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New residential construction is a primary user of wood products in the United States; therefore, wood products projections require understanding the determinants of
housing starts. We model quarterly US total, single-family, and multifamily housing starts with several model specifications, using data from 1979 to 2008, and evaluate
their fit out of sample, 2009 –14. Goodness-of-fit statistics show that parsimonious models outperform general models in out-of-sample predictions. Monte Carlo
simulations of total housing starts to 2070 project median starts ranging from 0.86 million/year at 0% real gross domestic product (GDP) growth to 1.91 million/year
at 5% real growth, with 90% uncertainty bounds ranging from 0.52 to 2.13 million/year. Assuming that future GDP growth equals the average rate observed over
1990 –2015, there is less than 9% probability that housing starts will exceed 2.0 million in any given year, 2016 –35. Results show no evidence of structural change
in the determinants of total or single-family housing starts coincident with the recession of 2007– 09. Using these housing projections in a softwood lumber consumption
model shows that GDP growth slower than 2% is consistent with stagnant or declining median softwood lumber consumption.

Keywords: construction activity, lumber consumption, econometrics, Monte Carlo

In the United States, new residential construction consumes a
large share of domestic wood products output, including one
third of all lumber (Howard and Jones 2016) and two fifths of

wood-based structural panels such as softwood plywood and ori-
ented strandboard (APA 2010). New residential construction is cy-
clical and connected to similar variation in the broader economy
(Leamer 2007, Glaeser et al. 2008, Agnello and Schuknecht
2011). This cyclical and variable nature of housing starts and
gross domestic product (GDP) growth is carried through to
changes in softwood lumber consumption (Figure 1). The most
recent recession, which followed a run-up in national average
housing prices (Figure 2), has also been suspected of inducing a
structural shift in the housing market related to demographic
changes (Pitkin and Myers 2008, Anundsen 2015, Myers 2016).
Increased delinquent mortgage rates (Figure 3) and the resulting
tightening in lending requirements and rates of loan application
denials may be linked to changing housing demand over the long
run (Federal Reserve Board 2016, Vojtech et al. 2016). If the
housing market has changed, then the shift would have implica-
tions for wood products markets.

The primary objective of this research is to develop a parsimoni-
ous reduced-form model of residential construction activity (mea-
sured as housing starts) in the United States. A reduced-form model
of residential construction could be a useful addition to integrated
assessment models of the forest sector (e.g., Buongiorno 2014) that

require projections of key demand factors (Ince et al. 2011). To
demonstrate the potential utility of the reduced-form modeling ap-
proach, we use a housing starts model in two ways. First, we use it to
project residential construction activity over the coming decades
under varying assumptions about overall economic growth in the
United States, 2015–70. This provides an assessment of possible
ranges of residential construction that would drive wood products
demands under alternative assumptions about economic growth.
Second, we incorporate it into a projection of potential ranges of
softwood lumber consumption in the United States (e.g., Song et al.
2011) over the same time span. Monte Carlo methods are used to
generate median levels and probability bands for housing starts and
softwood lumber consumption, given assumptions about economic
growth, over these future decades.

The following sections describe our methods, including assess-
ments of the time series properties of housing starts and related
variables, specification of the alternative housing starts models,
specification of reduced-form softwood lumber consumption
(quantity) models for the United States, and the Monte Carlo
approaches used to project median levels and variability in starts
and wood products consumption. In the Results section, we de-
scribe the equation estimates and the Monte Carlo simulation
outcomes. In the Conclusion, we lay out the implications of the
study for integrated assessments of the wood products sector and
suggest follow-on research.
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Methods
Housing starts and prices are determined at the equilibrium of

housing demand (hD) and supply (hS). Theory indicates and empir-
ical evidence confirms (e.g., de Leeuw 1971, Mankiw and Weil
1989, Goodman and Thibodeau 2008) that housing demand re-
sponds negatively to house prices and positively to income. This
literature also indicates that housing demand can be modeled, at fine
and large spatial and temporal scales, to include demographic fac-
tors, interest rates, tax policies, and credit access (e.g., Glaeser et al.
2008). Therefore, we assume that demand for new housing is a
function of house prices (p), household income (y), credit condi-
tions (c), lending interest rates (r), demographic factors (a), and
taxes (property and income taxes; g). Quantities of housing starts
demanded in period t are

ht
D � f � pt, yt, ct, rt, at, gt� (1)

Theory and empirical evidence (e.g., Blackley 1999, Ball et al. 2010)
suggest that the supply of new housing can be specified as a function
of house prices, prices of construction inputs (w), land constraints
(l), and regulations (z):

ht
S � f � pt, wt, lt, zt� (2)

A reduced-form expression of the quantity of housing starts assumes
that hD � h S � h (i.e., Equations 1 and 2 are equal) at equilibrium
and solves for endogenous price and quantity. Therefore, the re-
duced form equation for the quantity of housing is (a similarly
specified equation for house prices could also be expressed):

ht � f � yt, ct, rt, at, gt, wt, lt, zt� (3)

We expect that h is a positive function of y; a negative function of r,
g, w, and l; and an undefined function of c, a, and z. Equations 1–3
apply to demand for and supply of single-family and multifamily

starts, although the parameters of such functions could differ for the
two models.

Although compact, the reduced form specification brings with it
several questions, including what are the most appropriate spatial
and temporal scales and functional forms and how might data be
transformed. Equations 1–3 could be estimated at a local scale or
could be aggregated and estimated at progressively larger spatial
scales but under strong homogeneity assumptions regarding the
effects of the included variables. The choice of scale is typically
influenced by the availability of data. Over time spans of a few
decades, some variables may not vary significantly, so that a time
series model of, say, Equation 3, would place the effects of a, g, w, l,
and z into an intercept or, if they are presumed to be trending
consistently over time, captured in aggregate with a time trend.
Alternatively, heterogeneity in the relationships described by Equa-
tions 1–3 could be addressed using a constant elasticity functional
form with log transformation of variables.

Management and Policy Implications

This study finds that US residential construction can be modeled simply with
a reduced-form equation that relates housing starts to US economic growth
and mortgage delinquencies. This parsimonious relationship is amenable to
incorporation within forest sector models. Projections of starts to 2070 using
model estimates show that housing starts are likely to average less than 1.5
million per year under plausible assumptions regarding long-run economic
growth in the United States. This probable future for the US construction
sector implies that markets for some categories of wood products in the
United States are likely to experience moderate future growth. For example,
softwood lumber consumption growth would average 0.6% per year given
economic growth continuing at the average rate observed from 1990 to
2014.

Figure 1. Annual, nationwide total (single-family plus multifamily, two or more units per structure) housing starts in the United States,
1950–2015, percentage change in real US GDP, and percentage change in US softwood lumber consumption. (Sources: starts,
1959–2015: US Bureau of the Census (2016); starts, 1950–58: Siskind [1979]; GDP: US Bureau of Economic Analysis [2016]; softwood
lumber consumption: Howard and Jones [2016], Random Lengths [2016]).
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Housing Starts Empirical Specifications
In this study, we model Equation 3, with the dependent variable

defined as housing starts aggregated to the national level (all 50
states) in the United States (i.e., excluding Puerto Rico and US
territories; see US Bureau of the Census, 2017a). We assume that
the effects of changes in a, g, w, l, and z on starts can be captured by
aggregate expressions of these variables at the national level. We
estimate separate and combined equations for single-family and
multifamily starts. This is motivated by three factors: multifamily
start shares have varied over time (multifamily housing starts ranged
from 11% to 48% of total quarterly starts, 1963– 2015, and aver-
aged 35% from 2013 to 2015; US Bureau of the Census 2016a),
single-family and multifamily starts might respond differently to

causal variables shown in Equation 3, and the quantity of wood used
in single-family structures is larger on a per-family basis than that
used in multifamily dwellings. For example, in 2013, the average
floor area was 103 m2 in a multifamily unit and 241 m2 in a single-
family home (Howard and Jones 2016).

Equation 3 (summed across all locations, i), with capitalized variable
names to indicate national aggregates, becomes

Ht � f �Yt, Rt, Ct, At, Gt, Wt, �t� (4)

where Y is real-dollar US GDP, R is the mortgage interest rate
(percent), C is the mortgage delinquency rate (in percent, approxi-
mating credit conditions), A is total US population, G is the average

Figure 2. Case-Shiller Multicity House Price Index in the United States, 1975q1 to 2015q3, multiplied by the US GDP deflator (2009 �
1). (Source: US Federal Reserve Bank of St. Louis [2015]).

Figure 3. Delinquency rate for all residential mortgages combined, total past due, United States, 1979q1 to 2015q3 (data not seasonally
adjusted). (Source: Mortgage Bankers Association [2015]).
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marginal federal income tax rate (percent) for a household annual
income level of $60,000 at constant (2012) dollars (deflated by
the Consumer Price Index for all urban consumers [deemed most
appropriate for deflating household expenditures]; US Bureau of
the Census, 2017b), W is the wage of construction workers de-
flated by the chained GDP deflator, and � is a time trend that
indexes gradual changes in unmodeled factors (unrelated to pop-
ulation) affecting housing demand as well as building regulations
and land constraints affecting supply (e.g., Saiz 2010). The
$60,000 income level used to calculate tax rates was based the
median income of first-time home buyers (National Association
of Home Builders 2017).

Because we model a time series of housing starts and use quarterly
observations, we explicitly recognize seasonality and the order of
integration of all variables (where Table 1 lists the variables in the
study and Table 2 reports results of unit root tests). Augmented
Dickey-Fuller (ADF) tests (Dickey and Fuller 1979, Said and
Dickey 1984), Phillips-Perron (PP) Tau tests (Phillips and Perron
1988; both with the null hypothesis that a series is nonstationary,
i.e., contains a unit root), and Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) tests (Kwiatkowski et al. 1992; null hypothesis of stationar-
ity, i.e., no unit root), done over a time span from the beginning of

our modeled series to the bottom of the last recession and then to the
end of our time series, for reasons explained later in the Methods
section, indicate that quarterly, nationwide total housing starts are
stationary. Single-family starts are likely to be stationary, with only
data through 2008q4 indicating possible nonstationarity. Multi-
family starts series are less likely to be stationary, according to all
three tests and all time spans tested, although the evidence is ambig-
uous, with the ADF and PP-Tau weakly rejecting (at 10%) a unit
root and the KPSS tests only weakly (10%) or more strongly (5%)
rejecting a null of stationarity. The findings that total and single-
family starts are stationary make sense from a perspective that starts
are effectively a gross housing stock change (e.g., Ball et al. 2010).
However, the tests do suggest that a near-unit-root process exists in
housing starts, meriting a single-quarter lag of the starts to be in-
cluded in the empirical specifications. Because the possible near-
unit-root situation in small samples such as ours also presents issues
of size distortions in the KPSS test (Caner and Kilian 2001, Müller
2005)—tests being oversized, rejecting the null at a rate greater than
the nominal significance levels—the rejection of stationarity is
weak. Given that the time series of starts demonstrates seasonality at
the quarterly time step (tests not reported but easily observable in
plots of quarterly data), we additionally adjust Equation 4 to include

Table 1. Data sources.

Variable Units Citation

Housing starts Thousands/yr US Bureau of the Census (2016a)
GDP $/yr US Bureau of Economic Analysis (2016)
GDP deflator Chained, 2009 � 100 US Bureau of Economic Analysis (2016)
Population, 2010–15 US Bureau of the Census (2016c)
Population, 1970–2009 US Bureau of the Census (2014)
Construction wages Dollars/week US Bureau of Labor Statistics (2015b)
Tax rate at $60,000 annual income % Tax Foundation (2015)
Mortgage delinquency rates % Mortgage Bankers Association (2015)
Producer price indices, concrete products 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, softwood plywood 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, softwood lumber 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, oriented strandboard 1982 � 100 Spelter (2015)
Producer price indices, all commodities 1982 � 100 US Bureau of Labor Statistics (2015a)
Mortgage interest rates % Freddie Mac (2016)
Unemployment rate % US Bureau of Labor Statistics (2015c)
Softwood lumber consumption, 1960–2014 Million board feet/yr Howard and Jones (2016), Random Lengths (2016)
Producer price indices, industrial electric power 1982 � 100 US Bureau of Labor Statistics (2015d)
Federal funds rate % Federal Reserve Bank of St. Louis (2015)

Table 2. ADF, PP Tau, and KPSS unit root tests.

Variable
ADF

1979q2–2008q4
ADF

1979q2–2014q4
PP Tau

1979q2–2008q4
PP Tau

1979q2–2014q4
KPSS

1979q2–2008q4
KPSS

1979q2–2014q4

ln(Startst), total �3.20** �3.17** �4.32*** �3.19** 0.199 0.352*
ln(Startst), single-family �3.01** �2.90** �3.88*** �3.16** 0.594** 0.29
ln(Startst), multifamily �1.97 �2.81* �2.61* 2.72* 0.439* 0.519**
ln(Real GDPt) �0.88 �1.15 �0.74 �1.22 1.56*** 1.49***
ln(Populationt) 0.32 �0.49 0.53 �0.56 1.58*** 1.52***
ln(Mortgage Ratet) �0.95 �0.49 �0.88 �0.44 1.42*** 1.39***
ln(Real Wage Ratet) �1.70 �1.39 �1.82 �2.15 1.11*** 0.883***
ln(Tax Ratet) �0.54 �0.67 �0.56 �0.68 0.813*** 1.08***
ln(Delinquency Ratet) �1.42 �2.37 �3.19** �2.38 0.353* 0.459*
ln(PPI Concretet) 0.00 �0.42 0.92 0.10 1.5*** 1.46***
ln(PPI SW Plywoodt) �2.87* �3.17** �1.51 �1.22 1.39*** 1.33***
ln(PPI SW Lumbert) �1.64 �2.13 �1.43 �1.33 1.23*** 1.01***
ln(PPI OSBt) �3.29*** �4.00** �2.20 �2.47 0.679** 0.637**
ln(Unemployment Ratet) �2.10 �3.04** �1.75 �1.99 0.901*** 0.257
ln(Real GDPt/Populationt) �1.03 �1.18 �0.94 �1.26 1.55*** 1.46***
ln(PPIt) �1.84 �1.48 �1.20 �1.01 1.49*** 1.45***
ln(SW Lumber Ct) �1.45 �2.18 �1.50 �1.87 0.991*** 0.263

Note: * Indicates statistical significant at 10%, ** at 5%, and *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW, softwood.
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quarterly (seasonal) dummies (Dt). Finally, unit root tests also con-
firm that real GDP, mortgage interest rates, construction wages,
mortgage delinquency rates, and the marginal federal income tax
rate at median household incomes are nonstationary, necessitating
first-differencing to achieve stationarity. Thus, we model nation-
wide housing starts, with superior dots indicating changes from
quarter t – 1 to t, as

Ht � f �Ht�1, Dt, Ẏt, Ṙt, Ȧt, Ċt, Ġt, Ẇt, �t� (5)

An unbiased, consistent estimate of Equation 5 using historical data
would generate a set of independently and identically distributed
random errors, �t

H.
Estimates of Equation 5 can also be used to evaluate a question of

structural change. We apply a Chow breakpoint test (Chow 1960),
examining whether the parameters of the estimated model differ
before and after some proposed breakpoint. Our proposed break-
point was 2008q4 to 2009q1, at the deepest point in the last US
recession. The resulting test statistic is distributed F(�, T – 2�),
where � is the number of regressors in the model and T is the
number of observations over the whole data set.

Because the model will be used as a basis of projections, we
evaluate alternative specifications with respect to out-of-sample per-
formance. In particular, we estimate models over data from 1979q2
through 2008q4 and then forecast to 2014q4. This long span of
out-of-sample conditions for model testing can reveal the effects of
biases resulting from aggregation and omitted variables.

We also estimate a version of Equation 5 that is parsimonious but
not more biased than a model that is (according to theory) fully
specified. Parsimony is desirable because it reduces the number of
independent variables also needing projection when housing starts
are projected into the future. Therefore, expressions of Equation
5 progress from the general to the parsimonious. Parsimony is
achieved by applying a model assessment and evaluation process as
suggested by Gauch (1988) using data splitting and model assess-
ment with a goal of identifying an unbiased, parsimonious predic-
tive model. To accomplish this, we start by estimating a fully spec-
ified model and assess its goodness of fit, including bias. We then
drop insignificant variables and reassess bias. Next, we drop signif-
icant variables that are not easily projected and assess the effects on
bias until we arrive at a final, parsimonious form that is not more
biased than the general specification. We note that a full specifica-
tion includes potentially endogenous predictors, such as construc-
tion wages. Models including these potentially endogenous vari-
ables are estimated with instrumental variable methods (two-staged
least squares [2SLS]).

Monte Carlo Projection Methods
The primary application of the housing start model is to better

understand projected derived demands for wood products. Expec-
tations about future levels of starts and wood product demands can
be understood by applying Monte Carlo methods to estimated
models. In this study, Monte Carlos are accomplished by (1)
randomly sampling from the historical data used to estimate
equations of housing starts, wood products, and exogenous pre-
dictors of the starts and wood products models; (2) estimating
the equations using the randomly drawn historical data; (3) pro-
jecting the exogenous predictors to some future date; (4) project-
ing the starts models and the wood products models to the future
date and recording those projections; (5) repeating steps 1– 4 for

many iterations; and (6) summarizing the results of the projected
starts and wood products. The projection period in this study
runs from 2015 to 2070. Each Monte Carlo projection consists
of 1,000 iterations.

Projections of housing starts require projections of all exogenous
variables that explain starts and wood products demands. As will be
shown in the Results section, we selected a model of starts that
includes only changes in GDP (i.e., GDP growth) and residential
mortgage delinquencies as exogenous predictors. As such, the pro-
jections require assumptions, or models, of the future evolution of
GDP growth and delinquencies. For real GDP growth, we opted for
a simple autoregressive specification of order K (an AR(K) model) in
first-differences of GDP, housing starts, and residential mortgage
delinquencies. The inclusion of first-differences of housing starts in
this model is justified by the idea that new construction has a small
but non-negligible effect on overall US economic output (e.g., Mo-
ench and Ng 2011) whereas inclusion of delinquencies could be
similarly justified. Seasonality is also evident in GDP growth; there-
fore, we additionally include quarterly dummies in the GDP speci-
fication. The change in the natural log of real GDP is expressed as a
function of a constant, its own lagged quarterly changes, quarterly
dummies, and lagged quarterly changes in housing starts. We use a
general-to-specific model selection process to identify which lagged
difference terms and quarter dummies appear in a final, parsimoni-
ous specification. The initial specification is

Ẏt � � � �kẎt�k � �Dt � �lḢt�l � �t
Ẏ (6)

where the elements of �k are coefficients on lagged GDP changes; �
is a vector of quarterly dummy coefficients corresponding to quar-
ters 1, 2, and 3; �l is a vector of parameters measuring how changes
in housing construction levels affect GDP growth; and �t

Ẏ is an
independent and identically distributed random error. Evident in
Equation 6 is that lagged changes in residential mortgage delinquen-
cies were not significant explainers of GDP growth; therefore, they
were dropped from the final specification.

The intercept of the GDP growth Equation 6 needs to be
adjusted if we seek to model alternative rates of real GDP growth
into the future. The intercept in a first-difference model mea-
sures the historical rate of change of the dependent variable.
Therefore, we adjust the intercept to project GDP into the future
under assumed growth rates that differ from the historical rate.
The adjustment can be done by converting the intercept to a
function of the coefficients on the lagged changes and the quar-
terly dummies:

�g � ��1 � g�0.25 � 1 � �0.25�Q�1
3 �Q� �1

� �k�1
K �k�

�1��1 � �k�1
K �k� (7)

where g is the decimal rate of assumed (projected) annual average
real GDP growth over the 55-year span of the projection (2015–70),
�g is the intercept used in projecting GDP growth into the future,
�Q represents the parameters of the � vector from Equation 6, and
other variables and parameters are as previously defined. In our
simulations, we add random quarterly errors to GDP growth, taken
from random draws of �t

Ẏ� N�0, �Ẏ�, on the basis of the regression
results for Equation 6.

In this study, projected real GDP growth was varied in seven
separate Monte Carlo projections that differed only in their assump-
tions of future real GDP growth. The first six projected annual
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ulation) affecting housing demand as well as building regulations
and land constraints affecting supply (e.g., Saiz 2010). The
$60,000 income level used to calculate tax rates was based the
median income of first-time home buyers (National Association
of Home Builders 2017).

Because we model a time series of housing starts and use quarterly
observations, we explicitly recognize seasonality and the order of
integration of all variables (where Table 1 lists the variables in the
study and Table 2 reports results of unit root tests). Augmented
Dickey-Fuller (ADF) tests (Dickey and Fuller 1979, Said and
Dickey 1984), Phillips-Perron (PP) Tau tests (Phillips and Perron
1988; both with the null hypothesis that a series is nonstationary,
i.e., contains a unit root), and Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) tests (Kwiatkowski et al. 1992; null hypothesis of stationar-
ity, i.e., no unit root), done over a time span from the beginning of

our modeled series to the bottom of the last recession and then to the
end of our time series, for reasons explained later in the Methods
section, indicate that quarterly, nationwide total housing starts are
stationary. Single-family starts are likely to be stationary, with only
data through 2008q4 indicating possible nonstationarity. Multi-
family starts series are less likely to be stationary, according to all
three tests and all time spans tested, although the evidence is ambig-
uous, with the ADF and PP-Tau weakly rejecting (at 10%) a unit
root and the KPSS tests only weakly (10%) or more strongly (5%)
rejecting a null of stationarity. The findings that total and single-
family starts are stationary make sense from a perspective that starts
are effectively a gross housing stock change (e.g., Ball et al. 2010).
However, the tests do suggest that a near-unit-root process exists in
housing starts, meriting a single-quarter lag of the starts to be in-
cluded in the empirical specifications. Because the possible near-
unit-root situation in small samples such as ours also presents issues
of size distortions in the KPSS test (Caner and Kilian 2001, Müller
2005)—tests being oversized, rejecting the null at a rate greater than
the nominal significance levels—the rejection of stationarity is
weak. Given that the time series of starts demonstrates seasonality at
the quarterly time step (tests not reported but easily observable in
plots of quarterly data), we additionally adjust Equation 4 to include

Table 1. Data sources.

Variable Units Citation

Housing starts Thousands/yr US Bureau of the Census (2016a)
GDP $/yr US Bureau of Economic Analysis (2016)
GDP deflator Chained, 2009 � 100 US Bureau of Economic Analysis (2016)
Population, 2010–15 US Bureau of the Census (2016c)
Population, 1970–2009 US Bureau of the Census (2014)
Construction wages Dollars/week US Bureau of Labor Statistics (2015b)
Tax rate at $60,000 annual income % Tax Foundation (2015)
Mortgage delinquency rates % Mortgage Bankers Association (2015)
Producer price indices, concrete products 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, softwood plywood 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, softwood lumber 1982 � 100 US Bureau of Labor Statistics (2016)
Producer price indices, oriented strandboard 1982 � 100 Spelter (2015)
Producer price indices, all commodities 1982 � 100 US Bureau of Labor Statistics (2015a)
Mortgage interest rates % Freddie Mac (2016)
Unemployment rate % US Bureau of Labor Statistics (2015c)
Softwood lumber consumption, 1960–2014 Million board feet/yr Howard and Jones (2016), Random Lengths (2016)
Producer price indices, industrial electric power 1982 � 100 US Bureau of Labor Statistics (2015d)
Federal funds rate % Federal Reserve Bank of St. Louis (2015)

Table 2. ADF, PP Tau, and KPSS unit root tests.

Variable
ADF

1979q2–2008q4
ADF

1979q2–2014q4
PP Tau

1979q2–2008q4
PP Tau

1979q2–2014q4
KPSS

1979q2–2008q4
KPSS

1979q2–2014q4

ln(Startst), total �3.20** �3.17** �4.32*** �3.19** 0.199 0.352*
ln(Startst), single-family �3.01** �2.90** �3.88*** �3.16** 0.594** 0.29
ln(Startst), multifamily �1.97 �2.81* �2.61* 2.72* 0.439* 0.519**
ln(Real GDPt) �0.88 �1.15 �0.74 �1.22 1.56*** 1.49***
ln(Populationt) 0.32 �0.49 0.53 �0.56 1.58*** 1.52***
ln(Mortgage Ratet) �0.95 �0.49 �0.88 �0.44 1.42*** 1.39***
ln(Real Wage Ratet) �1.70 �1.39 �1.82 �2.15 1.11*** 0.883***
ln(Tax Ratet) �0.54 �0.67 �0.56 �0.68 0.813*** 1.08***
ln(Delinquency Ratet) �1.42 �2.37 �3.19** �2.38 0.353* 0.459*
ln(PPI Concretet) 0.00 �0.42 0.92 0.10 1.5*** 1.46***
ln(PPI SW Plywoodt) �2.87* �3.17** �1.51 �1.22 1.39*** 1.33***
ln(PPI SW Lumbert) �1.64 �2.13 �1.43 �1.33 1.23*** 1.01***
ln(PPI OSBt) �3.29*** �4.00** �2.20 �2.47 0.679** 0.637**
ln(Unemployment Ratet) �2.10 �3.04** �1.75 �1.99 0.901*** 0.257
ln(Real GDPt/Populationt) �1.03 �1.18 �0.94 �1.26 1.55*** 1.46***
ln(PPIt) �1.84 �1.48 �1.20 �1.01 1.49*** 1.45***
ln(SW Lumber Ct) �1.45 �2.18 �1.50 �1.87 0.991*** 0.263

Note: * Indicates statistical significant at 10%, ** at 5%, and *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW, softwood.
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quarterly (seasonal) dummies (Dt). Finally, unit root tests also con-
firm that real GDP, mortgage interest rates, construction wages,
mortgage delinquency rates, and the marginal federal income tax
rate at median household incomes are nonstationary, necessitating
first-differencing to achieve stationarity. Thus, we model nation-
wide housing starts, with superior dots indicating changes from
quarter t – 1 to t, as

Ht � f �Ht�1, Dt, Ẏt, Ṙt, Ȧt, Ċt, Ġt, Ẇt, �t� (5)

An unbiased, consistent estimate of Equation 5 using historical data
would generate a set of independently and identically distributed
random errors, �t

H.
Estimates of Equation 5 can also be used to evaluate a question of

structural change. We apply a Chow breakpoint test (Chow 1960),
examining whether the parameters of the estimated model differ
before and after some proposed breakpoint. Our proposed break-
point was 2008q4 to 2009q1, at the deepest point in the last US
recession. The resulting test statistic is distributed F(�, T – 2�),
where � is the number of regressors in the model and T is the
number of observations over the whole data set.

Because the model will be used as a basis of projections, we
evaluate alternative specifications with respect to out-of-sample per-
formance. In particular, we estimate models over data from 1979q2
through 2008q4 and then forecast to 2014q4. This long span of
out-of-sample conditions for model testing can reveal the effects of
biases resulting from aggregation and omitted variables.

We also estimate a version of Equation 5 that is parsimonious but
not more biased than a model that is (according to theory) fully
specified. Parsimony is desirable because it reduces the number of
independent variables also needing projection when housing starts
are projected into the future. Therefore, expressions of Equation
5 progress from the general to the parsimonious. Parsimony is
achieved by applying a model assessment and evaluation process as
suggested by Gauch (1988) using data splitting and model assess-
ment with a goal of identifying an unbiased, parsimonious predic-
tive model. To accomplish this, we start by estimating a fully spec-
ified model and assess its goodness of fit, including bias. We then
drop insignificant variables and reassess bias. Next, we drop signif-
icant variables that are not easily projected and assess the effects on
bias until we arrive at a final, parsimonious form that is not more
biased than the general specification. We note that a full specifica-
tion includes potentially endogenous predictors, such as construc-
tion wages. Models including these potentially endogenous vari-
ables are estimated with instrumental variable methods (two-staged
least squares [2SLS]).

Monte Carlo Projection Methods
The primary application of the housing start model is to better

understand projected derived demands for wood products. Expec-
tations about future levels of starts and wood product demands can
be understood by applying Monte Carlo methods to estimated
models. In this study, Monte Carlos are accomplished by (1)
randomly sampling from the historical data used to estimate
equations of housing starts, wood products, and exogenous pre-
dictors of the starts and wood products models; (2) estimating
the equations using the randomly drawn historical data; (3) pro-
jecting the exogenous predictors to some future date; (4) project-
ing the starts models and the wood products models to the future
date and recording those projections; (5) repeating steps 1– 4 for

many iterations; and (6) summarizing the results of the projected
starts and wood products. The projection period in this study
runs from 2015 to 2070. Each Monte Carlo projection consists
of 1,000 iterations.

Projections of housing starts require projections of all exogenous
variables that explain starts and wood products demands. As will be
shown in the Results section, we selected a model of starts that
includes only changes in GDP (i.e., GDP growth) and residential
mortgage delinquencies as exogenous predictors. As such, the pro-
jections require assumptions, or models, of the future evolution of
GDP growth and delinquencies. For real GDP growth, we opted for
a simple autoregressive specification of order K (an AR(K) model) in
first-differences of GDP, housing starts, and residential mortgage
delinquencies. The inclusion of first-differences of housing starts in
this model is justified by the idea that new construction has a small
but non-negligible effect on overall US economic output (e.g., Mo-
ench and Ng 2011) whereas inclusion of delinquencies could be
similarly justified. Seasonality is also evident in GDP growth; there-
fore, we additionally include quarterly dummies in the GDP speci-
fication. The change in the natural log of real GDP is expressed as a
function of a constant, its own lagged quarterly changes, quarterly
dummies, and lagged quarterly changes in housing starts. We use a
general-to-specific model selection process to identify which lagged
difference terms and quarter dummies appear in a final, parsimoni-
ous specification. The initial specification is

Ẏt � � � �kẎt�k � �Dt � �lḢt�l � �t
Ẏ (6)

where the elements of �k are coefficients on lagged GDP changes; �
is a vector of quarterly dummy coefficients corresponding to quar-
ters 1, 2, and 3; �l is a vector of parameters measuring how changes
in housing construction levels affect GDP growth; and �t

Ẏ is an
independent and identically distributed random error. Evident in
Equation 6 is that lagged changes in residential mortgage delinquen-
cies were not significant explainers of GDP growth; therefore, they
were dropped from the final specification.

The intercept of the GDP growth Equation 6 needs to be
adjusted if we seek to model alternative rates of real GDP growth
into the future. The intercept in a first-difference model mea-
sures the historical rate of change of the dependent variable.
Therefore, we adjust the intercept to project GDP into the future
under assumed growth rates that differ from the historical rate.
The adjustment can be done by converting the intercept to a
function of the coefficients on the lagged changes and the quar-
terly dummies:

�g � ��1 � g�0.25 � 1 � �0.25�Q�1
3 �Q� �1

� �k�1
K �k�

�1��1 � �k�1
K �k� (7)

where g is the decimal rate of assumed (projected) annual average
real GDP growth over the 55-year span of the projection (2015–70),
�g is the intercept used in projecting GDP growth into the future,
�Q represents the parameters of the � vector from Equation 6, and
other variables and parameters are as previously defined. In our
simulations, we add random quarterly errors to GDP growth, taken
from random draws of �t

Ẏ� N�0, �Ẏ�, on the basis of the regression
results for Equation 6.

In this study, projected real GDP growth was varied in seven
separate Monte Carlo projections that differed only in their assump-
tions of future real GDP growth. The first six projected annual
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growth in 1% increments, from 0% to 5%. The seventh projected
real GDP annual growth at 2.4%, which was the historical average
rate observed between 1990 and 2014, which we contend is a plau-
sible outlook for the future of US economic growth (e.g., Gordon
2016). A projected set of random draws of �t

Ẏ does not guarantee that
the average annual growth rate in a Monte Carlo projection will
match the assumed rate. To ensure that annual real GDP growth
over the entire projection, 2015–70, matches the assumed rates, we
(1) generate, using the GDP growth equation and housing starts
equation, a series of random changes in logarithmically transformed
real GDP (Equation 6); (2) add the random changes to logarithmi-

cally transformed real GDP, Ŷt � Ŷt�1 � Ŷ̇t; (3) calculate the aver-
age quarterly deviation of the randomized rate of quarterly growth

over the random real GDP projection as g̃q � � 1

134� (Ŷ2070q4 �

Ŷ2015q3); and (4) generate an adjusted random realization that

matches assumed growth as Ŷ̂t � Ŷt � g̃q. Because lagged changes in
housing starts are part of the GDP growth equation (Equation 6),
steps 1–4 are repeated 3 times for each Monte Carlo iteration to
allow both the starts projection and the adjusted GDP growth pro-
jection to converge to a stable random projection.

To project the residential mortgage delinquency rate, we devel-
oped a statistical model specified as a function of exogenous vari-
ables. As in the case of real GDP, we started from a general specifi-
cation of the mortgage delinquency rate and dropped insignificant
variables to arrive at a parsimonious specification. Given that the
unit root tests of this variable indicated possible stationarity (Table
2), the general specification related the level of the mortgage delin-
quency rate to its lagged level, four lagged changes in the level, four
lagged changes in real GDP, four lagged levels of total housing starts,
and quarterly dummies:

Ct � �0 � �1Ct�1 � �j�1
4 �jĊt�j � �j�1

4 �jẎt�j

� �j�1
4 �jHt�j � �Dt � �t

C (8)

The final specification of Equation 8 did not include housing starts
but did include lagged changes in delinquency rates and lagged
changes in real GDP.

The United States has historically imported a substantial share
(on average, 28% between 1979 and 2013) of softwood lumber
domestically consumed. These imports and domestic production
have been driven in part by softwood lumber demand from the
construction sector (e.g., Song et al. 2011). To quantify softwood
lumber consumption, we formulate a reduced-form softwood lum-
ber quantity equation that is derived from equilibrium supply and
demand. Softwood lumber demand derives from housing starts as
well as other components of the economy that demand softwood
lumber as an input. These other components include repairs and
renovations of the existing housing stock, commercial construction,
manufacturing, and shipping, which we proxy with real GDP. De-
mand for lumber is also influenced by the price of substitutes in
construction. Although including in a softwood lumber demand
model a variable that indexes residential improvements and repair
activity might be preferred, we note that consistently reported quar-
terly time series data on such a variable are not available from gov-
ernment data sources. (We tested inclusion of the real value of house
maintenance and repairs [US Bureau of the Census 2016b] in Equa-
tion 8, obtained from the US Census Bureau, but this variable was
statistically insignificant, did not significantly affect the magnitudes

of the estimated parameters of either starts or real GDP, and covered
a shorter time series than that available for other models. We
dropped further consideration of this variable in Equation 8. We
contend that improvements and repair spending is likely to be cap-
tured by the included real GDP growth variable.) Softwood lumber
supply is a function of lumber price as well as the price of inputs to
lumber production, such as mill wages, electricity, and timber. Soft-
wood lumber demand and supply are defined as follows:

QL,t
D � f �PL,t

US, PL,t
M , Ht, Yt, Nt�

QL,t
S � g�PL,t

US, Ft� (9)

ML,t
S � h�PL,t

M , Ft�

where QL,t
D is the quantity of derived softwood lumber demanded in

the United States in period t, QL,t
S is the quantity of softwood lumber

supplied by the domestic US market in period t, ML,t
S is the net

import quantity of softwood lumber in period t, Ft is a vector of
lumber production input prices in period t, Nt is a vector of substi-
tutes for lumber in construction, and other variables are as previ-
ously defined. At equilibrium, softwood lumber consumption
equals the sum of domestic production and net imports. A reduced-
form equation, factoring out own price (PL,t

US), leads to

Q L,t � f2�PL,t
M , Ht, Yt, Wt, Rt� (10)

Recognizing that the import price and some input prices may also be
endogenous in this reduced-form specification, a more parsimoni-
ous version of Equation 10 would be

Q L,t � f3�Ht, Yt, W1,t, R1,t� (11)

where W1,t is the subvector of input prices considered exogenous in
derived lumber demand and R1,t is the subvector of input prices
considered exogenous in softwood lumber manufacture.

This model was specified using a logarithmic transformation
and, given that an ADF test could not reject a null of a unit root
(Table 2), we specify the model in first-differences in Equation 12,
with superior dots indicating changes from quarter t – 1 to t:

lnQ̇ t � f �Ḣt, Ẏt, Ṙt, Ẇt� (12)

Equations 11 and 12 are abstracted from what might be considered
fully specified consumption quantity equations, which could in-
clude Ft and PL,t

M . Other studies have shown (e.g., Song et al. 2011)
that structural softwood lumber demand specifications have been
successfully estimated with own and substitute prices. Although
their inclusion could improve model fit, the additional variables
would represent new challenges in projecting lumber demand into
the future.

Results
Housing Starts Models

Housing starts equation estimates, from least to most parsimo-
nious, are shown in Table 3 (total housing starts), Table 4 (single-
family housing starts), and Table 5 (multifamily housing starts).
Models 1–3 apply instrumental variables methods (2SLS) whereas
the remaining models are estimated with least squares. All specifica-
tions apply a White’s (1980) correction for residual heteroscedastic-
ity. Standard errors of regression were similar across all model spec-
ifications for total, single-family, and multifamily starts categories.
Across all models, in-sample R2 values ranged from 0.89 to 0.93,
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with best-fitting models found for single-family starts, least for mul-
tifamily. Significant residual serial correlation was found in only the
most parsimonious specification, as measured by Durbin’s H-statis-
tic (Durbin 1970).

Across all starts categories and model specifications, there is serial
dependence in housing starts; that is, the previous quarters’ (lagged)
starts coefficients ranged from 0.89 to 0.96. Seasonality is evident
and significant, with spring and summer quarters (2 and 3) having
higher starts levels and winter having lower starts levels compared
with the fall quarter (quarter 4, the omitted dummy). Real GDP
growth is a significant and positive predictor of starts. Changes in
population in the United States are not statistically significant con-
tributors to housing starts. Changes in the mortgage rate are nega-
tively and significantly (at 1%) related to housing starts, and this
effect is consistent across all specifications tested. Another consis-
tently negative and significant (at 1%) predictor of total starts is the
loan delinquency rate. In contrast, we did not find statistically sig-

nificant relationships with starts for (instrumented) construction
wages or changes in the marginal tax rate. Other input prices in
construction, including concrete, softwood plywood, softwood
lumber, and oriented strandboard, were not significantly related to
starts levels. The insignificant finding on construction wages and
other input prices could be due to a lack of good instruments for
these variables. Our instruments included the change in the unem-
ployment rate (aggregate, US), lagged input prices, and per-capita
real GDP.

Model forecasts out of sample (Table 7) showed that, as the
models became more parsimonious, goodness-of-fit statistics im-
proved. Statistics shown in Table 7 are based on the logarithmically
transformed dependent variable and its forecast. Model specification 7
was the best fitting, as measured by the root mean squared error
(RMSE) and bias. Both statistics were lowest with this specification,
with the exception of multifamily starts, in which the specification
that included the change in the mortgage interest rate generated

Table 3. Equation estimates for total housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.30 (0.37) 0.48 (0.26)* 0.49 (0.26)* 0.44 (0.25)* 0.43 (0.25)* 0.43 (0.25)* 0.42 (0.28)
ln(Startst-1) 0.93 (0.07)*** 0.89 (0.04)*** 0.89 (0.04)*** 0.90 (0.04)*** 0.90 (0.04)*** 0.90 (0.04)*** 0.90 (0.05)***
Quarter 1 dummy �0.12 (0.08) �0.09 (0.04)** �0.09 (0.04)*** �0.09 (0.03)** �0.09 (0.03)** �0.09 (0.03)**
Quarter 2 dummy 0.41 (0.08)*** 0.47 (0.03)*** 0.47 (0.03)*** 0.46 (0.02)*** 0.46 (0.02)*** 0.46 (0.02)*** 0.46 (0.02)***
Quarter 3 dummy 0.086 (0.068) 0.15 (0.03)*** 0.15 (0.03)*** 0.14 (0.02)*** 0.14 (0.02)*** 0.14 (0.02)*** 0.14 (0.02)***
ln(GDPt)�ln(GDPt-1) 2.82 (3.45) 4.58 (1.17)*** 4.59 (1.16)*** 4.51 (1.17)*** 4.54 (1.18)*** 4.54 (1.18)*** 4.14 (1.26)***
ln(Populationt)�ln(Populationt-1) 6.38 (12.08) 1.79 (5.54)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.67 (0.25)*** �0.54 (0.20)*** �0.53 (0.19)*** �0.50 (0.18)*** �0.53 (0.19)*** �0.53 (0.19)***
ln(Wage Ratet)�ln(Wage Ratet-1) 0.47 (0.96) �0.42 (0.67) �0.41 (0.67)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.25 (0.15) �0.17 (0.17) �0.17 (0.17) �0.18 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.71 (0.25)*** �0.62 (0.13)*** �0.62 (0.13)*** �0.64 (0.13)*** �0.65 (0.13)*** �0.65 (0.13)*** �0.36 (0.08)***
ln(PPI Concretet)�ln(PPI Concretet-1) �1.04 (1.56)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.72 (0.58)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) 0.31 (1.51)
ln(PPI OSBt)�ln(PPI OSBt-1) �0.43 (0.47)
Standard error of regression 0.091 0.080 0.079 0.078 0.079 0.079 0.084
R2 0.89 0.91 0.91 0.91 0.91 0.91 0.90
Durbin’s H-statistic 0.48 0.44 0.45 0.46 0.41 0.41 1.91*

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.

Table 4. Equation estimates for single-family housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.06 (0.29) 0.21 (0.23) 0.21 (0.23) 0.20 (0.22) 0.17 (0.22) 0.13 (0.22) 0.26 (0.26)
ln(Startst-1) 0.96 (0.06)*** 0.92 (0.04)*** 0.93 (0.04)*** 0.93 (0.04)*** 0.93 (0.04)*** 0.94 (0.04)*** 0.92 (0.05)***
Quarter 1 dummy �0.06 (0.08) �0.04 (0.04) �0.04 (0.04) �0.03 (0.04) �0.03 (0.04)
Quarter 2 dummy 0.48 (0.09)*** 0.54 (0.04)*** 0.54 (0.04)*** 0.53 (0.02)*** 0.53 (0.02)*** 0.54 (0.02)*** 0.51 (0.02)***
Quarter 3 dummy 0.095 (0.077) 0.17 (0.04)*** 0.17 (0.04)*** 0.16 (0.02)*** 0.16 (0.02)*** 0.16 (0.02)*** 0.16 (0.02)***
ln(GDPt)�ln(GDPt-1) 2.02 (3.40) 3.96 (1.23)*** 3.95 (1.23)*** 3.91 (1.23)*** 3.92 (1.23)*** 3.99 (1.22)*** 3.15 (1.30)**
ln(Populationt)�ln(Populationt-1) 10.10 (16.27) 4.28 (4.27)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.92 (0.28)*** �0.74 (0.21)*** �0.72 (0.20)*** �0.71 (0.19)*** �0.73 (0.20)*** �0.73 (0.20)***
ln(Wage Ratet)�ln(Wage Ratet-1) 0.57 (1.12) �0.23 (0.76) �0.21 (0.75)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.23 (0.16) �0.16 (0.17) �0.16 (0.17) �0.16 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.82 (0.27)*** �0.71 (0.14)*** �0.71 (0.14)*** �0.72 (0.13)*** �0.73 (0.13)*** �0.63 (0.08)*** �0.60 (0.09)***
ln(PPI Concretet)�ln(PPI Concretet-1) �1.23 (1.92)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.97 (0.64)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) 0.22 (1.57)
ln(PPI OSBt)�ln(PPI OSBt-1) �0.47 (0.55)
Standard error of regression 0.10 0.08 0.08 0.08 0.08 0.08 0.09
R2 0.89 0.93 0.93 0.93 0.93 0.92 0.91
Durbin’s H-statistic 0.08 0.27 0.30 0.34 0.33 0.32 2.50***

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.
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growth in 1% increments, from 0% to 5%. The seventh projected
real GDP annual growth at 2.4%, which was the historical average
rate observed between 1990 and 2014, which we contend is a plau-
sible outlook for the future of US economic growth (e.g., Gordon
2016). A projected set of random draws of �t

Ẏ does not guarantee that
the average annual growth rate in a Monte Carlo projection will
match the assumed rate. To ensure that annual real GDP growth
over the entire projection, 2015–70, matches the assumed rates, we
(1) generate, using the GDP growth equation and housing starts
equation, a series of random changes in logarithmically transformed
real GDP (Equation 6); (2) add the random changes to logarithmi-

cally transformed real GDP, Ŷt � Ŷt�1 � Ŷ̇t; (3) calculate the aver-
age quarterly deviation of the randomized rate of quarterly growth

over the random real GDP projection as g̃q � � 1

134� (Ŷ2070q4 �

Ŷ2015q3); and (4) generate an adjusted random realization that

matches assumed growth as Ŷ̂t � Ŷt � g̃q. Because lagged changes in
housing starts are part of the GDP growth equation (Equation 6),
steps 1–4 are repeated 3 times for each Monte Carlo iteration to
allow both the starts projection and the adjusted GDP growth pro-
jection to converge to a stable random projection.

To project the residential mortgage delinquency rate, we devel-
oped a statistical model specified as a function of exogenous vari-
ables. As in the case of real GDP, we started from a general specifi-
cation of the mortgage delinquency rate and dropped insignificant
variables to arrive at a parsimonious specification. Given that the
unit root tests of this variable indicated possible stationarity (Table
2), the general specification related the level of the mortgage delin-
quency rate to its lagged level, four lagged changes in the level, four
lagged changes in real GDP, four lagged levels of total housing starts,
and quarterly dummies:

Ct � �0 � �1Ct�1 � �j�1
4 �jĊt�j � �j�1

4 �jẎt�j

� �j�1
4 �jHt�j � �Dt � �t

C (8)

The final specification of Equation 8 did not include housing starts
but did include lagged changes in delinquency rates and lagged
changes in real GDP.

The United States has historically imported a substantial share
(on average, 28% between 1979 and 2013) of softwood lumber
domestically consumed. These imports and domestic production
have been driven in part by softwood lumber demand from the
construction sector (e.g., Song et al. 2011). To quantify softwood
lumber consumption, we formulate a reduced-form softwood lum-
ber quantity equation that is derived from equilibrium supply and
demand. Softwood lumber demand derives from housing starts as
well as other components of the economy that demand softwood
lumber as an input. These other components include repairs and
renovations of the existing housing stock, commercial construction,
manufacturing, and shipping, which we proxy with real GDP. De-
mand for lumber is also influenced by the price of substitutes in
construction. Although including in a softwood lumber demand
model a variable that indexes residential improvements and repair
activity might be preferred, we note that consistently reported quar-
terly time series data on such a variable are not available from gov-
ernment data sources. (We tested inclusion of the real value of house
maintenance and repairs [US Bureau of the Census 2016b] in Equa-
tion 8, obtained from the US Census Bureau, but this variable was
statistically insignificant, did not significantly affect the magnitudes

of the estimated parameters of either starts or real GDP, and covered
a shorter time series than that available for other models. We
dropped further consideration of this variable in Equation 8. We
contend that improvements and repair spending is likely to be cap-
tured by the included real GDP growth variable.) Softwood lumber
supply is a function of lumber price as well as the price of inputs to
lumber production, such as mill wages, electricity, and timber. Soft-
wood lumber demand and supply are defined as follows:

QL,t
D � f �PL,t

US, PL,t
M , Ht, Yt, Nt�

QL,t
S � g�PL,t

US, Ft� (9)

ML,t
S � h�PL,t

M , Ft�

where QL,t
D is the quantity of derived softwood lumber demanded in

the United States in period t, QL,t
S is the quantity of softwood lumber

supplied by the domestic US market in period t, ML,t
S is the net

import quantity of softwood lumber in period t, Ft is a vector of
lumber production input prices in period t, Nt is a vector of substi-
tutes for lumber in construction, and other variables are as previ-
ously defined. At equilibrium, softwood lumber consumption
equals the sum of domestic production and net imports. A reduced-
form equation, factoring out own price (PL,t

US), leads to

Q L,t � f2�PL,t
M , Ht, Yt, Wt, Rt� (10)

Recognizing that the import price and some input prices may also be
endogenous in this reduced-form specification, a more parsimoni-
ous version of Equation 10 would be

Q L,t � f3�Ht, Yt, W1,t, R1,t� (11)

where W1,t is the subvector of input prices considered exogenous in
derived lumber demand and R1,t is the subvector of input prices
considered exogenous in softwood lumber manufacture.

This model was specified using a logarithmic transformation
and, given that an ADF test could not reject a null of a unit root
(Table 2), we specify the model in first-differences in Equation 12,
with superior dots indicating changes from quarter t – 1 to t:

lnQ̇ t � f �Ḣt, Ẏt, Ṙt, Ẇt� (12)

Equations 11 and 12 are abstracted from what might be considered
fully specified consumption quantity equations, which could in-
clude Ft and PL,t

M . Other studies have shown (e.g., Song et al. 2011)
that structural softwood lumber demand specifications have been
successfully estimated with own and substitute prices. Although
their inclusion could improve model fit, the additional variables
would represent new challenges in projecting lumber demand into
the future.

Results
Housing Starts Models

Housing starts equation estimates, from least to most parsimo-
nious, are shown in Table 3 (total housing starts), Table 4 (single-
family housing starts), and Table 5 (multifamily housing starts).
Models 1–3 apply instrumental variables methods (2SLS) whereas
the remaining models are estimated with least squares. All specifica-
tions apply a White’s (1980) correction for residual heteroscedastic-
ity. Standard errors of regression were similar across all model spec-
ifications for total, single-family, and multifamily starts categories.
Across all models, in-sample R2 values ranged from 0.89 to 0.93,
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with best-fitting models found for single-family starts, least for mul-
tifamily. Significant residual serial correlation was found in only the
most parsimonious specification, as measured by Durbin’s H-statis-
tic (Durbin 1970).

Across all starts categories and model specifications, there is serial
dependence in housing starts; that is, the previous quarters’ (lagged)
starts coefficients ranged from 0.89 to 0.96. Seasonality is evident
and significant, with spring and summer quarters (2 and 3) having
higher starts levels and winter having lower starts levels compared
with the fall quarter (quarter 4, the omitted dummy). Real GDP
growth is a significant and positive predictor of starts. Changes in
population in the United States are not statistically significant con-
tributors to housing starts. Changes in the mortgage rate are nega-
tively and significantly (at 1%) related to housing starts, and this
effect is consistent across all specifications tested. Another consis-
tently negative and significant (at 1%) predictor of total starts is the
loan delinquency rate. In contrast, we did not find statistically sig-

nificant relationships with starts for (instrumented) construction
wages or changes in the marginal tax rate. Other input prices in
construction, including concrete, softwood plywood, softwood
lumber, and oriented strandboard, were not significantly related to
starts levels. The insignificant finding on construction wages and
other input prices could be due to a lack of good instruments for
these variables. Our instruments included the change in the unem-
ployment rate (aggregate, US), lagged input prices, and per-capita
real GDP.

Model forecasts out of sample (Table 7) showed that, as the
models became more parsimonious, goodness-of-fit statistics im-
proved. Statistics shown in Table 7 are based on the logarithmically
transformed dependent variable and its forecast. Model specification 7
was the best fitting, as measured by the root mean squared error
(RMSE) and bias. Both statistics were lowest with this specification,
with the exception of multifamily starts, in which the specification
that included the change in the mortgage interest rate generated

Table 3. Equation estimates for total housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.30 (0.37) 0.48 (0.26)* 0.49 (0.26)* 0.44 (0.25)* 0.43 (0.25)* 0.43 (0.25)* 0.42 (0.28)
ln(Startst-1) 0.93 (0.07)*** 0.89 (0.04)*** 0.89 (0.04)*** 0.90 (0.04)*** 0.90 (0.04)*** 0.90 (0.04)*** 0.90 (0.05)***
Quarter 1 dummy �0.12 (0.08) �0.09 (0.04)** �0.09 (0.04)*** �0.09 (0.03)** �0.09 (0.03)** �0.09 (0.03)**
Quarter 2 dummy 0.41 (0.08)*** 0.47 (0.03)*** 0.47 (0.03)*** 0.46 (0.02)*** 0.46 (0.02)*** 0.46 (0.02)*** 0.46 (0.02)***
Quarter 3 dummy 0.086 (0.068) 0.15 (0.03)*** 0.15 (0.03)*** 0.14 (0.02)*** 0.14 (0.02)*** 0.14 (0.02)*** 0.14 (0.02)***
ln(GDPt)�ln(GDPt-1) 2.82 (3.45) 4.58 (1.17)*** 4.59 (1.16)*** 4.51 (1.17)*** 4.54 (1.18)*** 4.54 (1.18)*** 4.14 (1.26)***
ln(Populationt)�ln(Populationt-1) 6.38 (12.08) 1.79 (5.54)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.67 (0.25)*** �0.54 (0.20)*** �0.53 (0.19)*** �0.50 (0.18)*** �0.53 (0.19)*** �0.53 (0.19)***
ln(Wage Ratet)�ln(Wage Ratet-1) 0.47 (0.96) �0.42 (0.67) �0.41 (0.67)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.25 (0.15) �0.17 (0.17) �0.17 (0.17) �0.18 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.71 (0.25)*** �0.62 (0.13)*** �0.62 (0.13)*** �0.64 (0.13)*** �0.65 (0.13)*** �0.65 (0.13)*** �0.36 (0.08)***
ln(PPI Concretet)�ln(PPI Concretet-1) �1.04 (1.56)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.72 (0.58)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) 0.31 (1.51)
ln(PPI OSBt)�ln(PPI OSBt-1) �0.43 (0.47)
Standard error of regression 0.091 0.080 0.079 0.078 0.079 0.079 0.084
R2 0.89 0.91 0.91 0.91 0.91 0.91 0.90
Durbin’s H-statistic 0.48 0.44 0.45 0.46 0.41 0.41 1.91*

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.

Table 4. Equation estimates for single-family housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.06 (0.29) 0.21 (0.23) 0.21 (0.23) 0.20 (0.22) 0.17 (0.22) 0.13 (0.22) 0.26 (0.26)
ln(Startst-1) 0.96 (0.06)*** 0.92 (0.04)*** 0.93 (0.04)*** 0.93 (0.04)*** 0.93 (0.04)*** 0.94 (0.04)*** 0.92 (0.05)***
Quarter 1 dummy �0.06 (0.08) �0.04 (0.04) �0.04 (0.04) �0.03 (0.04) �0.03 (0.04)
Quarter 2 dummy 0.48 (0.09)*** 0.54 (0.04)*** 0.54 (0.04)*** 0.53 (0.02)*** 0.53 (0.02)*** 0.54 (0.02)*** 0.51 (0.02)***
Quarter 3 dummy 0.095 (0.077) 0.17 (0.04)*** 0.17 (0.04)*** 0.16 (0.02)*** 0.16 (0.02)*** 0.16 (0.02)*** 0.16 (0.02)***
ln(GDPt)�ln(GDPt-1) 2.02 (3.40) 3.96 (1.23)*** 3.95 (1.23)*** 3.91 (1.23)*** 3.92 (1.23)*** 3.99 (1.22)*** 3.15 (1.30)**
ln(Populationt)�ln(Populationt-1) 10.10 (16.27) 4.28 (4.27)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.92 (0.28)*** �0.74 (0.21)*** �0.72 (0.20)*** �0.71 (0.19)*** �0.73 (0.20)*** �0.73 (0.20)***
ln(Wage Ratet)�ln(Wage Ratet-1) 0.57 (1.12) �0.23 (0.76) �0.21 (0.75)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.23 (0.16) �0.16 (0.17) �0.16 (0.17) �0.16 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.82 (0.27)*** �0.71 (0.14)*** �0.71 (0.14)*** �0.72 (0.13)*** �0.73 (0.13)*** �0.63 (0.08)*** �0.60 (0.09)***
ln(PPI Concretet)�ln(PPI Concretet-1) �1.23 (1.92)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.97 (0.64)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) 0.22 (1.57)
ln(PPI OSBt)�ln(PPI OSBt-1) �0.47 (0.55)
Standard error of regression 0.10 0.08 0.08 0.08 0.08 0.08 0.09
R2 0.89 0.93 0.93 0.93 0.93 0.92 0.91
Durbin’s H-statistic 0.08 0.27 0.30 0.34 0.33 0.32 2.50***

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.
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better fit statistics. Although these dynamic forecasts out of sample,
keeping parameter estimates constant, display a tendency to forecast
too high, we made no bias adjustments to the Monte-Carlo-based
forecasts. The quarter 1 dummy was dropped in model specification
7 for total housing starts and multifamily housing starts and speci-
fications 6 and 7 for single-family housing starts. This was done
because models estimated over the longer time span, to 2014q4,
showed the quarter 1 dummy to be statistically insignificant.

We also tested the conjecture that the 2008/2009 recession re-
sulted in a structural change in housing markets (Anundsen 2015,
Myers 2016) by testing the hypothesis that pre- and postrecession
parameter estimates are equivalent. The Chow breakpoint test for a
structural break in the parameters of the total starts model (specifi-
cation 7) showed that there was no statistically significant structural
change in total starts (P � 0.27) or single-family starts (P � 0.56).
For the estimate of specification 7 of the multifamily starts, the test
found in favor of a breakpoint (P � 0.02).

Table 7. Out-of-sample model assessments, general to parsimo-
nious specifications, for total housing starts, single-family starts,
and multifamily starts.

Model
number

Model
type

Total
starts

Single-family
starts

Multifamily
starts

RMSE Bias RMSE Bias RMSE Bias

1 2SLS 0.68 �0.38 1.11 �0.62 0.64 �0.21
2 2SLS 0.63 �0.43 0.57 �0.36 0.57 �0.24
3 2SLS 0.62 �0.44 0.57 �0.38 0.54 �0.22
4 OLS 0.56 �0.41 0.53 �0.36 0.50 �0.19
5 OLS 0.54 �0.41 0.50 �0.35 0.49 �0.20
6 OLS 0.54 �0.41 0.44 �0.32 0.47 �0.19
7 OLS 0.44 �0.35 0.43 �0.32 0.54 �0.12

Note: OLS, ordinary least squares.

Table 5. Equation estimates for multifamily housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.20 (0.32) 0.24 (0.17) 0.22 (0.15) 0.21 (0.15) 0.22 (0.15) 0.22 (0.15) 0.15 (0.14)
ln(Startst-1) 0.94 (0.06)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)***
Quarter 1 dummy �0.25 (0.17) �0.24 (0.06)*** �0.24 (0.06)*** �0.23 (0.06)*** �0.23 (0.06)*** �0.23 (0.06)***
Quarter 2 dummy 0.36 (0.28) 0.32 (0.04)*** 0.33 (0.04)*** 0.30 (0.03)*** 0.30 (0.03)*** 0.29 (0.03)*** 0.34 (0.03)***
Quarter 3 dummy 0.149 (0.215) 0.12 (0.03)*** 0.12 (0.03)*** 0.09 (0.03)*** 0.09 (0.03)*** 0.09 (0.03)*** 0.11 (0.03)***
ln(GDPt)�ln(GDPt-1) 4.32 (2.14)** 4.68 (1.52)*** 4.65 (1.51)*** 4.66 (1.49)*** 4.72 (1.49)*** 4.56 (1.50)*** 5.59 (1.67)***
ln(Populationt)�ln(Populationt-1) �5.51 (18.71) �4.18 (13.93)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.14 (0.29) �0.14 (0.26) �0.16 (0.26) �0.10 (0.24) �0.12 (0.24)
ln(Wage Ratet)�ln(Wage Ratet-1) �1.76 (6.96) �0.78 (0.58) �0.80 (0.58)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.15 (0.25) �0.13 (0.19) �0.14 (0.19) �0.15 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.10 (0.21) �0.48 (0.20)** �0.48 (0.20)** �0.50 (0.20)** �0.52 (0.20)** �0.51 (0.20)** 0.23 (0.11)**
ln(PPI Concretet)�ln(PPI Concretet-1) �0.38 (0.47)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.52 (4.28)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) �0.03 (0.32)
ln(PPI OSBt)�ln(PPI OSBt-1) 0.07 (0.66)
Standard error of regression 0.13 0.12 0.12 0.12 0.12 0.12 0.13
R2 0.90 0.91 0.91 0.91 0.91 0.91 0.90
Durbin’s H-statistic �1.03 �1.16 �1.15 �1.23 �1.30 �1.15 �2.08**

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.

Table 6. Estimates of models of real US GDP growth rates, the total rate of residential mortgage delinquency, and softwood lumber
consumption.

Variable
GDP model

ln(GDPt)�ln(GDPt-1)
Mortgage delinquency model

ln(Delinquency Ratet)
Softwood lumber model

ln(Qt)�ln(Qt-1)

Constant 0.0063 (0.0015)*** 0.14 (0.03)*** �0.024 (0.009)**
ln(GDPt)�ln(GDPt-1) 1.23 (0.30)***
ln(GDPt-1)-ln(GDPt-2) 0.33 (0.08)*** �1.93 (0.60)***
ln(GDPt-8)�ln(GDPt-9) �0.20 (0.05)***
ln(GDPt-10)�ln(GDPt-9) 0.26 (0.07)***
ln(GDPt-12)�ln(GDPt-13) �0.14 (0.06)**
Quarter 1 dummy �0.12 (0.02)***
Quarter 2 dummy 0.0042 (0.0013)*** �0.019 (0.008)**
Quarter 3 dummy �0.010 (0.003)***
ln(Delinquency Ratet-1) 0.94 (0.02)***
ln(Delinquency Ratet-4)�ln(Delinquency Ratet-5) 0.40 (0.08)***
ln(Housing Startst)�ln(Housing Startst-1)a 0.029 (0.007)*** 0.44 (0.04)***
ln(Housing Startst-3)�ln(Housing Startst-4) 0.0074 (0.0031)**
Standard error of regression 0.0056 0.044 0.030
R2 0.45 0.96 0.91
Durbin’s H-statistic �1.86* �0.42 �0.11
Observations 146 142 36

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. The subscript t in the dependent and independent variables
refers to the quarter for the housing starts and mortgage delinquency rate models and the year in the softwood lumber model.
a Single-family starts for the softwood lumber consumption equation.
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GDP Growth Model Estimates
We estimated the GDP growth model using quarterly data from

1979q1 to 2015q3 (Table 1). The selected model is reported in
Table 6. Estimated with a correction for heteroscedasticity, this
model has an R2 of 0.45. Predictors in the final specification include
lagged GDP growth rates at lags 1, 2, 8, 9, and 12 and lags 1 and 4
of the first-differences of housing starts. The quarter 2 and quarter 3
dummies were significant and included. The estimate also includes
a statistically significant intercept of 0.0063. This intercept captures
the average rate of quarterly GDP change whereas the coefficient on
the quarter 2 dummy, 0.0042, indicates that the second quarter of
each year tends to have a higher GDP growth rate than other quar-
ters and the coefficient on quarter 3 (�0.010) indicates that the
third quarter growth tends to be slightly lower than growth the rest
of the year. Lagged housing starts changes show that housing is
positively related to future GDP growth.

Mortgage Delinquency Model Estimates
The mortgage delinquency rate models used quarterly data from

1979q1 to 2015q3 (Table 1). The parsimonious version of Equa-
tion 8, reported in Table 6, includes the lagged level of the delin-
quency rate, the first lag of GDP growth rate, quarter 1 and quarter
2 dummies, and the fourth lag of the change in the delinquency rate.
The estimate shown in Table 6 uses all observations, but model
selection occurred using data only through 2008q4. The estimate
was also tested in out-of-sample conditions, estimating the model
over data through 2008q4 and forecasting through 2015q3. Predic-
tions out of sample (and back-transforming the logarithmic predic-
tion, including a bias correction done by adding half of the variance
of the regression estimate) showed that the level of the mortgage
delinquency rate tracked observed rates over 2009q1 through
2015q3 with a positive bias in percentage points of 0.31 and a
RMSE of 0.53. The model estimated over the whole sample had
negligible autocorrelation as measured by the H-test and a high
degree of explanatory power (R2 � 0.96).

In our projections of mortgage delinquency rates, we added ran-
dom changes to the mortgage delinquency predicted by the final
equation shown in Table 6 by adding a normally distributed ran-
dom error with a mean of zero and a standard deviation equal to the
standard error of the regression as reported in Table 6. The lagged
GDP growth rate in this projection was the adjusted random quar-
terly growth generated by the GDP projection at the assumed GDP
growth rate. The randomly generated mortgage delinquency rate
was restricted to fall between the minimum (3.62%) and maximum
(10.44%) levels observed between 1979q2 and 2015q3; therefore,
these bounds were an assumed range of plausibility in projected
future years. Therefore, when the equation projected a higher rate
than 10.44% for a given quarter, the value for the quarter was set at
10.44%; when it projected a lower rate than 3.62%, the value for the
quarter was set at 3.62%.

Softwood Lumber Consumption Model Estimates
We tested a fully specified reduced-form model of softwood lum-

ber consumption (Equation 12) with annual data, 1960–2014.
This model was specified using a logarithmic transformation and,
given that tests for a unit root (Table 2) were consistent with a unit
root process, estimated in first-differences. The most general speci-
fication of this model showed that the price index for concrete
products (an alternative building material), the price index of elec-
tricity (an input cost), and the federal funds rate were not statistically

significant drivers of softwood lumber consumption. The final
model is reported in Table 6. The only variables statistically signif-
icant at 5% or stronger were total housing starts and the GDP
growth rate. In an alternative version that separately included sin-
gle-family and multifamily housing starts as predictors, only single-
family starts were significant at 5% or stronger. Hence, two com-
peting models are evaluated here: total housing starts and GDP
growth (Model 1) and single-family housing starts and real GDP
growth (Model 2).

In parsimonious models using data from 1960 to 2000, all vari-
ables were significant at stronger than 1%. Model 1 had an in-sam-
ple R2 of 0.83, Model 2 had an in-sample R2 of 0.87, and neither
version had statistically significant residual autocorrelation. Both
models were then tested for their forecast performance out of sam-
ple, 2001–14. In the out-of-sample goodness-of-fit evaluation, pre-
dictions were back-transformed and converted to levels by adding
half of the variance of the equation errors before exponentiation of
the predicted quantity in natural logarithms. Model 1 had a RMSE
of 3,679 and a bias (tending to overpredict) of 3,815 whereas Model
2 had analogous statistics of 2,595 and 2,690. On the basis of these
results, Model 2 is preferred.

Previous research is mixed regarding explanatory variables in a
model of softwood lumber. Song et al. (2011) excluded GDP in
their model of softwood lumber demand in the United States
whereas Buongiorno (2015) reports specifications of total (conifer-
ous plus nonconiferous) lumber demand internationally as a func-
tion of GDP but not housing starts or other indices of construction.
On the other hand, Ince et al. (2011) included GDP and single
family starts in their softwood lumber demand specification. Be-
cause a model that included both variables explained more variation
(R2 of 0.86 versus 0.79 for one that excluded real GDP and 0.44 for
one that excluded housing starts but included real GDP for data
1960–2014), in our model estimates we opted for a specification
that included both. We also tested a version that included housing
stock, in addition to starts and real GDP, but because inclusion of
housing stocks would require a separate projection of housing
stocks, we opted not to pursue this model.

Given its out-of-sample performance, the reduced-form soft-
wood lumber model (Model 2), which included single-family hous-
ing starts and real GDP growth, was used to simulate the effects of
alternative rates of GDP growth and housing starts from 2015 to
2070 on softwood lumber consumption using the starts and GDP
projections described in the previous sections. The final model is
reported in Table 6, with parameters estimated over the available
sample of annual data corresponding to the quarterly data used for
the other equations (1979–2014, because 2015 was not available at
the time of this study). In the Monte Carlo simulations, the projec-
tions were made using annual data randomly drawn with replace-
ment (the same years of the randomly drawn quarterly observations
for the housing starts Monte Carlo simulations) to introduce
parametric uncertainty into the softwood lumber consumption
projections.

Monte Carlo Simulation Results
We project housing starts and softwood lumber consumption

using the most parsimonious specification of total starts (Table 3,
Model 7) and use the specifications for GDP, mortgage delinquency
rate, and softwood lumber consumption summarized in Table 6.
Results of the Monte Carlo projections of total US housing starts
from 2015 to 2070 are shown in two figures. Figure 4 shows the
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better fit statistics. Although these dynamic forecasts out of sample,
keeping parameter estimates constant, display a tendency to forecast
too high, we made no bias adjustments to the Monte-Carlo-based
forecasts. The quarter 1 dummy was dropped in model specification
7 for total housing starts and multifamily housing starts and speci-
fications 6 and 7 for single-family housing starts. This was done
because models estimated over the longer time span, to 2014q4,
showed the quarter 1 dummy to be statistically insignificant.

We also tested the conjecture that the 2008/2009 recession re-
sulted in a structural change in housing markets (Anundsen 2015,
Myers 2016) by testing the hypothesis that pre- and postrecession
parameter estimates are equivalent. The Chow breakpoint test for a
structural break in the parameters of the total starts model (specifi-
cation 7) showed that there was no statistically significant structural
change in total starts (P � 0.27) or single-family starts (P � 0.56).
For the estimate of specification 7 of the multifamily starts, the test
found in favor of a breakpoint (P � 0.02).

Table 7. Out-of-sample model assessments, general to parsimo-
nious specifications, for total housing starts, single-family starts,
and multifamily starts.

Model
number

Model
type

Total
starts

Single-family
starts

Multifamily
starts

RMSE Bias RMSE Bias RMSE Bias

1 2SLS 0.68 �0.38 1.11 �0.62 0.64 �0.21
2 2SLS 0.63 �0.43 0.57 �0.36 0.57 �0.24
3 2SLS 0.62 �0.44 0.57 �0.38 0.54 �0.22
4 OLS 0.56 �0.41 0.53 �0.36 0.50 �0.19
5 OLS 0.54 �0.41 0.50 �0.35 0.49 �0.20
6 OLS 0.54 �0.41 0.44 �0.32 0.47 �0.19
7 OLS 0.44 �0.35 0.43 �0.32 0.54 �0.12

Note: OLS, ordinary least squares.

Table 5. Equation estimates for multifamily housing starts, general to parsimonious specifications, by model.

Model

Variable 1 2 3 4 5 6 7

Constant 0.20 (0.32) 0.24 (0.17) 0.22 (0.15) 0.21 (0.15) 0.22 (0.15) 0.22 (0.15) 0.15 (0.14)
ln(Startst-1) 0.94 (0.06)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)*** 0.93 (0.03)***
Quarter 1 dummy �0.25 (0.17) �0.24 (0.06)*** �0.24 (0.06)*** �0.23 (0.06)*** �0.23 (0.06)*** �0.23 (0.06)***
Quarter 2 dummy 0.36 (0.28) 0.32 (0.04)*** 0.33 (0.04)*** 0.30 (0.03)*** 0.30 (0.03)*** 0.29 (0.03)*** 0.34 (0.03)***
Quarter 3 dummy 0.149 (0.215) 0.12 (0.03)*** 0.12 (0.03)*** 0.09 (0.03)*** 0.09 (0.03)*** 0.09 (0.03)*** 0.11 (0.03)***
ln(GDPt)�ln(GDPt-1) 4.32 (2.14)** 4.68 (1.52)*** 4.65 (1.51)*** 4.66 (1.49)*** 4.72 (1.49)*** 4.56 (1.50)*** 5.59 (1.67)***
ln(Populationt)�ln(Populationt-1) �5.51 (18.71) �4.18 (13.93)
ln(Mortgage Ratet)�ln(Mortgage Ratet-1) �0.14 (0.29) �0.14 (0.26) �0.16 (0.26) �0.10 (0.24) �0.12 (0.24)
ln(Wage Ratet)�ln(Wage Ratet-1) �1.76 (6.96) �0.78 (0.58) �0.80 (0.58)
ln(Tax Ratet)�ln(Tax Ratet-1) �0.15 (0.25) �0.13 (0.19) �0.14 (0.19) �0.15 (0.16)
ln(Delinquency Ratet)�ln(Delinquency Ratet-1) �0.10 (0.21) �0.48 (0.20)** �0.48 (0.20)** �0.50 (0.20)** �0.52 (0.20)** �0.51 (0.20)** 0.23 (0.11)**
ln(PPI Concretet)�ln(PPI Concretet-1) �0.38 (0.47)
ln(PPI SW Plywoodt)�ln(PPI SW Plywoodt-1) 0.52 (4.28)
ln(PPI SW Lumbert)�ln(PPI SW Lumbert-1) �0.03 (0.32)
ln(PPI OSBt)�ln(PPI OSBt-1) 0.07 (0.66)
Standard error of regression 0.13 0.12 0.12 0.12 0.12 0.12 0.13
R2 0.90 0.91 0.91 0.91 0.91 0.91 0.90
Durbin’s H-statistic �1.03 �1.16 �1.15 �1.23 �1.30 �1.15 �2.08**

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. PPI, producer price index; OSB, oriented strandboard; SW,
softwood.

Table 6. Estimates of models of real US GDP growth rates, the total rate of residential mortgage delinquency, and softwood lumber
consumption.

Variable
GDP model

ln(GDPt)�ln(GDPt-1)
Mortgage delinquency model

ln(Delinquency Ratet)
Softwood lumber model

ln(Qt)�ln(Qt-1)

Constant 0.0063 (0.0015)*** 0.14 (0.03)*** �0.024 (0.009)**
ln(GDPt)�ln(GDPt-1) 1.23 (0.30)***
ln(GDPt-1)-ln(GDPt-2) 0.33 (0.08)*** �1.93 (0.60)***
ln(GDPt-8)�ln(GDPt-9) �0.20 (0.05)***
ln(GDPt-10)�ln(GDPt-9) 0.26 (0.07)***
ln(GDPt-12)�ln(GDPt-13) �0.14 (0.06)**
Quarter 1 dummy �0.12 (0.02)***
Quarter 2 dummy 0.0042 (0.0013)*** �0.019 (0.008)**
Quarter 3 dummy �0.010 (0.003)***
ln(Delinquency Ratet-1) 0.94 (0.02)***
ln(Delinquency Ratet-4)�ln(Delinquency Ratet-5) 0.40 (0.08)***
ln(Housing Startst)�ln(Housing Startst-1)a 0.029 (0.007)*** 0.44 (0.04)***
ln(Housing Startst-3)�ln(Housing Startst-4) 0.0074 (0.0031)**
Standard error of regression 0.0056 0.044 0.030
R2 0.45 0.96 0.91
Durbin’s H-statistic �1.86* �0.42 �0.11
Observations 146 142 36

Note: Values in parentheses are standard errors. * Indicates statistical significance at 10%, ** at 5%, *** at 1%. The subscript t in the dependent and independent variables
refers to the quarter for the housing starts and mortgage delinquency rate models and the year in the softwood lumber model.
a Single-family starts for the softwood lumber consumption equation.
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GDP Growth Model Estimates
We estimated the GDP growth model using quarterly data from

1979q1 to 2015q3 (Table 1). The selected model is reported in
Table 6. Estimated with a correction for heteroscedasticity, this
model has an R2 of 0.45. Predictors in the final specification include
lagged GDP growth rates at lags 1, 2, 8, 9, and 12 and lags 1 and 4
of the first-differences of housing starts. The quarter 2 and quarter 3
dummies were significant and included. The estimate also includes
a statistically significant intercept of 0.0063. This intercept captures
the average rate of quarterly GDP change whereas the coefficient on
the quarter 2 dummy, 0.0042, indicates that the second quarter of
each year tends to have a higher GDP growth rate than other quar-
ters and the coefficient on quarter 3 (�0.010) indicates that the
third quarter growth tends to be slightly lower than growth the rest
of the year. Lagged housing starts changes show that housing is
positively related to future GDP growth.

Mortgage Delinquency Model Estimates
The mortgage delinquency rate models used quarterly data from

1979q1 to 2015q3 (Table 1). The parsimonious version of Equa-
tion 8, reported in Table 6, includes the lagged level of the delin-
quency rate, the first lag of GDP growth rate, quarter 1 and quarter
2 dummies, and the fourth lag of the change in the delinquency rate.
The estimate shown in Table 6 uses all observations, but model
selection occurred using data only through 2008q4. The estimate
was also tested in out-of-sample conditions, estimating the model
over data through 2008q4 and forecasting through 2015q3. Predic-
tions out of sample (and back-transforming the logarithmic predic-
tion, including a bias correction done by adding half of the variance
of the regression estimate) showed that the level of the mortgage
delinquency rate tracked observed rates over 2009q1 through
2015q3 with a positive bias in percentage points of 0.31 and a
RMSE of 0.53. The model estimated over the whole sample had
negligible autocorrelation as measured by the H-test and a high
degree of explanatory power (R2 � 0.96).

In our projections of mortgage delinquency rates, we added ran-
dom changes to the mortgage delinquency predicted by the final
equation shown in Table 6 by adding a normally distributed ran-
dom error with a mean of zero and a standard deviation equal to the
standard error of the regression as reported in Table 6. The lagged
GDP growth rate in this projection was the adjusted random quar-
terly growth generated by the GDP projection at the assumed GDP
growth rate. The randomly generated mortgage delinquency rate
was restricted to fall between the minimum (3.62%) and maximum
(10.44%) levels observed between 1979q2 and 2015q3; therefore,
these bounds were an assumed range of plausibility in projected
future years. Therefore, when the equation projected a higher rate
than 10.44% for a given quarter, the value for the quarter was set at
10.44%; when it projected a lower rate than 3.62%, the value for the
quarter was set at 3.62%.

Softwood Lumber Consumption Model Estimates
We tested a fully specified reduced-form model of softwood lum-

ber consumption (Equation 12) with annual data, 1960–2014.
This model was specified using a logarithmic transformation and,
given that tests for a unit root (Table 2) were consistent with a unit
root process, estimated in first-differences. The most general speci-
fication of this model showed that the price index for concrete
products (an alternative building material), the price index of elec-
tricity (an input cost), and the federal funds rate were not statistically

significant drivers of softwood lumber consumption. The final
model is reported in Table 6. The only variables statistically signif-
icant at 5% or stronger were total housing starts and the GDP
growth rate. In an alternative version that separately included sin-
gle-family and multifamily housing starts as predictors, only single-
family starts were significant at 5% or stronger. Hence, two com-
peting models are evaluated here: total housing starts and GDP
growth (Model 1) and single-family housing starts and real GDP
growth (Model 2).

In parsimonious models using data from 1960 to 2000, all vari-
ables were significant at stronger than 1%. Model 1 had an in-sam-
ple R2 of 0.83, Model 2 had an in-sample R2 of 0.87, and neither
version had statistically significant residual autocorrelation. Both
models were then tested for their forecast performance out of sam-
ple, 2001–14. In the out-of-sample goodness-of-fit evaluation, pre-
dictions were back-transformed and converted to levels by adding
half of the variance of the equation errors before exponentiation of
the predicted quantity in natural logarithms. Model 1 had a RMSE
of 3,679 and a bias (tending to overpredict) of 3,815 whereas Model
2 had analogous statistics of 2,595 and 2,690. On the basis of these
results, Model 2 is preferred.

Previous research is mixed regarding explanatory variables in a
model of softwood lumber. Song et al. (2011) excluded GDP in
their model of softwood lumber demand in the United States
whereas Buongiorno (2015) reports specifications of total (conifer-
ous plus nonconiferous) lumber demand internationally as a func-
tion of GDP but not housing starts or other indices of construction.
On the other hand, Ince et al. (2011) included GDP and single
family starts in their softwood lumber demand specification. Be-
cause a model that included both variables explained more variation
(R2 of 0.86 versus 0.79 for one that excluded real GDP and 0.44 for
one that excluded housing starts but included real GDP for data
1960–2014), in our model estimates we opted for a specification
that included both. We also tested a version that included housing
stock, in addition to starts and real GDP, but because inclusion of
housing stocks would require a separate projection of housing
stocks, we opted not to pursue this model.

Given its out-of-sample performance, the reduced-form soft-
wood lumber model (Model 2), which included single-family hous-
ing starts and real GDP growth, was used to simulate the effects of
alternative rates of GDP growth and housing starts from 2015 to
2070 on softwood lumber consumption using the starts and GDP
projections described in the previous sections. The final model is
reported in Table 6, with parameters estimated over the available
sample of annual data corresponding to the quarterly data used for
the other equations (1979–2014, because 2015 was not available at
the time of this study). In the Monte Carlo simulations, the projec-
tions were made using annual data randomly drawn with replace-
ment (the same years of the randomly drawn quarterly observations
for the housing starts Monte Carlo simulations) to introduce
parametric uncertainty into the softwood lumber consumption
projections.

Monte Carlo Simulation Results
We project housing starts and softwood lumber consumption

using the most parsimonious specification of total starts (Table 3,
Model 7) and use the specifications for GDP, mortgage delinquency
rate, and softwood lumber consumption summarized in Table 6.
Results of the Monte Carlo projections of total US housing starts
from 2015 to 2070 are shown in two figures. Figure 4 shows the

Forest Science • MONTH 2017 9

Downloaded from https://academic.oup.com/forestscience/article-abstract/64/1/1/4804513
by DigiTop USDA's Digital Desktop Library user
on 05 February 2018



10  Forest Science  •  February 2018

projected median and 90% uncertainty bounds for total US housing
starts using the assumed long-run average annual GDP growth rate
of 2.4%. Median starts converge to a long-run level of 1.24 million
under this GDP growth rate assumption. This figure also includes
four random draws of possible futures for housing starts, which serve
to illustrate two phenomena: future starts are likely to follow pat-
terns of historical starts, including large swings in levels from one
year to the next, because of the sensitivity of starts to real GDP
growth, and future starts levels would be expected to swing between
highs and lows that depart substantially from the projected median
levels, given an average real GDP growth rate, and could drift to low

or high levels that persist for long stretches. This persistence is due to
the near-unit-root process evident in housing starts.

Median projections of housing starts across variations in the as-
sumed GDP growth rate, from 0% to 5%, are displayed in Figure 5.
Varying assumed rates of GDP growth results in projections of
long-run median housing starts ranging from 0.86 million at 0%
real GDP growth to 1.91 million at 5% real GDP growth. This
range indicates that each additional percentage point of real GDP
growth generates an additional median of approximately 200,000
annual housing starts.

We also used the housing starts model to generate projections of

Figure 4. Housing starts: historical through 2014 and projections to 2070 using Monte Carlo methods, most parsimonious model, total
(single-family plus multifamily housing), aggregate United States, assuming a real average annual GDP growth rate (2015–70) of 2.4%,
including upper and lower bounds of a 90% uncertainty band and four Monte Carlo random realizations.

Figure 5. Housing starts: historical through 2014 and projected median levels to 2070 using Monte Carlo methods, most parsimonious
model, total (single-family plus multifamily housing), aggregate United States, assuming alternative real average annual GDP growth rates
(2015–70) from 0% to 5%.
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softwood lumber consumption, 2015–70 (Figures 6 and 7). Projec-
tions at assumed annual real GDP growth of 2.4% are shown in
Figure 6, including upper and lower 90% confidence limits. This
figure also includes four random iterations of the Monte Carlo to
illustrate how such consumption might evolve into the future. Fig-
ure 7 shows how the median levels of softwood lumber consumption
would differ across different assumptions about real GDP growth
rates.

Figure 6 shows that, at an average real GDP growth rate of 2.4%,
median softwood lumber consumption in the United States would
rise from the 2014 observed level of approximately 100 million m3

to approximately 120 million m3 in the 2030s and then to approx-
imately 140 million m3 in the 2060s. By 2070, 90% lower and
upper uncertainty limits are 78 million m3 and 238 million m3,
respectively. The simulation shows an increase in median consump-
tion of approximately 0.6% per year between 2015 and 2070. This
rise, in contrast to the plateauing of housing starts, derives from the
net of a negative trend in consumption, which is 2.4%, as measured
by the intercept in the estimated equation in first-differences and a
positive and elastic relationship with real GDP growth. The rela-
tionship with real GDP implies a 1.23% increase in softwood lum-
ber consumption for each 1% increase in annual GDP. It should be

Figure 6. Softwood lumber consumption: historical through 2014 and projected median levels to 2070, Monte Carlo methods, most
parsimonious housing starts model coupled with a reduced-form softwood lumber consumption model, aggregate United States, assuming
a real average annual GDP growth rate (2015–70) of 2.4%, including upper and lower bounds of a 90% uncertainty band and four Monte
Carlo random realizations.

Figure 7. Softwood lumber consumption: historical through 2014 and projected median levels to 2070, Monte Carlo methods, most
parsimonious housing starts model coupled with a reduced-form softwood lumber consumption model, aggregate United States, assuming
alternative real average annual GDP growth rates (2015–70) from 0% to 5%.
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projected median and 90% uncertainty bounds for total US housing
starts using the assumed long-run average annual GDP growth rate
of 2.4%. Median starts converge to a long-run level of 1.24 million
under this GDP growth rate assumption. This figure also includes
four random draws of possible futures for housing starts, which serve
to illustrate two phenomena: future starts are likely to follow pat-
terns of historical starts, including large swings in levels from one
year to the next, because of the sensitivity of starts to real GDP
growth, and future starts levels would be expected to swing between
highs and lows that depart substantially from the projected median
levels, given an average real GDP growth rate, and could drift to low

or high levels that persist for long stretches. This persistence is due to
the near-unit-root process evident in housing starts.

Median projections of housing starts across variations in the as-
sumed GDP growth rate, from 0% to 5%, are displayed in Figure 5.
Varying assumed rates of GDP growth results in projections of
long-run median housing starts ranging from 0.86 million at 0%
real GDP growth to 1.91 million at 5% real GDP growth. This
range indicates that each additional percentage point of real GDP
growth generates an additional median of approximately 200,000
annual housing starts.

We also used the housing starts model to generate projections of

Figure 4. Housing starts: historical through 2014 and projections to 2070 using Monte Carlo methods, most parsimonious model, total
(single-family plus multifamily housing), aggregate United States, assuming a real average annual GDP growth rate (2015–70) of 2.4%,
including upper and lower bounds of a 90% uncertainty band and four Monte Carlo random realizations.

Figure 5. Housing starts: historical through 2014 and projected median levels to 2070 using Monte Carlo methods, most parsimonious
model, total (single-family plus multifamily housing), aggregate United States, assuming alternative real average annual GDP growth rates
(2015–70) from 0% to 5%.
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softwood lumber consumption, 2015–70 (Figures 6 and 7). Projec-
tions at assumed annual real GDP growth of 2.4% are shown in
Figure 6, including upper and lower 90% confidence limits. This
figure also includes four random iterations of the Monte Carlo to
illustrate how such consumption might evolve into the future. Fig-
ure 7 shows how the median levels of softwood lumber consumption
would differ across different assumptions about real GDP growth
rates.

Figure 6 shows that, at an average real GDP growth rate of 2.4%,
median softwood lumber consumption in the United States would
rise from the 2014 observed level of approximately 100 million m3

to approximately 120 million m3 in the 2030s and then to approx-
imately 140 million m3 in the 2060s. By 2070, 90% lower and
upper uncertainty limits are 78 million m3 and 238 million m3,
respectively. The simulation shows an increase in median consump-
tion of approximately 0.6% per year between 2015 and 2070. This
rise, in contrast to the plateauing of housing starts, derives from the
net of a negative trend in consumption, which is 2.4%, as measured
by the intercept in the estimated equation in first-differences and a
positive and elastic relationship with real GDP growth. The rela-
tionship with real GDP implies a 1.23% increase in softwood lum-
ber consumption for each 1% increase in annual GDP. It should be

Figure 6. Softwood lumber consumption: historical through 2014 and projected median levels to 2070, Monte Carlo methods, most
parsimonious housing starts model coupled with a reduced-form softwood lumber consumption model, aggregate United States, assuming
a real average annual GDP growth rate (2015–70) of 2.4%, including upper and lower bounds of a 90% uncertainty band and four Monte
Carlo random realizations.

Figure 7. Softwood lumber consumption: historical through 2014 and projected median levels to 2070, Monte Carlo methods, most
parsimonious housing starts model coupled with a reduced-form softwood lumber consumption model, aggregate United States, assuming
alternative real average annual GDP growth rates (2015–70) from 0% to 5%.
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noted that the overall effect of real GDP growth on softwood lum-
ber consumption comes through two channels: the indirect effect of
real GDP growth through housing starts and the direct effect of real
GDP growth.

The elastic relationship of softwood lumber consumption to real
GDP growth explains why high rates of sustained GDP growth (say,
4% and 5% as shown in Figure 7) would generate extreme increases
in consumption over time and why median consumption would
decline by 70% by 2070 with 0% GDP growth. Assuming annual
GDP growth that is 2% or lower would lead to median softwood
lumber consumption not significantly higher than the level observed
in 2014 (see Figure 7). Median softwood lumber consumption
would exceed 300 million m3 by the early 2050s at 4% average
annual real GDP growth and would exceed 300 million m3 by the
late 2030s if annual real GDP growth averaged 5%. Historically, the
United States has not experienced stretches of real GDP growth
rates of over 3% for more than 5 years since 1979. Furthermore, real
GDP growth has trended downward since 1950, with a 5-year mov-
ing annual average of approximately 5% at that time to approxi-
mately 2% in the last 5 years. Our model has been parameterized
over a time span, 1979–2014, in which real GDP growth averaged
2.64%; therefore, these parameters reflect consumption patterns in
construction and other applications that reflect technology and con-
sumer tastes and preferences over that time span.

Discussion
Construction activity in the United States is a primary consumer

of solidwood products. For sector analysts and policymakers, accu-
rate assessments of future demands for such products require accu-
rate projections of housing starts. Models of the sector could be
more accurate if simple specifications of starts are used. Our study
has shown that simpler specifications of housing starts generate
more accurate out-of-sample forecasts of starts. The superior perfor-
mance of parsimonious models simplifies long-run projections by
limiting the need for additional projections of driving variables.

We found no evidence of a recession-induced structural break in
housing markets (measured as total housing starts and measured as
single-family housing starts) based on an explicit test for differences
in pre- and postrecession parameters in the housing starts model.
However, multifamily housing starts might have undergone a sig-
nificant structural change. The lesson for sector modelers is that,
although the 2007–09 recession was deep and induced large
changes in construction activity and wood products demand in the
United States, statistical models of total or single-family housing
starts that are based on historical data can be an accurate represen-
tation of the essential features of the housing sector, aiding in an
understanding of likely futures. Our simulation of that future, using
Monte Carlo methods, indicates that future residential construction
levels would settle at a long-run median of just under 1.3 million
total annual starts, given continued economic growth at recent his-
torical rates, although levels in specific years could vary widely from
the median, 90% of the time ranging between 0.5 and 2.1 million.

Our additional statistical modeling also revealed how softwood
lumber consumption in the United States depends elastically on
the growth of GDP and on residential construction. Simulations
showed that, at recent historical rates of GDP growth, median soft-
wood lumber consumption would rise by an additional 0.6% each
year through 2070, achieving a level by 2070 that is 45% higher
than in 2014. However, zero economic growth in the United States
would be consistent with a –2.4% annual change in softwood lum-

ber consumption. Although a projection of 55 years imposes a con-
straint that the parameters will not change, and although economic
growth of 0% is unlikely, we contend that long-run average annual
GDP growth of 3% or less is more consistent with the economy of
the future (Gordon 2016). Therefore, a future of modest (�1% per
year) growth in softwood lumber consumption would be expected.

Previous studies (e.g., Ince et al. 2011, National Association of
Home Builders 2017, Fannie Mae 2016, Freddie Mac 2016) have
projected US housing starts using models of housing “needs,” which
are driven by assumptions regarding household formation rates by
demographic age group, residential vacancy rates, and housing unit
destruction rates. Some projections by those analysts suggested
rapid recovery of housing starts to prerecession levels or higher. Ince
et al. (2011) projected that housing starts would increase from 2010
levels to approximately 1.3 million in 2020 and to approximately
2.3 million by 2060 in one scenario. Using the parsimonious sin-
gle-family model developed here, this projected change in starts
would require real annual GDP growth of 5.5% in the 2020s, rising
to 11.5% by 2060, rates that are far beyond recent historical rates of
GDP growth. None of the other forecasts exceed the long-run av-
erage of 1.45 million starts per year. Our empirical models of hous-
ing starts provide a mechanism for projecting future housing starts
that would be consistent with their historically stable relationship
with GDP growth and mortgage delinquency rates, and they pro-
vide a counterpoint to needs-based projections of housing in the
United States.

Our statistical model estimates indicated that, after accounting
for real GDP, changes in population in the United States do not
provide additional explanation of variability in housing starts. We
tested an alternative statistical model for total housing starts, speci-
fied identically as Model 7 shown in Table 3. This model substituted
real GDP per capita instead of real GDP and it included population.
As in Models 1 and 2 shown in Table 3, real population changes
were not statistically significant.

Conclusions
Making long-term projections of possible futures entails condi-

tioning those futures on plausible evolution of the forest sector and
the US and world economies. Gordon (2016) outlines a future of
slower US growth than previously observed in the United States.
Such a vision is consistent with projections to 2100 for the United
States (and other wealthy countries) provided by the International
Institute for Applied Systems Analysis (IIASA) and the National
Center for Atmospheric Research (IIASA 2016). For the United
States, under the five Shared Socioeconomic Pathways (SSP)’s pro-
jections of real US GDP done by IIASA, growth projections for
2010–70 range from 1.04% to 2.62% per year, with a mean of
1.76%. Therefore, analysts using the SSP-based projections of the
US forest sector might expect starts levels, based on our research
(Figure 5), at median levels of less than 1.3 million per year. Like-
wise, assuming our lumber consumption projections are represen-
tative of the future at this GDP growth rate, softwood lumber con-
sumption growth is likely to remain low (i.e., �1% per year), on
average, into the foreseeable future.

The conclusions we have reached regarding the future evolution
of starts and, in our example, softwood lumber consumption criti-
cally depend on assumptions of unbiased parameter estimates (and
hence unbiased projections). Our specifications of softwood lumber
consumption quantity omitted information about softwood lumber
import prices and the prices of some lumber production inputs.
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They also omitted information about the state of lumber demand in
Canada, the primary import source. (An alternative specification
that included Canada’s housing starts found that changes in Cana-
dian starts did not, at 10% significance or stronger, affect consump-
tion of lumber in the United States.) These omissions in the re-
duced-form statistical models could have led to upward biases in the
effects of GDP growth on consumption. We omitted this informa-
tion to simplify the projection modeling and to demonstrate ap-
proximately how alternative housing and economic growth futures
would translate into lumber sector outcomes. To the extent that the
statistical models that we used contained omitted variables biases,
our projections of the softwood lumber consumption futures should
be understood as preliminary and demonstrative of what could be
done.

Our study uses changes in GDP to represent changes in eco-
nomic growth, but using GDP represents two limitations of this
study. First, housing investment, of which new housing construc-
tion is a part, is a component of GDP. Thus, there is some potential
endogeneity because a change in GDP is the sum of changes in
housing starts and other changes in the components of GDP. Our
estimated GDP growth model included lagged changes in housing
starts, and these changes were positively related to GDP growth,
revealing one way that growth is connected to the sector. Although
housing investment is only 6% of GDP, a reduction of this invest-
ment by 50% could comprise a notable component of the change in
GDP. Therefore, a suggested line of future inquiry might be to
estimate housing starts models in which contemporaneous GDP
changes are considered endogenous, not exogenous, as we have
done. Second, our model for projecting GDP explains only 45% of
the variation in the change in GDP, implying that there might be
additional factors influencing GDP that we did not model but could
have; exploration of those additional factors is another line of re-
search that could aid in producing more accurate projections.

Although not directly comparable because of differences in sce-
nario assumptions, we note that our housing starts projections are
somewhat lower than projections derived from the housing needs
formulation based on demographic changes. The needs formulation
is not independent of economics, but if the projected needs were
actually higher than the equilibrium quantity of new housing, then
other changes would occur to equilibrate housing markets, includ-
ing perhaps a reduction in the destruction rate of housing, a decline
in the vacancy rates, or subdivision of existing structures into mul-
tiple smaller units. Therefore, one topic of future research could be
to explore how needs-based formulations could include these addi-
tional variables. Another approach would be to investigate how to
include explicit representations of demographic variables in aggre-
gate econometric representations of housing starts at the national
level or at finer spatial scales than modeled in our study.
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noted that the overall effect of real GDP growth on softwood lum-
ber consumption comes through two channels: the indirect effect of
real GDP growth through housing starts and the direct effect of real
GDP growth.

The elastic relationship of softwood lumber consumption to real
GDP growth explains why high rates of sustained GDP growth (say,
4% and 5% as shown in Figure 7) would generate extreme increases
in consumption over time and why median consumption would
decline by 70% by 2070 with 0% GDP growth. Assuming annual
GDP growth that is 2% or lower would lead to median softwood
lumber consumption not significantly higher than the level observed
in 2014 (see Figure 7). Median softwood lumber consumption
would exceed 300 million m3 by the early 2050s at 4% average
annual real GDP growth and would exceed 300 million m3 by the
late 2030s if annual real GDP growth averaged 5%. Historically, the
United States has not experienced stretches of real GDP growth
rates of over 3% for more than 5 years since 1979. Furthermore, real
GDP growth has trended downward since 1950, with a 5-year mov-
ing annual average of approximately 5% at that time to approxi-
mately 2% in the last 5 years. Our model has been parameterized
over a time span, 1979–2014, in which real GDP growth averaged
2.64%; therefore, these parameters reflect consumption patterns in
construction and other applications that reflect technology and con-
sumer tastes and preferences over that time span.

Discussion
Construction activity in the United States is a primary consumer

of solidwood products. For sector analysts and policymakers, accu-
rate assessments of future demands for such products require accu-
rate projections of housing starts. Models of the sector could be
more accurate if simple specifications of starts are used. Our study
has shown that simpler specifications of housing starts generate
more accurate out-of-sample forecasts of starts. The superior perfor-
mance of parsimonious models simplifies long-run projections by
limiting the need for additional projections of driving variables.

We found no evidence of a recession-induced structural break in
housing markets (measured as total housing starts and measured as
single-family housing starts) based on an explicit test for differences
in pre- and postrecession parameters in the housing starts model.
However, multifamily housing starts might have undergone a sig-
nificant structural change. The lesson for sector modelers is that,
although the 2007–09 recession was deep and induced large
changes in construction activity and wood products demand in the
United States, statistical models of total or single-family housing
starts that are based on historical data can be an accurate represen-
tation of the essential features of the housing sector, aiding in an
understanding of likely futures. Our simulation of that future, using
Monte Carlo methods, indicates that future residential construction
levels would settle at a long-run median of just under 1.3 million
total annual starts, given continued economic growth at recent his-
torical rates, although levels in specific years could vary widely from
the median, 90% of the time ranging between 0.5 and 2.1 million.

Our additional statistical modeling also revealed how softwood
lumber consumption in the United States depends elastically on
the growth of GDP and on residential construction. Simulations
showed that, at recent historical rates of GDP growth, median soft-
wood lumber consumption would rise by an additional 0.6% each
year through 2070, achieving a level by 2070 that is 45% higher
than in 2014. However, zero economic growth in the United States
would be consistent with a –2.4% annual change in softwood lum-

ber consumption. Although a projection of 55 years imposes a con-
straint that the parameters will not change, and although economic
growth of 0% is unlikely, we contend that long-run average annual
GDP growth of 3% or less is more consistent with the economy of
the future (Gordon 2016). Therefore, a future of modest (�1% per
year) growth in softwood lumber consumption would be expected.

Previous studies (e.g., Ince et al. 2011, National Association of
Home Builders 2017, Fannie Mae 2016, Freddie Mac 2016) have
projected US housing starts using models of housing “needs,” which
are driven by assumptions regarding household formation rates by
demographic age group, residential vacancy rates, and housing unit
destruction rates. Some projections by those analysts suggested
rapid recovery of housing starts to prerecession levels or higher. Ince
et al. (2011) projected that housing starts would increase from 2010
levels to approximately 1.3 million in 2020 and to approximately
2.3 million by 2060 in one scenario. Using the parsimonious sin-
gle-family model developed here, this projected change in starts
would require real annual GDP growth of 5.5% in the 2020s, rising
to 11.5% by 2060, rates that are far beyond recent historical rates of
GDP growth. None of the other forecasts exceed the long-run av-
erage of 1.45 million starts per year. Our empirical models of hous-
ing starts provide a mechanism for projecting future housing starts
that would be consistent with their historically stable relationship
with GDP growth and mortgage delinquency rates, and they pro-
vide a counterpoint to needs-based projections of housing in the
United States.

Our statistical model estimates indicated that, after accounting
for real GDP, changes in population in the United States do not
provide additional explanation of variability in housing starts. We
tested an alternative statistical model for total housing starts, speci-
fied identically as Model 7 shown in Table 3. This model substituted
real GDP per capita instead of real GDP and it included population.
As in Models 1 and 2 shown in Table 3, real population changes
were not statistically significant.

Conclusions
Making long-term projections of possible futures entails condi-

tioning those futures on plausible evolution of the forest sector and
the US and world economies. Gordon (2016) outlines a future of
slower US growth than previously observed in the United States.
Such a vision is consistent with projections to 2100 for the United
States (and other wealthy countries) provided by the International
Institute for Applied Systems Analysis (IIASA) and the National
Center for Atmospheric Research (IIASA 2016). For the United
States, under the five Shared Socioeconomic Pathways (SSP)’s pro-
jections of real US GDP done by IIASA, growth projections for
2010–70 range from 1.04% to 2.62% per year, with a mean of
1.76%. Therefore, analysts using the SSP-based projections of the
US forest sector might expect starts levels, based on our research
(Figure 5), at median levels of less than 1.3 million per year. Like-
wise, assuming our lumber consumption projections are represen-
tative of the future at this GDP growth rate, softwood lumber con-
sumption growth is likely to remain low (i.e., �1% per year), on
average, into the foreseeable future.

The conclusions we have reached regarding the future evolution
of starts and, in our example, softwood lumber consumption criti-
cally depend on assumptions of unbiased parameter estimates (and
hence unbiased projections). Our specifications of softwood lumber
consumption quantity omitted information about softwood lumber
import prices and the prices of some lumber production inputs.
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They also omitted information about the state of lumber demand in
Canada, the primary import source. (An alternative specification
that included Canada’s housing starts found that changes in Cana-
dian starts did not, at 10% significance or stronger, affect consump-
tion of lumber in the United States.) These omissions in the re-
duced-form statistical models could have led to upward biases in the
effects of GDP growth on consumption. We omitted this informa-
tion to simplify the projection modeling and to demonstrate ap-
proximately how alternative housing and economic growth futures
would translate into lumber sector outcomes. To the extent that the
statistical models that we used contained omitted variables biases,
our projections of the softwood lumber consumption futures should
be understood as preliminary and demonstrative of what could be
done.

Our study uses changes in GDP to represent changes in eco-
nomic growth, but using GDP represents two limitations of this
study. First, housing investment, of which new housing construc-
tion is a part, is a component of GDP. Thus, there is some potential
endogeneity because a change in GDP is the sum of changes in
housing starts and other changes in the components of GDP. Our
estimated GDP growth model included lagged changes in housing
starts, and these changes were positively related to GDP growth,
revealing one way that growth is connected to the sector. Although
housing investment is only 6% of GDP, a reduction of this invest-
ment by 50% could comprise a notable component of the change in
GDP. Therefore, a suggested line of future inquiry might be to
estimate housing starts models in which contemporaneous GDP
changes are considered endogenous, not exogenous, as we have
done. Second, our model for projecting GDP explains only 45% of
the variation in the change in GDP, implying that there might be
additional factors influencing GDP that we did not model but could
have; exploration of those additional factors is another line of re-
search that could aid in producing more accurate projections.

Although not directly comparable because of differences in sce-
nario assumptions, we note that our housing starts projections are
somewhat lower than projections derived from the housing needs
formulation based on demographic changes. The needs formulation
is not independent of economics, but if the projected needs were
actually higher than the equilibrium quantity of new housing, then
other changes would occur to equilibrate housing markets, includ-
ing perhaps a reduction in the destruction rate of housing, a decline
in the vacancy rates, or subdivision of existing structures into mul-
tiple smaller units. Therefore, one topic of future research could be
to explore how needs-based formulations could include these addi-
tional variables. Another approach would be to investigate how to
include explicit representations of demographic variables in aggre-
gate econometric representations of housing starts at the national
level or at finer spatial scales than modeled in our study.
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