Ecophysiological variation of transpiration of pine forests: synthesis of new and published results

PANTANA TOR-NGERN1,2,3,9, RAM OREN1,2,4, ANDREW C. OISHI,5 JOSHUA M. UEBELHERR,6 SARI PALMROTH,1,2 LASSE TARVAINEN,2 MIKAELL OTTOSSON-LOVENIUS,2 SUANE LINDER,7 JEAN-CHRISTOPHE DOMECE1,8 AND TORGY NASHOLM2

1 Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708 USA
2 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå SE-901 83 Sweden
3 Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand
4 Hydropheric-Atmospheric Research Center, Nagoya University, Chikusa-ku, Nagoya 464-8601 Japan
5 USDA Forest Service Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Road, Otto, North Carolina 28763 USA
6 School of Public Affairs, Arizona State University, Phoenix, Arizona 85004 USA
7 Southern Swedish Forest Research Centre, SLU, P. O. Box 49, Alnarp SE-230 53 Sweden
8 UMR 1394 ISPA INRA, Bordeaux Sciences AGRO, 1 Cours du général de Gaulle, Gradignan Cedex 33175 France

Abstract. Canopy transpiration (E_C) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying E_C is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated E_C of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily E_C of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily E_C ($E_{C,max}$) at day-length normalized vapor pressure deficit of 1 kPa (E_{Cm-ref}) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to $L = 5$, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of E_{Cm} with atmospheric demand was linearly related to E_{Cm-ref}. Both relations were unaffected by soil type. Consistent with theoretical prediction, daily E_C was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily E_C of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach.

Key words: canopy transpiration; leaf area index; Pinus sylvestris; Pinus taeda; relative extractable water; soil texture; vapor pressure deficit.

INTRODUCTION

In a forest ecosystem, canopy transpiration (E_C), the largest component of evapotranspiration (Roberts et al. 1980, Calder 1998), exerts great influence on the earth's surface energy balance, affecting mesoscale circulation, weather patterns, and water supply to downstream systems (Avissar et al. 1985, Andre et al. 1989, Oishi et al. 2010, Manoli et al. 2016). Most ecological models predicting biosphere–atmosphere exchanges of energy, carbon, and water are driven by variations in both atmospheric and soil conditions and the responses of vegetation to these variations (e.g., De Kauwe et al. 2013, Zaehle et al. 2014). These models predict transpiration and photosynthesis by considering physiological processes such as stomatal response to soil moisture and atmospheric evaporative demand, stand properties such as canopy leaf area, and site-specific factors such as local meteorology and soil properties (e.g., Woodward et al. 1995, Kowalczyk et al. 2006, Oleson et al. 2010). Despite substantive research on these physiological processes and site-level properties, an improved understanding of how these factors interact and identification of consistent trends that can help provide useful parameters for models are still needed.

The importance of specific physiological processes varies with different spatial and temporal scales. In forests where stomata are well coupled to the atmosphere, the diurnal course of leaf transpiration can be described empirically as a multiplicative set of responses reducing stomatal conductance from a maximum under favorable conditions, as light and atmospheric and soil humidity decrease and temperature fluctuates relative to the optimal (Jarvis 1976). Daily variation of leaf-scale stomatal conductance, and therefore transpiration, correlates well with changes in vapor pressure deficit (D) and soil moisture during the growing season (Granier
At diurnal timescale, mean canopy stomatal conductance decreases linearly with the natural logarithm of \(D \), consistent with the role of stomata protecting hydraulic function of the xylem by regulating the maximum transpiration rate and thus the minimum xylem water potential (Oren et al. 1999a). Based on this hydraulic theory of stomatal regulation, the higher the transpiration per leaf area (\(E_L \)) at a reference \(D = 1 \text{ kPa}, E_{L-ref} \), the steeper the increase of \(E_C \) with \(D \). However, several factors complicate the relationship between \(E_C \) and \(D \) at the reference \(D \) (\(E_{C-ref} \)). Thus, where \(A_g/A_t \) varies with several hydraulic and stand characteristics: \(A_g/A_t \) may increase in partial compensation for increased path-length resistance with tree height (or age; Schäfer et al. 2000, McDowell et al. 2002, but see Poyatos et al. 2007, Novick et al. 2009) for low tissue-specific hydraulic conductivity in slow-growing individuals (Pothier et al. 1989) and for higher \(D \) in sites of dry growing-season atmosphere (Poyatos et al. 2007). Such hydraulic compensations attenuate the decrease of leaf gas–exchange rates relative to expected based on tree and site characteristics and may translate to stand-scale variation in \(L \).

However, \(L \) is also greatly affected by the large spatial variation in tree density and sapwood area per unit of ground area (Oren et al. 1999a), reflecting local variation of resource availability, such as water and nutrients as affected by rooting volume (e.g., in relation to rock content and soil depth; McCarthy et al. 2006), weather-related disturbances (McCarthy et al. 2006, Xiong et al. 2015), or management (Zhang et al. 2012). Modification of site resources, such as water and nutrients, may differentially affect \(A_g \) and \(A_t \), decoupling stand transpiration from \(L \) (Ewers et al. 2001). Similar-age stands of a species growing under the same atmospheric conditions had lower \(L \) on sandy than on loamy soil, commensurate with lower soil water and nutrient availability, but similar \(A_g/A_t \) (\(Pinus sylvestris \) in Addington et al. 2006, and \(Pinus taeda \), in Hacke et al. 2000), and irrigation and fertilization experiments affected \(E_C \) and \(L \) more than \(A_g/A_t \) (Ewers et al. 2000, 2001, Lai et al. 2002). Thus, where \(L \) in developing canopies is far below steady state, transpiration would be limited by the available leaf surface area. However, small variation in \(L \), both spatially and temporally, could be compensated for by hydraulic- and/or light-related adjustments (Sellin and Kupper 2005), infusing variation in the relationship between stand transpiration and \(L \).
Although predictions based on hydraulic theory can be made regarding the response of stand-scale transpiration to \(D \) and soil moisture depletion, predicting the form of the relationship between maximum transpiration and \(L \) is difficult. In effect, predicting maximum transpiration rate is theoretically more difficult and requires more information than predicting temporal responses to changing atmospheric and soil conditions. Thus, if \(L \) is shown to account for a large proportion of the variation of canopy transpiration in forests, such empirical relationship would provide a useful tool for assessing results of modeled ecological processes and long-term responses to environmental changes (Betts et al. 1997, Tor-ngern et al. 2015).

Forests dominated by the genus *Pinus* are found over a wide range of environments, from the Arctic Circle with short growing seasons to the tropics with a year-round growing season, and on soils ranging from nutrient-rich to sandy, poor soils (Knight 1991, Knight et al. 1994). Species of this genus are commonly used in plantations worldwide because of long tracheids and adequate wood properties for structural timber. Pine plantations cover a vast area with consequences to ecosystem services, such as carbon sequestration and water yield. These forests contain wide ranges of many characteristics involving leaf phenology, leaf morphology, and canopy structure, which affect canopy conductance and transpiration (Roberts 2000). Because of their extent and commercial importance, many studies have quantified sap flux in pine forests, making them ideal for evaluating how well the variation of \(L \) among these very different forests reflects their capacity to transpire. We estimated canopy transpiration using sap flux data of two of the most dominant pine species worldwide with large geographical ranges: a mid-latitude *P. taeda* (North Carolina, USA) and a high-latitude *P. sylvestris* (Northern Sweden), both growing on sandy soil. The latter species included two levels of nutrient availability and two levels of developmental stage-related \(L \). We used these data to determine (1) whether the spatial variation of maximum daily growing season \(E_{C} \) is related primarily to \(L \) and whether the temporal variations from that maximum are related to soil and atmospheric humidity as expected based on hydraulic theory. We then explored (2) whether the patterns identified in these contrasting stands are consistent with those obtained from published studies on pine forests of various soil textures and locations.

Materials and Methods

Definitions of all abbreviations and variables in the following sections are presented in Table 1.

Settings

The study was conducted in pine forests of contrasting size, nutrient availability, and climatic zones (for detailed stand characteristics see Appendix S1: Table S1). The mature *Pinus taeda* plantation (PT) in North Carolina, USA, (36°20’ N 79°28’ W) was established in 1965, thinned in 1983, and harvested in 2006. The broadleaf understory was sparse, comprising 2% of stand basal area (Uebelherr 2008). The soil was well-drained sand with average bulk density and porosity (in the top 60 cm) of 1500 kg/m³ and 0.43, respectively. Long-term (30-year) average annual temperature and total precipitation were 15.4°C and 1189 mm (year 1983–2012; data available online).

The mature *Pinus sylvestris* (PS) forests in Rosinedal, Sweden, (64°10’ N, 19°45’ E) were regenerated with seed trees in 1920–1925, pre-commercially thinned in 1955, and thinned in 1976 and 1993, respectively. These forests have been used for long-term fertilization experiment with control (PS	extsubscript{MC}) and fertilized (PS	extsubscript{MF}) stands located ~2 km apart. The area of each stand is ~15 ha, and there is a flux tower in the center of each stand. Fertilizer of 100 kg N·ha⁻¹·yr⁻¹ was applied to PS	extsubscript{MF} from 2006 to 2011 and a reduced rate of 50 kg N·ha⁻¹·yr⁻¹ has been used afterwards (Lim et al. 2015). The young, regenerating *P. sylvestris* forest (PS	extsubscript{Y}) was in Åheden (~7 km from Rosinedal). The understory of both stands is characterized by a field layer of dwarf shrubs, (*Vaccinium myrtillus* and *V. vitis-idaea*) and a ground layer of mosses (*Pleurozium schreberi* and *Hylocomium splendens*) and lichens (*Cladonia* spp.; Hasselquist et al. 2012, Palmroth et al. 2014). These forests share similar soil texture of well-drained, deep sandy sediment with 2–5 cm soil organic layer (Mellander et al. 2005) and bulk density and porosity (in the top 10 cm) of 1230 kg/m³ (Giesler et al. 1996) and 0.49 (Lundmark and Jansson 2009). The 30-year mean annual temperature and precipitation (1981–2010), measured at the Svartberget field station (8 km from PS	extsubscript{MC} and 1 km from PS	extsubscript{Y}) were 1.8°C and 614 mm, respectively (Laudon et al. 2013). On average, the area is covered by snow from early November to late April (Laudon and Öttoisson Löfvenius 2016).

Environmental measurements

A summary of instrumentation for environmental measurements in the four sites is presented in Appendix S1: Table S2. Other assumptions associated with the presented measurements in Appendix S1: Table S2 and additional measurements are briefly discussed as follows.

In Sweden, air temperature (\(T_{A}, ^{°}C \)) and relative humidity (RH, %) were measured below the forest canopies (Appendix S1: Table S2). Nevertheless, these data were used to represent above-canopy measurements because there is generally an adequate coupling between the canopy and the atmosphere and small gradient of \(D \) throughout the canopy depth in forests with low \(L \) (Ewers and Oren 2000). In PS	extsubscript{Y}, the global radiation was measured and converted to photosynthetic photon flux density (PPFD) using a factor of 0.47 (Papaioannou et al. 1993).

10 www.ncdc.noaa.gov
In PSMC and PSMF, two sets of soil moisture probes were used for measurements at different periods. To obtain the soil moisture at 15 cm depth (θ_{15}, m3/m3) at the plot level, we employed the relationship between the long-term (near tower) and short-term (around sap-flux trees) data (see Appendix S1: Table S2) during June–September 2013 ($r^2 \geq 0.85$) to adjust values from the continuous, long-term measurement. In PSY, we used soil moisture data from PSMC to estimate values during the unmeasured period in PSY ($r^2 = 0.72, P < 0.001$ for relationship between daily mean θ_{15} of both sites). In PT, soil moisture was measured with probes integrating from the surface to 30 cm depth.

At all sites, the growing season was delineated beginning the day after daily mean temperature exceeded $+5^\circ$C for five consecutive days and lasted until it dropped below $+5^\circ$C for five consecutive days (Mäkelä et al. 2006). The average growing season period during three study years was approximately March–November in PT and May–September in the PS sites. To facilitate the cross-site comparison, soil moisture was represented by relative extractable water (REW) calculated according to Granier et al. (2000):

$$REW = \frac{\theta - \theta_m}{\theta_{FC} - \theta_m}$$ \hspace{1cm} (1)

where θ_m is minimum volumetric soil moisture and θ_{FC} is soil moisture at field capacity. The values of θ_m were 0.054, 0.045, 0.052, and 0.044 m3/m3 for PT, PSMC, PSMF, and PSY, respectively. The average of these values was not different (t test, $P = 0.93$) from the wilting point of sand according to the survey of Kätterer et al. (2006). The values of θ_{FC} were 0.158, 0.146, 0.164, and 0.148 for PT, PSMC, PSMF, and PSY, respectively. Vapor pressure deficit (D) was calculated from T_A and RH (Abtew and Melesse 2013). Daylength-normalized D (D_Z) was
calculated as $D_D \times (n_d/24)$ where D_D was daytime mean D and n_d was number of daylight hours (Phillips and Oren 2001).

Estimation of sapwood area and leaf area index

In PT, sapwood area (A_S, m2) was estimated from allometric equations derived from 25 stem discs taken at breast height from the trees harvested in 2006. The disc sizes covered the full range of stem diameter distribution in the forest, allowing the estimation of sapwood area of all trees. Stand sapwood area was then calculated by summing values of all individuals and expressed per unit of ground area. Leaf area index (L; projected-area based) and its dynamics were derived from monthly optical measurement (Appendix S1: Table S2). A correction factor of 0.59 was applied to L to account for foliage clumping (Stenberg 1996, Thérézien et al. 2007).

For PSMC and PSMF, sapwood area (A_S) was estimated using allometric equations while L was determined from both allometric equations and optical measurements (Lim et al. 2015). All allometric equations were derived from trees harvested in October 2011, six in each stand. Maximum L was estimated based on annual foliage production from the harvested trees and litterfall (Lim et al. 2015). The optical information was obtained from hemispherical photographs taken over the litter trap position (Appendix S1: Table S2). Details of derivation of L are presented in Lim et al. (2015). For PSY, A_S and maximum L were estimated based on allometric equations derived from eight trees harvested in September 2013 (P. Tor-ngern and L. Tarvainen, unpublished data). The L dynamics was obtained from a study of P. sylvestris stands of similar site characteristics (Rautiainen et al. 2011).

Sap flux measurements and scaling to the canopies

In the P. taeda stand (PT), sap flux density (J_S, g cm$^{-2}$ sapwood $^{-1}$ s$^{-1}$) was measured at breast height in 24 trees with thermal dissipation probes, after Granier (1987). Trees were located within a 22 m radius from a datalogger and selected to represent the range of diameter at breast height (1.3 m aboveground) for the entire stand. Radial (Phillips et al. 1996, Ford et al. 2004, Oishi et al. 2008) and azimuthal (Oren et al. 1999b, Lu et al. 2000, James et al. 2002, Tateishi et al. 2008) variations of J_S may, however, produce considerable errors when scaling up from tree to stand measurement. To capture such variations, seventy-two sensors were distributed in the north, south, east, and west, measuring J_S from July 2011. Additionally, we incorporated J_S measurements from other experiments in PSMC and PSMF. In one experiment, from August to September 2011, eight sensors were installed at the outer 20-mm sapwood layer of eight trees in each site. In another short-term experiment, from August to September 2012, fifteen sensors were distributed among five trees in PSMF to measure J_S at three sapwood depths. Excluding the treatment days in these other experiments, we combined J_S data of the outermost layers from the additional experiments by performing a weighted average. Therefore, we used a total of 22 and 37 sensors to estimate canopy-average sap flux density for PSMC and PSMF, respectively. Similarly, twenty sensors were distributed among 12 trees at PSY. The sensors were installed at either one or two sapwood depths at breast height and data were collected from June 2012 to June 2014. In all sites, half-hourly average data were recorded on the same type of data logger (CR1000; Campbell Scientific, Logan, Utah, USA).

To calculate daily canopy transpiration (E_{CD}, mm/d), we employed the following approach to scale the point-measurement of J_S to the entire forest. Daily sum J_S (J_{SD}, g cm$^{-2}$ sapwood$^{-1}$ d$^{-1}$) was considered in the analysis to avoid issues related to tree water storage and measurement errors (Phillips and Oren 1998). The daily sum sap flux density (J_{SD}) in the outer 20-mm xylem ($J_{SD,Out}$) was scaled to a mean daily sap flux density over the entire xylem area (J_{SD}). For all sites, there was no significant variation of $J_{SD,Out}$ with tree size ($P > 0.10$, $r^2 \leq 0.16$, $n \geq 12$) nor circumferentially ($P \geq 0.46$). However, the radial variation of J_{SD} was significant ($P \leq 0.0001$) and independent of azimuth ($P \geq 0.31$). We developed a scaling function to account for the radial variation of J_{SD} to allow simple gap-filling of missing values, after finding that using the average ratios of measured inner-to-outer J_{SD} generated only <2% difference of J_{SD} compared to using a continuous function. For the missing measurement periods, we gap-filled values of $J_{SD,Out}$ (ranging 19–36% of total growing season days) with a function dependent on daily average PPFD and D_Z (see Appendix S1: Table S3). Within the studied species, we observed maximum J_{SD} within 10–30-mm xylem depth, decreasing nonlinearly towards the stem center (cf. Čermák et al. 1992, Ford et al. 2004, Oishi et al. 2008). Therefore, for each canopy, we generated a scaling function, describing the decline of J_{SD} beyond a critical xylem depth (c) by a Gaussian function, as

$$\frac{J_{SD,i}}{J_{SD,Out}} = \begin{cases} 1; & X_R \leq c \\ 1 \times e^{-0.5 \left(\frac{X_R - c}{\sigma} \right)^2}; & X_R > c \end{cases}$$

where $J_{SD,i}$ is J_{SD} at inner xylem depths (e.g., $i = 1$ at 20–40 mm layer), X_R is the ratio between sensor depth relative to xylem radius, c is the X_R at which J_{SD} starts...
decreasing with sapwood depth, and β is the fitting parameter. We employed an average function to derive J_{SD} of each forest for the entire study period as no daily variation of the function was observed ($P \geq 0.3$; see Appendix S1: Table S3). Sapwood thickness exceeded probe length, such that 1–6% of sapwood area was not captured by the sensors in the sample trees, and thus no correction method (e.g., Clearwater et al. 1999) to account for nonconductive sapwood in J_{SD} estimation was needed.

Although we carefully considered spatial and temporal variability in scaling procedures, we did not calibrate the J_S sensors specifically for the two pine species studied here, which may cause potential errors in the estimates of canopy transpiration (Steppe et al. 2010, Sun et al. 2012, Vergeynst et al. 2014). Sap flux density measured with this method has, however, been examined in both species in previous studies (e.g., Lundblad et al. 2001, Oliveras and Llorens 2001, Ford et al. 2004) with results in agreement with local water balance and eddy covariance estimates (Granier et al. 1996, Schäfer et al. 2002, Domec et al. 2012). We further note that Poyatos et al. (2007) performed a synthesis across Eurasia of sap-flux based stomatal conductance of $P. sylvestris$, concluding that the responses to atmospheric and hydraulic architecture were robust to potential errors generated by different sensors used.

For scaling up to the canopy, we estimated dynamic profile of the total sapwood area of all trees (A_S) per unit ground area (A_G) or A_S/A_G ($m^2_{sapwood}/m^2_{ground}$). The temporal pattern of A_S/A_G was calculated using the A_S values of two consecutive years, linearly interpolating between the time of leaf flush and the time L reached maximum based on the temporal pattern of L, keeping A_S/A_G constant thereafter until leaf flush in the following year (Fig. 2, dashed line). Finally, E_{CD}, given the units of variables as defined in Table 1, was calculated as

$$E_{CD} = a(1-e^{-\alpha Z})$$

(4)

where a is asymptotic E_{CM} value at high D_Z and s_P is the initial increasing rate of E_{CM} with D_Z (Ewers et al. 2001). Taking into account the soil drying effect on E_{CM}, we performed another boundary line analysis on E_{CD} values obtained from E_{CD} vs. D_Z curves under a range of soil moisture conditions (i.e., REW), relative to the E_{CD} in wet soil (i.e., E_{CM} obtained from the response in Eq. 4).

Statistical analyses

All regression analyses were performed in SigmaPlot version 12.0, from Systat Software, San Jose, California, USA. We used an F test to compare fitting results on different datasets with the same function (e.g., the analysis of transpiration response to vapor pressure deficit and soil drying effect of the four stands and comparisons of scaling functions between control and fertilized PS sites). Two-factor ANOVA with interaction term was applied to analyze the effect of radial and azimuthal variation on J_{SD}. The calculations of variables and the boundary line analysis were conducted in MATLAB 7.6.0 R2008a (MathWorks, Natick, Massachusetts, USA). We note that boundary line analysis produces similar results to quantile regression when the data are normally distributed and in the absence of outliers, which affect the regression analysis.

RESULTS

Environmental conditions

The Pinus taeda site (PT) experienced a variable interannual weather pattern with wet growing season ($P = 850$ mm) in 2003 and relatively dry growing season (449 mm) in 2005 (Fig. 1d, bars). The PPFD and D_Z were low in 2003 compared to other years (Fig. 1a). Growing season REW was high in 2003 (averaged REW = 0.56 ± 0.08 SD or ~0.45 ± 0.05 m3/m3 of θ_{90}), moderate in 2004 (averaged REW = 0.47 ± 0.06 or ~0.32 ± 0.04 m3/m3 of θ_{90}) and decreased to an average of 0.32 ± 0.14 (~0.22 ± 0.04 m3/m3 of θ_{90}) during the 2005 growing season (Fig. 1d, line). In contrast, growing season weather was similar among the study years in Sweden with average P and PPFD of 400 ± 30 mm and 29 ± 2 mol·m$^{-2}$·d$^{-1}$ (Fig. 1e–f, bars for P; Fig. 1b–c, black lines for PPFD). However, D_Z was slightly lower in 2012 relative to other years (Fig. 1b–c, gray lines). Generally, REW values were higher in PSMF (gray dashed line in Fig. 1e) with the seasonality similar to the other PS sites (i.e., gray solid lines in Fig. 1e–f). As expected given the greater depth-integration in PT, the coefficient of variation (CV) of soil moisture was lower (23%) than at the Swedish sites (34–55%). However, the rate of decline in soil moisture between rain events, the information used in this study, is relatively conservative among horizontal positions. Within each of the forests in Sweden, REW was of similar range in 2011 and 2012 but reached the minimum
REW of 0.03–0.26 (~0.01–0.08 m³/m³ θ₁) in 2013. Therefore, these study periods cover a wide range of environmental conditions for pine forests on sandy soil.

Daily sap flux density and the calculation of transpiration

In general, growing season $J_{SD,Out}$ in mature trees was lower than in young trees (Fig. 2, compare solid lines). Among the mature stands, PT had the lowest total sapwood area per unit ground area (A_S/A_G, m²/ha), averaging 17 ± 0.23 (SD) m²/ha across three growing seasons, and the highest $J_{SD,Out}$ (averaging 72 ± 33 g·cm⁻² sapwood·d⁻¹). Comparing the two mature PS stands, $J_{SD,Out}$ was similar ($P = 0.39$) with mean growing season values of 44 ± 25 and 48 ± 26 g·cm⁻² sapwood·d⁻¹ for PS MC and PSMF, respectively. The slightly higher mean $J_{SD,Out}$ value in PSMF corresponded with lower A_S/A_G (22 ± 0.38 vs. 25 ± 0.09 m²/ha in PS MC) because lower stem density in PSMF produced more open canopy compared to PS MC (see Appendix S1: Table S1). Trees in PSY had the lowest A_S/A_G (5 ± 0.42 m²/ha) and the highest $J_{SD,Out}$ (98 ± 28 g·cm⁻² sapwood·d⁻¹) of all stands. As a result, $J_{SD,Out}$ decreased linearly with A_S/A_G among the four sites ($r^2 = 0.96; P < 0.001$).

The negative relationship between A_S/A_G and $J_{SD,Out}$ resulted in scaled E_{CD} being a similar magnitude at the mature stands, averaging 0.94 ± 0.71, 0.94 ± 0.52, and 0.89 ± 0.49 mm/d for PT, PS MC, and PSMF, over three growing seasons (data not shown). Comparatively high E_{CD} in PT was compensated by low A_S/A_G, whereas lower E_{CD} in PSMF was compensated by higher A_S/A_G. For the young stand PSY, E_{CD} was 0.56 ± 0.33 mm/d. Longevity of PT needles is ~18 months while that of PS needles is over 4 yr, leading to more pronounced dynamics of L in PT. Growing season L was higher at the mature stands than at PSY (Fig. 2, compare dotted lines). Over the three growing seasons, the mature, unfertilized PS MC stand had higher L (2.5 ± 0.36 m²/m²) than the PT stand (1.6 ± 0.32 m²/m²; Fig. 2a–b, dotted lines). The fertilized stand PSMF had the highest L (3.1 ± 0.32 m²/m²; Fig. 2c) while the young stand PSY had the lowest (1.5 ± 0.17 m²/m²; Fig. 2d).

Canopy transpiration in relation to atmospheric, soil, and stand conditions

The response of maximum daily canopy transpiration (E_{Cm}; using only non-gap-filled data) to D_Z was similar among the mature canopies of PT, PS MC, and PSMF ($P = 0.90$), initially increasing faster with D_Z and reaching
higher saturating E_{Cm} value than the young forest (Fig. 3a). Our E_{Cm} vs. D_Z responses shared similar pattern to the results from our analysis of 17 other studies on pine forests (Fig. 3b). We then examined the parameters describing E_{Cm} vs. D_Z responses in Fig. 3b. In the following analyses, all linear regressions were forced through the origin because the intercept was not significant ($P \geq 0.42$), consistent with having no transpiration when leaf area is zero. First, we defined a reference E_{Cm} value at 1 kPa D_Z, analogous to parameter a in the E_{Cm} vs. D_Z response function (Eq. 4), as E_{Cm-ref}. E_{Cm-ref} was linearly related to L, showing 0.55 ± 0.02 (SE) mm/d increase of E_{Cm-ref} with a unit increase of L (Fig. 4a; including five additional $P. sylvestris$ studies with data available for this relationship only; see text for gap-filling approach and Appendix S1: Derivation of gap-filling functions and Table S3). Estimates of leaf area index (L) are shown in dotted lines, together with measured values (circles). Estimated daily total sapwood area per unit ground area (A_S/A_G, m2/ha) is shown in dashed line.

Fig. 2. Variables for scaling to the canopy shown, and for each panel, daily sum of sap flux density in the outermost xylem layer (i.e., at 0–20 mm depth from inner bark; $J_{SD,Out}$ in g cm$^{-2}$ sapwood d$^{-1}$) is presented as solid lines with both measured (black lines) and estimated (gray lines) values (see text for gap-filling approach and Appendix S1: Derivation of gap-filling functions and Table S3). Estimation of leaf area index (L) are shown in dotted lines, together with measured values (circles). Estimated daily total sapwood area per unit ground area (A_S/A_G, m2/ha) is shown in dashed line.
residuals from the $E_{\text{Cm-ref}}$ vs. L relationship (Fig. 4a) were not related to A_s/A_L ($P = 0.13, r^2 = 0.05$) and were only weakly related to another hydraulic supply index, $A_s/A_L \times 1/h$ (where h is mean canopy height; $P = 0.007, r^2 = 0.23$); normalizing the residuals by L (making the quantity proportional to mean canopy stomatal conductance) resulted in no relationship with either of these hydraulic quantities (minimum $P > 0.13$). The coefficient of variation values were $E_{\text{Cm-ref}}$ 58%, L 56%, A_s/A_L 114% (which was similar for trees growing in both soil types, $P = 0.63$), J_s 115%, and A_s/A_G 78%.

The sensitivity of E_{Cm} to D_Z (i.e., the s_{D_Z} parameter; Eq. 4) was linearly and similarly related to $E_{\text{Cm-ref}}$ across soil types ($P = 0.43$; Fig. 4b; Appendix S1: Table S4). Thus, among these sites, in stands with higher $E_{\text{Cm-ref}}$, E_{Cm} increased toward saturation more rapidly with increasing D_Z. Using the relationships in Fig. 4a–b, we can derive the E_{Cm} vs. D_Z response under nonlimiting soil moisture condition similar to those in Fig. 3b; the derived values had only 3% bias ($r^2 = 0.63$) compared to the data from which the original curves in Fig. 3b were formed. We also assessed whether L can be used to identify the conditions at which the decrease in daily mean stomatal conductance compensates for increasing D_Z. Based on Eq. 4, we considered D_Z at which $E_{\text{Cm-ref}}$ reaches 95% of the $E_{\text{Cm-ref}}$ ($D_{Z,\text{crit}}$) at each stand. So defined, $D_{Z,\text{crit}}$ decreased with increasing stand L (Fig. 4c; Appendix S1: Table S4) similarly in both soil types ($P = 0.83$).

To assess the effect of soil drying, we derived the theoretical responses of transpiration to environmental conditions, with (a) daily canopy transpiration under nonlimiting soil moisture (E_{Cm}, mm/d) in response to daylength-normalized vapor pressure deficit (D_Z, kPa) for the forests in this study and (b) from other P. taeda forests as listed in Appendix S1: Table S1. Regression statistics for (a) is presented in Appendix S1: Table S4.

![Fig. 3](image_url) Responses of canopy transpiration to environmental conditions, with (a) daily canopy transpiration under nonlimiting soil moisture (E_{Cm}, mm/d) in response to daylength-normalized vapor pressure deficit (D_Z, kPa) for the forests in this study and (b) from other P. taeda forests as listed in Appendix S1: Table S1. Regression statistics for (a) is presented in Appendix S1: Table S4.
0.22 ± 0.13 for sandy sites with nine species from 12 studies and 0.43 ± 0.25 for loamy sites with 18 species from 22 studies), the relationships were similar to the theoretical responses ($P = 0.34$ and 0.61 for sandy and loamy sites, respectively). The effect of soil drying on E_{Cm} differed greatly between the soil types ($P < 0.001$; Fig. 5c).

Combining fitted curves from Figs. 4a, b and 5c, E_{CD} of pine forests can be estimated from L, T_A, and RH (to calculate D), radiation (to determine day-length), soil moisture, and soil properties such as field capacity and nonextractable soil moisture (for estimating REW). Under nonlimiting soil water condition, regardless of soil type,

$$E_{Cm-ref} = (0.55 ± 0.02) \times L \quad (5; \text{Fig. 4a})$$

and

$$s_{Dz} = (1.33 ± 0.06) \times E_{Cm-ref} \quad (6; \text{Fig. 4b})$$

where ± is followed by SE of the estimate. Correcting for soil drying effect (Fig. 5c), the proportion of daily to maximum transpiration can be expressed as $E_{CD}/E_{Cm} = 1 - e^{(16.08 ± 3.6) \times REW}$ for sandy soils and $E_{CD}/E_{Cm} = 1 - e^{(7.55 ± 1.01) \times REW}$ for loamy soils. While these equations can be combined to calculate E_{CD}, we note, that this approach is not applicable to any particular stand but may be used for estimating the average E_{CD} of multiple pine stands over a large area. This was demonstrated by less bias between the results estimated from the above approach and the data from our combined four stands (8%) than when testing the approach separately with data from an individual stand (ranging 19–32%). Additionally, we extended our synthesis of the soil drying effects on transpiration in pine forests for applications when finer specifications of soil classes are available. We based the extension on the soil water retention curve (Campbell 1974), $\psi_s = \psi_e (\theta/\theta_{sat}) - b$, where ψ_s is soil water potential, ψ_e and θ_{sat} are soil water potential and content at saturation, and b is the sensitivity of soil water potential to relative soil moisture. Generic values of b for soil classes ranging from sandy to clayey, available in Cosby et al. (1984), corresponding to soil texture of the data survey in Appendix S1: Table S5, were compared to the sensitivity to REW of canopy transpiration relative to E_{Cm} (s_{REW}). Because soil texture is commonly typed broadly in publications, we performed a regression analysis on the mean values of s_{REW} and b of the soil type provided. The result showed significant exponential decay of s_{REW} with increasing b ($s_{REW} = 3.29 + 99 e^{-0.7b}$, $r^2 = 0.87$, $P = 0.008$; Fig. 5c, inset).

Discussion

The data from our four pine stands on sandy soils showed that, during periods in which soil moisture was not limiting, transpiration (E_{Cm}) in the young (PSY) saturated with increasing D_z at two-thirds that of the mature stands, consistent with their one-third lower L (Fig. 3a; E_{Cm-ref} vs. L relationship $P = 0.005$). However, the
mature PT and PS stands transpired similarly in response to atmospheric demand, even when nutrient availability was enhanced in PSMF. This suggests that the ~23% higher \(L \) induced by fertilization decreased the mean light intensity on leaf surfaces and reduced mean stomatal conductance proportionally (Zimmermann et al. 1988, Ewers et al. 2001). Among the four stands, sap flux density (\(J_S \)) decreased with increasing intraspecific competition as reflected by the areal density of sapwood (\(A_S/A_G \)), as has been shown previously (Oren et al. 1998a, Zhang et al. 2012). The lower maximum \(J_S \) at low competition in our studies on sandy soil, compared to that found in the clayey soil (Oren et al. 1998a), coupled with a faster decrease of \(J_S \) with increasing competition, reflect differences in both soil and plant hydraulic properties (Ewers et al. 2000, Hacke et al. 2000).

Importantly, an inverse relationship between \(J_S \) and \(A_S/A_G \) may reduce the variation of \(E_{Cm-ref} \) (their product), making stand transpiration relatively conservative in comparison to either of the contributing quantities (Roberts 1983). Because \(L \) is related to \(A_S/A_G \), the compensatory pattern may weaken a relationship between \(E_{Cm-ref} \) and \(L \) over a narrower \(L \) range, as observed in our three mature sites (\(E_{Cm-ref} \) vs. \(L \) relationship, \(P = 0.03 \)). Nevertheless, \(L \) explained much of the variation of \(E_{Cm-ref} \) (Fig. 4a, and effect on Fig. 4b) and the \(E_{Cm} - D_L \) response in 12 pine species (Fig. 3b), regardless of various treatments, including fertilization, irrigation, and elevated atmospheric CO2 concentration. Increases of \(E_{Cm} \) with \(L \) were observed in crops and an oak stand (Ritchie and Burnett 1971, Bréda and Granier 1996) but had not been previously shown among forest stands under the diverse climates and stand conditions presented here. This finding indicates that hydraulic adjustments at the tree scale (e.g., reduced maximum height, reduced height for a given diameter and sapwood area, increased root area for a leaf area) and adjustments of competition at the stand scale (e.g., reduced tree density, \(L \)) homogenize the maximum mean canopy stomatal conductance among canopies. This holds across stands on soil texture ranging from sandy to clayey, as long as other conditions are similar (e.g., high soil moisture and incoming light, standard vapor pressure; Hacke et al. 2000, Addington et al. 2006). Thus, despite increased shading with \(L \), \(L \) held a strong and linear effect on \(E_{Cm} \).

Based on a number of studies with available data, we accounted for soil drying effects on daily canopy transpiration. All regression statistics are presented in Appendix S1: Table S4.

![Current study](image.png)

![Literature review](image.png)
transpiration (Fig. 5a). Of the eight pine species used in the analysis, pines growing on loamy soils were sensitive to soil drying at a higher soil water status than those on sandy soils (Fig. 5b). Such behavior agreed with the theoretical results based on pre-defined hydraulic properties, demonstrating the hydraulic constraints on water uptake in *P. taeda* on sandy and loamy soils (Fig. 5b, dashed lines; derived from Hacke et al. 2000). Combining data from pines and other species, the results show a clearer difference in the soil drying effects on transpiration between sandy and loamy soils (Fig. 5c, solid lines), similar to a previous finding with fewer data (Duursma et al. 2008). High sensitivity of transpiration to decreasing soil moisture, seen here restricted to only low soil moisture conditions in sandy soils, has also been attributed to a rapid water depletion in stands with shallower roots (Bréda et al. 1993, Granier et al. 2007). Shallow rooting and sandy texture (even with deep roots), both restricting water availability in the rooting zone, apparently elicit a similar threshold response to soil drying. Further support for the theoretical underpinning of transpiration response to soil moisture is provided by the relationship between the sensitivity to REW of canopy transpiration relative to $E_{\text{cm-ref}}$ (s_{REW}) and b, the sensitivity of soil water potential to relative soil moisture of finer soil classes (inset, Fig. 5c). As the clay content increases in the soil, s_{REW} decreases exponentially to a minimum. This relationship can be used to obtain s_{REW} for a more constrained prediction of the response of transpiration to soil drying when more exact information on soil texture is available.

Methodological considerations

Scaling J_S of the four stands to E_{CD} estimates (0.56–0.94 mm/d with $L \sim 1.5–3.1$) produced values within the range found in other studies of pine forests on sandy soil (0.45–1.6 mm/d with $L \sim 0.8–3$; Čermák et al. 1995, Loustau et al. 1996, Saugier et al. 1997, Ewers et al. 1999, Zimmermann et al. 2000, Irvine et al. 2004, Mellander et al. 2006). Nevertheless, many of these studies, including ours, did not calibrate sap flux sensors specifically for the stand and site conditions in which they were employed, potentially contributing to the unexplained variation presented in Fig. 4 (cf. Steppe et al. 2010, Sun et al. 2012, Vergeynst et al. 2014). The most common criticism of the heat dissipation method, the most commonly used method, is that it underestimates the flux (Steppe et al. 2010, Sun et al. 2012). However, of the 54 values in Fig. 4a, the eight estimated from methods other than heat dissipation averaged (SD) 94 ± 15% of the flux expected based on a fit with L for the 46 values obtained with constant heat dissipation approach ($P = 0.34$), indicating no particular bias.

In addition to methodological differences and the compensating behavior of J_S and A_S/A_G, differential sensitivities to shading among species and variation in plant–soil hydraulic properties (either among species, Wullschleger et al. 1998, or via growing conditions, Margolis et al. 1995, Ryan et al. 2000, Novick et al. 2009) likely added to variation in transpiration per unit L and contributed to the~30% unexplained variation of $E_{\text{cm-ref}}$ with respect to L among pine stands (Fig. 4a).

Finally, we note that the distribution of stand characteristics between the two soil types presented in this study was far from optimal, with potential effects on the extracted parameters. Therefore, while employing these parameters may be useful in broad application, the uncertainty may be high if the parameters are employed for estimating transpiration in a particular stand. A new effort to systematically assemble a worldwide sap flux data base would allow further evaluation of the generality of the results and a better estimate of the uncertainty involved.

Concluding remarks

Climate change will involve alterations in the spatial and temporal frequency distributions of atmospheric and soil conditions. In the future, likely increases in air temperature and its variation may be accompanied by similar changes in D, while changes in precipitation are uncertain. Our results show the rather remarkable usefulness of L for explaining the variation in daily maximum canopy transpiration. To the degree that climate change will affect L, especially in the range of L less than five over which it can be estimated reasonably well with remotely sensed data (Zheng and Moskal 2009), the effect on maximum stand transpiration can be estimated from L and used directly or for constraining model predictions. Furthermore, the responses generated show that, as D_L increases, transpiration ultimately reaches a maximum. Above that critical D_L, further increase is accompanied by a proportional stomatal closure and reduced carbon uptake. This critical D_L decreases with increasing L (Fig. 4c), meaning that a given absolute increase of atmospheric humidity deficit is likely to cause a greater effect on the carbon balance of high productivity, high L, forests. In contrast, the difference in the responses of E_C to soil moisture between the texture types means that low productivity forests on sandy soils are more sensitive to changes in precipitation, especially when soil water decreases below the critical threshold (Fig. 5c). Thus, predictions of future biosphere–atmosphere exchanges of water and forest productivity should account for the effect of spatial variation of L and soil texture on the temporal variation of stomatal conductance and transpiration, and thus productivity and water yield.

Acknowledgments

We appreciate the field assistantship from Nils Henriksson and Ulla Nylander in the Scots pine forest in Rosinedal, Sweden. The Rosinedalsheden research site was established with support from the Kempe Foundation and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and is since 2014 part of the “Swedish Infrastructure for Ecosystem Science” (SITES) sponsored by the Swedish Science Foundation (VR). This study received support from the
research programmes “Future Forests” (Swedish Foundation for Strategic Environmental—MISTRA), “Trees and Crops for the Future” (Swedish Governmental Agency for Innovation Systems—VINNOVA), Knut and Alice Wallenberg Foundation and “Nitrogen and Carbon in Forests” (FORMAS) and by the United States Department of Agriculture through the Agriculture and Food Research Initiative (2011-67003-30222), and Department of Energy through the Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program (DE-SC0006967, DE-0006700). P.T. thanks the Royal Thai Government and Swedish University of Agricultural Sciences for financial support.

Literature Cited

Hasselquist, N. J., P. Högborg, and D. B. Metcalfe. 2012. Contrasting effects of low and high nitrogen additions on soil

Xiong, W., R. Oren, Y. Wang, P. Yu, H. Liu, G. Cao, L. Xu, Y. Wang, and H. Zuo. 2015. Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought. Tree Physiology 35:470–484.

Supporting Information

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1423/full