layer (Table 1). At Ames, chisel plowed and band-
fertilized, rainfed corn (Zea mays L.) was rotated with soybean
(Glycine max L.). At College Station, corn was followed by a winter
cover crop (Vicia spp). The agroecosystem at Fort Collins was
continuous corn conventionally tilled, fertilized, and irrigated. At
Pullman, the system was rainfed, fertilized, continuous winter
Table 1
Characterization of the four sites and agroecosystems. Soil properties are given for the t

Parameters Simulated sites

Ames College Station

Location
Latitude 42�N 30.58�N
Longitude 93.6�W 95.6�W
Ecoregion Western corn belt

plains
East central Texas plain

Soils
Type Canisteo clay loam Burleson Silty clay loam
USDA Classification Typic Endoaquolls Typic Endoaquolls
Clay (g/kg) 230 400
Sand (g/kg) 370 130
Silt (g/kg) 400 470
Org. matter (g/kg) 45 24

Management
practices
Cropping system Corn-soybean Corn-Vicia
Tillage Chiesel-plow Conventional-till
N-fertilization Anhydrous NH3 @

168 kg-Nha�1 in Nov.
UAN @ 64 and 56 kg-N
in March and April

Application mode Banding at 20-cm depth Incorporation

Irrigation NA NA
wheat (Triticum aestivum L.). Detailed site descriptions are given in
Table 1.

2.3. Fixed interval sampling

The fixed interval sampling strategy consisted of (virtual) sam-
ples of daily outputs of soil N2O flux for a year at regular time in-
tervals, ranging from 1 to 32 days. The number of samples depends
on the sampling interval. Linear interpolation between consecutive
samples and integration provided an estimated annual N2O flux.
The estimate was then compared with the simulated ‘actual’ cu-
mulative flux, obtained by sampling every day. For Ames and Fort
Collins, we applied the fixed interval sampling strategy on the years
with published N2O flux measurements.

2.4. Rule-based sampling

The objective of rule-based sampling was to distribute the
sampling events to balance peak and background emissions. Since
N2O emissions from soil are highly non-linear and have complex
relationships with its controlling variables, we used RF on the
simulated data to identify the important variables driving N2O
emissions at each location. These variables were used to construct a
regression tree, which becomes the blueprint of the rule-based
sampling strategy. The trees were independently developed for
each location, as follows.

2.4.1. Selection of variables
The randomForest function from the package randomForest in R

statistical software (Breiman, 2001; Liaw and Wiener, 2002) was
used to determine the variable importance scores. The control
parameters for RF were seed ¼ 500 (set random number),
ntree¼ 500 (number of trees), andmtry¼ n0.5 (number of variables
used at each split; n is the number of explanatory variables) (Strobl
et al., 2009).

We applied RF on 15 years of simulated (training) data. To make
it useful in practice, we selected variables that are plausible to be
measured or generated with an automated algorithm in N2O
emission studies. These variables are: Calendar day (DOY), average
op 15 cm.

Fort Collins Pullman

40.6�N 47�N
105�W 117.1�W

s High plains Columbia plateau

Fort Collins clay loam Palouse silt loam
Aridic Haplustalf Ultic Haploxerolls
340 170
400 190
260 640
20 32

Continuous Corn Winter wheat
Conventional-till Conventional-till

ha�1 Urea @ 202 kg-N ha�1

in May and 23 kg N as
NO3 from irrigation water

Urea @ 92 kg-N ha�1 in April
and 92 kg N ha�1 as UAN in Oct.

Broadcasting 1st split broadcast and 2nd

split incorporation
Scheduled sprinkler
irrigation (460 mm)

NA

http://power.larc.nasa.gov
http://ncsslabdatamart.sc.egov.usda.gov
http://ncsslabdatamart.sc.egov.usda.gov


Fig. 1. Comparison of predicted and measured temporal N2O emissions at (a) Ames
and (b) Fort Collins in 2006 and 2010, respectively. The measured N2O fluxes were
adapted from Jarecki et al. (2008) for Ames and Halvorson and Del Grosso (2013) for
Fort Collins. We used Web Plot Digitizer (Rohatgi, 2012) to extract the data published
as figures in above articles.
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air temperature (Tavg, �C), cumulative rainfall (and irrigation) on the
sampling day (R1) or the 2e7 preceding days (R2 … R7, mm), net
water inflow or the difference between precipitation and evapo-
transpiration for the sampling day (I1) or the 2e7 preceding days
(I2…I7, mm; it assumes no runoff), soil NO3 content in the 0e15 and
15e30 cm layer (NO315 and NO330; kg N ha-1), soil NH4 content in
the 0e15 and 15e30 cm layer (NH415 and NH430; kg N ha-1), total
soil inorganic N in 0e15, 15e30, and 0e30 cm layer (SIN15, SIN30,
and SINT; kg N ha-1), volumetric soil water content in 0e15 and
15e30 cm layer (q15 and q30; m3m�3), and soil temperature in 0e15
and 15e30 cm layer (T15 and T30; �C).

From a practical point of view, the soil NO3 and NH4 content are
not always available. To account for this reality, we used two types
of rule-based sampling strategies. First, a high input rule-based
sampling (HI) including the SIN related variables in the decision-
making process. Second, a low input rule-based sampling (LI) that
uses no SIN data. The analyses and tree building processes are the
same for both HI and LI rule-based sampling.

2.4.2. Regression tree to predict N2O flux
We used rpart package in R (seed ¼ 500) to build the regression

tree. Each tree was allowed to grow to its full length. We did not
prune the trees, as pruning would have grouped nodes with low
N2O fluxes. Since the sampling selection process (presented below)
is automatic, there is no penalty for not pruning. The algorithm
does successive binary divisions (“rules”) that generate terminal
nodes, each having an average N2O flux (x) and number of members
(n). Fig. 5a illustrates the derivation of each parameter for rule-
based sampling. The total N2O flux from each terminal node (Fi) is:

Fi ¼ ni � xi (1)

Where i identifies the terminal node (from 1 to N). The total N2O
flux (FT) from N terminal nodes is:

FT ¼
XN

i¼1
Fi (2)

The proportion of flux contributed by each terminal node (Pi) to
the FT is:

Pi ¼
Fi
FT

(3)

2.4.3. Regression tree as a sampling decision aid
The tree so constructed can be used as the rule-based sampling

strategy for a test year, i.e. a year excluded from the training dataset,
since all the tree input information for a given day is known. Any
day in a year corresponds to a tree node. The question is which day
to sample. For this study, we assumed that we have resources to
support 20-sampling events in a year. This is, of course, an arbitrary
decision, but the generic question is: how do we temporally
distribute any number of sampling events in a year? We allocated a
number of sampling events to the ith terminal node (Ti) based on its
fractional contribution to the total flux (Pi, see Fig. 5a):

Ti ¼ Pi � 20 (4)

Each day of the test year was run through the tree branches and
assigned to a terminal node. The total number of days in a terminal
node usually exceeds the number of possible samples (Ti) in that
node. Therefore, the sampling days (Ti) were randomly selected
from the group of days in ith terminal node. The randomly selected
days represent the days to measure N2O flux in the field. The total
flux under each node was calculated by multiplying the average
flux of the randomly selected days and the frequency of days (n) of
that terminal node in the test year. The sum of the fluxes from all
terminal nodes in the test year gives the rule-based cumulative N2O
flux estimate. This process was repeated multiple times for the test
year (because the specific sampling days are randomly selected
within each terminal node) to obtain the estimation bias and to
compare it with the bias of the fixed interval strategy for a given
number of samples.
3. Results

3.1. Cumulative soil N2O emissions and model performance

The simulated cumulative N2O flux differed greatly among the
four locations in the test years (Table 2). It was highest at Ames,
followed by College Station, Fort Collins, and Pullman, with fluxes
of 3.2, 2.9, 1.0, and 0.4 kg N ha�1 y�1. These are considered the
‘actual’ cumulative N2O fluxes at each site.

The predicted cumulative flux at Ames in 2006 was lower than
the reported 4.3 kg N ha�1 (Jarecki et al., 2008), yet within the 95%
confidence interval. At that location, the model accurately pre-
dicted the temporal variability of N2O emissions until DOY 223 of
2006 (Fig. 1a). However, the model did not predict any N2O emis-
sion peak after DOY 210 (July 30) even though there were a few
large precipitation events and peak emissions were reported



Fig. 2. Simulated daily N2O flux (d) and gas sampling days as predicted by high-input
(◊) and low-input (D) rule-based sampling at (a) Ames (2006), (b) College Station
(2010), (c) Fort Collins (2010), and (d) Pullman (2013). The inverted graph on top of
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(Parkin, 2008). The low modeled N2O emissions after DOY 210 was
due to SIN exhaustion via crop uptake and earlier N losses. This low
SIN agrees with Jarecki et al. (2008), which makes difficult to
explain the measured N2O emissions.

At Fort Collins, the predicted cumulative flux of 1.0 kg N2OeN
ha�1 y�1 in 2010was similar to thatmeasured by Halvorson and Del
Grosso (2013); however, the emissions were slightly under-
estimated immediately after fertilization (Fig. 1b).

3.2. Temporal patterns of N2O emissions in the test years

Ames had a comparatively larger magnitude and time window
of N2O emissions with multiple emission peaks. A large precipita-
tion event (z55 mm) on DOY 192 initiated the largest emission
window (DOY 192 to 202) with a peak of 256 g N ha�1 d�1 on DOY
194 (Fig. 2a). Although there were large precipitation events after
DOY 202, emission peaks were relatively small on DOY 208 and 223
(43 and 15 g N ha�1 d�1).

At College Station, the emission rate increased after the first N-
fertilization (Fig. 2b). Several small emission peaks were simulated
after the second N-fertilizer application on DOY 105, but the largest
emission peak (220 g N ha�1 d�1) was on DOY 136 in response to
46-mm of precipitation.

At Fort Collins, emissions were triggered by N-fertilizer appli-
cation on DOY 145 and subsequent irrigation and precipitation
events (Fig. 2c). The largest peak emissions (41 g N ha�1 d�1)
occurred shortly after fertilization and a 20-mm of irrigation on
DOY 148. The N2O emission gradually decreased as crop uptake
gradually depleted the SIN pools.

With the lowest cumulative N2O flux, emissions at Pullman
were low throughout the test year 2013 and never exceeded 10 g N
ha�1 d�1 (Fig. 2d).

3.3. Estimation of cumulative flux by fixed interval sampling

Increasing the interval between two sampling events increased
the relative deviation from ‘actual’ (i.e. modeled) cumulative fluxes
in a location-specific fashion. At Ames, relatively frequent sampling
with a 4-day interval yielded a fairly accurate (±10%) cumulative
flux estimate (Fig. 3a), but this accuracy degraded quickly as an 8-
day interval sampling gave �16 to þ26% of the expected flux.
Comparative results were obtained at College Station (Fig. 3b). At
sampling intervals greater than 12 days, the deviation in N2O flux
estimates exceeded ±100% of the actual cumulative flux. In
contrast, at Fort Collins and Pullman a sampling frequency of once
every 12 days produced an estimate of cumulative flux that is ±20%
of the ‘actual’ one (Fig. 3c and d). The deviations from the ‘actual’
cumulative N2O flux were least sensitive to sampling frequency at
Pullman.

As expected, the absolute bias of cumulative flux estimation
increased with increasing sampling interval, and was greatest at
College Station and Ames followed by Fort Collins and Pullman
(Fig. 4).

3.4. Estimation of cumulative flux by rule-based sampling

3.4.1. Variables important for N2O emissions
The important variables that explained the variation in N2O flux

were location specific. When considering the HI predictors (i.e.
including SIN), NO3, q, and precipitation explained most of the
each panel shows daily precipitation (P) and irrigation (I). The arrow indicates the day
of N-fertilization. The gray, dashed and dotted region in each panel represent the
growing season of corn, cover crop (Vicia spp), and winter wheat, respectively.
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variation in emissions in the relativelymoist environments of Ames
and College Station (Fig. S1a and S1c), while NH4 and temperature
did so for the drier environments of Fort Collins and Pullman
(Fig. S1e and S1g). When considering the LI predictors, DOY, and q
became the dominant variables at all locations; DOY becomes a
surrogate for time since N fertilization. The percent of the variation
in N2O fluxes explained by RF degraded slightly fromHI to LI, except
in College Station where it dropped from 83 to 55%.
3.4.2. Regression tree for N2O emissions
The tree for Ames is presented in detail illustrating each

parameter of the rule-based sampling (Fig. 5), while the trees for
the other locations are presented as supplemental material. The
primary split of the HI tree for Ames was on NO315 (threshold 9 kg
N ha-1, Fig. 5a). Total inorganic N (SIN) and q15 were also relevant
variables. The largest but less frequent mean daily N2O flux was
predicted in terminal node 13 as 189 g N ha�1d�1, which results
Fig. 3. Relative deviation of the estimated N2O flux obtained with different fixed in-
terval sampling at (a) Ames (2006), (b) College Station (2010), (c) Fort Collins (2010),
and (d) Pullman (2013).

Fig. 4. Average absolute bias of cumulative flux estimation at different sampling fre-
quencies by fixed interval sampling for the four studied locations.
from moist soils (q15 and q30 > 20%) that receive a sizable precipi-
tation (R7 > 29mm) and contain high NO315 (>36 kg N ha-1). On the
contrary, the tree for LI had a primary split between observations
with T30 less than or more than 13 �C (Fig. 5b). Consistent with the
LI-RF, the significance of DOY was preserved in the LI rule-based
tree as it was the splitting variable four times in the tree. The HI
and LI trees for College Station are similar to those for Ames, albeit
with location-specific thresholds (Fig. S2a and S2b). Fort Collins had
a relatively simple HI tree dominated by NH415, DOY, and Tavg
(Fig. S2c), with higher N2O emissions associated with N-fertiliza-
tion. The LI tree simply dropped NH415, showing the maximum
emission in the 5 days following fertilization (Fig. S2d). The trees for
Pullman are comparable to those at Fort Collins (Fig. S2e and S2f).
Unlike Ames and College Station, qwas not the major driver of N2O
emissions at Fort Collins or Pullman.
3.4.3. Prediction of sampling days by rule-based sampling
The predicted sampling events with both HI and LI trees at Ames

were distributed over almost the same temporal window (Fig. 2a).
The sampling events were responsive to the precipitation-induced
peak N2O emission from DOY 104 to 215, after which the N2O
emissions as well as HI sampling events were not responsive to the
precipitation events. Intensive gas sampling was predicted to start
on DOY 196 after receiving almost 70 mm of precipitation in the
preceding four days and continued until DOY 215. For HI, a 44 mm
of precipitation event on DOY 207 resulted in consecutive sam-
plings in the next three days, but none by LI method.

At College Station, the HI sampling events started after the first
split application of N-fertilizer followed by a 14mm of precipitation
on DOY 60, whereas intensive LI samplings started after DOY 90 and
were distributed in a broader time window than HI samplings
(Fig. 2b). Sampling became frequent from DOY 135 to 157, a period
that included major precipitation and peak N2O emission events
during the corn growing period.

On the contrary, at Fort Collins, the sampling events were
concentrated around the N-fertilization event on DOY 145 (Fig. 2c).
However, LI samplings were more evenly spaced than HI sampling.
The predicted sampling was frequent from DOY 145 to 163. At
Pullman, both HI and LI rule-based sampling events were more
evenly andwidely distributed through the growing season (Fig. 2d).
The split application of N on DOY 90 was associated with frequent
sampling events.



Fig. 5. High input (HI, a) and low input (LI, b) rule-based trees for Ames. Upon satisfaction of the splitting condition, the tree progresses to the left. Each terminal node reports the
average N2O flux (g N ha�1 d�1) and number of observations (n). The representive table below Fig. 5a illustrates the derivation of each parameter of the rule-based sampling from
the regression tree.
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3.5. Comparison of rule-based and fixed interval sampling

Both HI and LI rule-based sampling strategies yielded
reasonable estimates of cumulative N2O flux with a substantially
lower number of sampling events than fixed interval sampling
(Table 2). The HI rule-based estimate at Ames in 2006 (3.1 kg



Table 2
Comparison of the rule-based and the fixed interval sampling methods skill at reproducing the simulated annual N2O flux at four locations. For the rule-based sampling, the
inclusion or exclusion of mineral N from the predicting variables is represented by high input (HI) or low input (LI).

Site Year Simulated flux Cumulative Flux Absolute bias Number of sampling events

HI LI HI LI HI LI Fixed intervala

kg N ha�1 y�1 kg N ha�1 y�1 kg N ha�1 y�1

Ames 2006 3.2 3.1 3.3 0.2 0.7 16 15 91
College Station 2010 2.9 3.0 2.7 0.2 0.3 14 19 186
Fort Collins 2010 1.0 1.1 0.9 0.1 0.1 19 20 37
Pullman 2013 0.4 0.4 0.4 0.05 0.04 18 18 23

a The number of sampling events by the fixed interval sampling was estimated from Fig. 3 based on the required sampling interval to achieve the absolute bias of HI rule-
based sampling for the respective sites.
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N2OeN ha�1) was within ±5% of the simulated cumulative flux
(3.2 kg N2OeN ha�1) with only 16 sampling events; to obtain this
accuracy with fixed interval sampling required 91 sampling events
(Table 2 and Fig. 4). The LI rule-based sampling also yielded an
estimate within ±5% of the expected N2O cumulative flux (3.3 kg
N2OeN ha�1). The HI rule-based method was evenmore efficient at
College Station with only 14 sampling events to yield a cumulative
estimate in 2010 of 3.0 kg N2OeN ha�1, within ±5% of the ‘actual’
cumulative flux (2.9 kg N2OeN ha�1). The fixed interval method
needed 2-day interval samplings to achieve the same accuracy
(Fig. 4). Similarly, the rule-basedmethod at Fort Collins reduced the
total sampling events from 37 to 19, to yield an estimate within
±10% accuracy of the cumulative flux (1.0 kg N2OeN ha�1). In
contrast to other sites, at Pullman both the fixed interval and the
rule-based sampling performed closely in terms of required num-
ber of sampling events to achieve the same bias (Table 2). The rule-
based and fixed interval samplings used 18 and 23 sampling events,
respectively. The significance of the absolute error of cumulative
flux estimation is negligible at Pullman due to the low overall
fluxes.

4. Discussion

While the importance of accurately estimating N2O emissions
from agricultural systems is widely recognized (Parkin and Kaspar,
2006), the dependence on the chamber-based method casts un-
certainty on the reliability, practicality, and cost of this technique.
This study proposed that a suite of simulation modeling and sta-
tistical approaches can help improve the timing of N2O sampling,
leading to a less costly and more accurate estimate of the cumu-
lative N2O flux. As shown in this research, themodel can be used for
this purpose because it predicted reasonably well the temporal
variability of N2O emission at Ames and Fort Collins (Fig. 1) along
with N balance, and crop growth (Table S2) under different soil,
climate, and management practices. Deviations from the measured
N2O emissions in the second half of the year 2006 at Ames are
difficult to explain based on the low SIN level reported by Jarecki
et al. (2008). It is possible that banding may have left pockets of
high SIN in the soil under the chambers that cannot be easily
simulated with the model nor measured without an intensive soil
sampling.

When comparing Ames and College Station, it is instructive to
consider how soil properties such as organic matter and clay con-
tent interact with Nmanagement and climate (Table 1 and Table S1,
Fig. 2a and b). At both locations, the soil is likely to be moist in early
spring. At Ames, the subsequent warming coupled with a soil with
a high load of SIN in a band opens a wide window of time in which
N2O emissions can be sustained as long as leaching or crop uptake
do not deplete SIN and the soil remains moist enough so that timely
precipitation events trigger N2O emissions. This mechanism un-
derlies the relevance of SIN and q in the variable importance plots
and regression trees for these two sites (Fig. S1a, c, Fig. 5a, and
Fig. S2a). The episodic nature of N2O emissions is exacerbated at
College Station because the soil dries faster due to the warmer
climate, but convective storms and hurricanes can bring substantial
precipitation quickly. When coupled with a clay soil that impedes
drainage and causes soil saturation, the drying and suddenwetting
can cause peak denitrification events. Accordingly, Asgedom et al.
(2014) observed increased N2O flux from vertisols after rainfall
following N-fertilization. Sampling or not sampling one of these
peaks can bias the estimation of the cumulative N2O flux, a situa-
tion where a rule-based sampling can be most useful. Otherwise, a
frequent sampling of 2e8 days interval would be needed at College
Station and Ames to yield an estimate within ±20% of accuracy
(Fig. 3a and b). These results obtained with a simulation model are
remarkably similar to those reported by Parkin (2008) at Ames.
Daily sampling has been recommended by Barton et al. (2015) in
sites exhibiting extreme episodicity of N2O emissions, but this is
clearly not practical with the static chamber method.

On the contrary, at Fort Collins predictable peak emissions occur
in response to precipitation and irrigation events soon after N-
fertilization (Fig. 2c), a phenomenon observed in other studies
(Dobbie et al., 1999; Baggs et al., 2003; Oates et al., 2016). Both the
importance of the top layer NH4 content on N2O emissions in RF
and the fact that NH4 was the primary split on the regression tree
(Fig. S1e and Fig. S2c) suggest that nitrification is the main source of
the N2O emission at Fort Collins, as observed in another relatively
dry location in Montana by Engel et al. (2010). Thus, reasonable
cumulative estimates of N2O emission (within 20% of the actual
flux) can be obtained with a relatively low intensity fixed interval
sampling of once every two weeks (Fig. 3c). At Pullman, conditions
are not prone for large emissions, and the relatively dry summer
and cold winter probably caused lower N2O emissions. In addition
to relatively low precipitation, good soil drainage limits large
emissions. However, there can be spatial hotspots of emissions
since the Palouse is a landscape of rolling hills, where swales are
wetter than ridgetops (Mulla et al., 1992) and runoff and subsurface
flowmay favor N2O emissions from the swales. We did not address
the spatial variation of soil moisture and N2O emissions in this
study. Frequent occurrences of air and soil temperature in the
regression tree indicate the strong control of temperature on
nitrification induced N2O emissions. The lower temporal variability
(Fig. 2d) allows an infrequent sampling (16 days interval) to achieve
±20% accuracy in the estimate (Fig. 3d). Furthermore, a ±20% error
at Pullman is likely to result in a small absolute error as compared
to ±20% error at Ames or College Station because the cumulative
annual N2O flux is comparatively low. The relatively lowmagnitude
of the peak N2O emissions at Fort Collins and Pullman suppressed
the consequences of not sampling one of these peak events on the
cumulative flux estimation. Reeves et al. (2016) similarly concluded
that the influence of sampling schedule on the accuracy of esti-
mation is lower in low emission systems. A given fixed interval
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sampling at contrasting sites may produce different errors of cu-
mulative flux estimates, both in relative and absolute terms. This is
due to different temporal patterns and the magnitude of N2O
emissions at different sites given the variation in soil, climate, and
management practices (Flechard et al., 2007), which results in
variations of the accuracy of the cumulative N2O flux estimations,
as clearly illustrated with these simulations.

The rule-based method performed better than the fixed interval
strategy in estimating cumulative fluxes with a minimum number
of sampling events at the four sites. The peak N2O emission events
usually comprise <5% of the time, thus the bias associated with
infrequent fixed interval sampling could be large (Liengaard et al.,
2014). It is therefore important to anticipate the occurrences of
‘hot moments’, which is what the rule based sampling accom-
plishes. This method not only allocates a greater proportion of the
sampling events to the peak emission days and a lower proportion
to the low, background emission days, but also provides a mean to
weight the importance of each sampling event, yielding an overall
estimate closer to the ‘actual’ cumulative flux. Reeves and Wang
(2015) also suggested increasing the N2O sampling frequency in a
rain-fed cereal cropping system during rainfall events to achieve
the same accuracy of estimation as in triweekly sampling. Our
research provides a specific protocol to increase the sampling fre-
quency when needed, and decrease it when sampling would be
superfluous.

In general, soil moisture, SIN, and temperature were the critical
factors for N2O emissions, as reported in other studies (Dobbie
et al., 1999; Davidson et al., 2000; Ma et al., 2010). The contribu-
tion of our research is that the specific thresholds for these vari-
ables at a given location andmanagement system can be quantified
to accommodate the distinct temporal variability of N2O emissions
at each site. When the N2O flux variability is low, a low frequency
fixed interval sampling can be adopted. Excluding SIN from the
rule-based method (as in LI rule-based) did not have a substantial
trade-off in the accuracy of estimation or increase in sampling
numbers, an important result that makes this approach inexpen-
sive and user-friendly (does not need SIN). The reason is not that
SIN is not important, but that DOY surrogated its role explaining
N2O emissions (Fig. S1). However, this came at a cost of a wider
temporal spread of the predicted sampling events in the LI rule-
based method and a loss of accuracy in predicting ‘hot moments’
of N2O emissions. Nonetheless, the LI rule based method still per-
formed better than the fixed interval method, with better accuracy,
time use, and cost savings on gas sampling and analysis.
5. Conclusions

The results showed that a simulation model that satisfactorily
simulates variations in N2O emissions could be a useful tool to
assess the accuracy of sampling frequency in estimating cumulative
flux. Increasing the sampling interval in a uniform sampling
scheme increases the error of the cumulative flux estimation, but
the magnitude of the error depends on the underlying temporal
variability of N2O emissions.When using a low frequency sampling,
sites with greater temporal flux variability are at higher risk of large
errors in the N2O flux estimation. Estimation of cumulative N2O flux
by the rule-based sampling, with or without including the variables
related to SIN, returns the best balance between total sample
number and accuracy. This rule-based method can be a powerful
tool to obtain accurate and cost effective estimations of cumulative
N2O fluxes, especially in systems with large variability of N2O
fluxes.
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