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Abstract Weather is an important factor for air quality. While
there have been increasing attentions to long-term (monthly and
seasonal) air pollution such as regional hazes from land-clearing
fires during El Niflo, the weather-air quality relationships are
much less understood at long-term than short-term (daily and
weekly) scales. This study is aimed to fill this gap through
analyzing correlations between meteorological variables and
air quality at various timescales. A regional correlation scale
was defined to measure the longest time with significant corre-
lations at a substantial large number of sites. The air quality
index (API) and five meteorological variables during 2001—
2012 at 40 eastern China sites were used. The results indicate
that the API is correlated to precipitation negatively and air
temperature positively across eastern China, and to wind, rela-
tive humidity and air pressure with spatially varied signs. The
major areas with significant correlations vary with meteorolog-
ical variables. The correlations are significant not only at short-
term but also at long-term scales, and the important variables are
different between the two types of scales. The concurrent region-
al correlation scales reach seasonal at p < 0.05 and monthly at
p < 0.001 for wind speed and monthly at p < 0.01 for air tem-
perature and relative humidity. Precipitation, which was found
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to be the most important variable for short-term air quality con-
ditions, and air pressure are not important for long-term air qual-
ity. The lagged correlations are much smaller in magnitude than
the concurrent correlations and their regional correction scales
are at long term only for wind speed and relative humidity. It is
concluded that wind speed should be considered as a primary
predictor for statistical prediction of long-term air quality in a
large region over eastern China. Relative humidity and temper-
ature are also useful predictors but at less significant levels.

1 Introduction

Weather is one of the air pollution contributors (Nidzgorska-
Lencewicz and Czarnecka 2015). Atmospheric processes can
lead to severe air pollution events over a large region (Wang
et al. 2010). The PM, 5 center in southern California of the
USA is associated with the stagnation condition characterized
by an anticyclonic system, weak wind, no precipitation, and
usually high temperature (Tai et al. 2010). Weather patterns
were found to be related to the orientation, gradients, and
characteristic patterns of daily air quality index (AQI) in the
northern Mid-Atlantic of the USA (Croft and Melendez
2009). Understanding the weather-air quality relationships
would help identify the major elements, processes, and mech-
anisms for the formation of air pollution events and develop
prediction models.

The analysis of weather-air quality relationships and
their applications to air quality prediction have focused
on the short term (daily and weekly) in the past decades.
Short-term air quality prediction informs the public of
when severe air pollution weather such as regional smog
and haze would occur. The major weather conditions con-
cerned are synoptic systems and processes such as low
pressure and vertical temperature inversion (Zhang et al.
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2014). Operational short-term air quality prediction has
benefited greatly from the development of dynamical re-
gional air quality models (Byun and Schere 2006; Sofiev
et al. 2006; Wang et al. 2004; Peterson et al. 2014). These
models use dynamical regional weather models to predict
daily air pollutant distributions through simulating atmo-
spheric dispersion and transport, mixing and deposition,
and chemical reactions.

There are increasing attentions to the long-term (monthly
and seasonal) weather-air quality relationships due to more
frequent and persistent air quality disasters caused by, for ex-
ample, intense forest fires and agricultural residue burning
during anomalous weather events such as El Nifio (Marlier
et al. 2013; Shi et al. 2014). About a dozen prolonged severe
smog events occur in the eastern China annually, affecting
long-term outdoor activities such as construction, farming,
recreation, and sport events (CMA 2015). Long-term air qual-
ity prediction helps administrations evaluate the risks for

frequent and persistent air pollution events and take necessary
measures to minimize the impacts. The concerned weather
conditions include prolonged atmospheric anomalies such as
droughts and heat waves.

Long-term air quality prediction is a big challenge to
research and operational communities. Dynamical weather
and air quality models depend on the initial atmospheric
conditions, which can affect the subsequent atmospheric
processes only for a certain period, after which atmospher-
ic energy dissipation and nonlinearity become dominant.
Thus, currently dynamical models are mainly effective for
short-term air quality prediction. Operational real-time air
quality prediction using dynamical models is mostly for 1
to 3 days (Zhang et al. 2012).

Statistical techniques such as correlation and regression
analyses, empirical orthogonal function, and artificial neu-
ral network have been widely used to analyze weather-air
quality relationships (Cobourn 2007; Stadlober et al. 2008;
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Fig. 1 The administrative divisions of Northwest (NW), North (NC), Northeast (NE), East (EC), South (SC), Central (CC), and Southwest (SW) China.

The dots are the air quality measurement sites
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Genc et al. 2010; Zhang et al. 2012; Deng et al. 2013;
Peterson et al. 2014; Shahraiyni and Sodoudi 2016).
Weather-air quality indices such as the Parameter Linking
Air-quality to Meteorological conditions/haze (PLAM/h)
index have been formulated to evaluate air quality based
on weather conditions (Honoré et al. 2008; Kassomenos
et al. 2008; Wang et al. 2013; Yang et al. 2016).
Statistical relationships are also fundamental for develop-
ing statistical air quality prediction techniques. Many sta-
tistical air quality models have been developed based on
short-term weather-air quality relationships (Zhang et al.
2012). Without dealing with the complex physical and
chemical processes involved in dynamical models, statisti-
cal models are much more computationally efficient, which
is especially important for providing long-term prediction.

However, the evidence for the long-term weather-air quality
relationships is very limited. Some studies investigated the
weather-air quality relationships using either daily or monthly
series (Duan et al. 2008; Li 2009; Li et al. 2012, 2013) but did
not calculate and compare them across short- and long-term
timescales. Thus, it is not clear at how long scales their empirical

relationships are statistically significant and what meteorological
variables are important. This situation limits the capacity in
selecting predictors in statistical prediction models for long-
term air quality.

The purpose of this study is to understand the long-term
weather-air quality relationships in eastern China by quantita-
tively estimating the longest timescales at which the relation-
ships are statistically significant and identifying the related
meteorological variables. Air pollution has escalated dramat-
ically in the recent decades in China (UN 2001; Zhao et al.
2008; Wei et al. 2009; Li et al. 2013; Wang et al. 2013; Huang
et al. 2013; Li and Wang 2013). The urban rate in China
increased from 36% in 2000 to 54% in 2013 (Sheng and
Yan 2014), and the number of cars per 100 urban households
increased from 0.5 in 2000 to 21.5in 2012 (NBS 2013), lead-
ing to rapid increases in air pollutant emissions. The PM, s
concentrations in China range from about 25 pg/m’ in the
southern coast to more than 60 pg/m® in northern China with
a center of over 100 ug/m’ in the Beijing mage-urban area
(Rohdel and Muller 2015). In 2013, 70 out of 74 major China
cities failed to meet the daily ambient air quality standards for
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Fig. 2 Spatial distributions of concurrent correlation coefficients (%)
between precipitation and API for 1-, 5-, 10-, and 15-day and 1- and 3-
month series (a—f). Red and blue: highly significant (p < 0.001); light red
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and blue: intermediately significant (p < 0.01); yellow and green:
marginally significant (p < 0.05)
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more 144 days. In 2010, the high PM pollution was linked to
1.2 million premature deaths, the fourth leading risk factor for
deaths in China, comparing with 3.2 million deaths, the sev-
enth leading risk factor for the entire world (Murray et al.
2012; WHO 2014). The roles of weather in air pollution have
been studied (Kang et al. 2009; Han et al. 2009; Wang et al.
2010; Zhang et al. 2014). This study is expected to provide
scientific evidence for developing statistical prediction tools
for long-term air quality in eastern China, which might also
have important implications for other world regions.

2 Methods
2.1 Research area

The research area is eastern China, the portion of China ap-
proximately east of 100°E (Fig. 1). This region is separated
into northern China, including northeast (NE), north (NC),
and eastern northwest (NW) China, and southern China, in-
cluding East (EC), South (SC), Central (CC), and eastern
Southwest (SW) China.

2.2 Data

The air pollution index (API) and meteorological variables
were used. API was formulated using daily PM;(, SO,, and
NO,. Daily API values are used to evaluate air pollution
levels: 0~50 (excellent), 51~100 (good), 101~200,
201~300, and 301~500 (mild, moderate, and severe pollu-
tion). The API data have been extensively used in China
(Han et al. 2007; Li 2009; Liu et al. 2011, 2016; Ren et al.
2013; Li et al. 2013; Zhu et al. 2013; Zhang et al. 2016;
Tao et al. 2016), which show that annual API is larger in
northern than southern China and in winter than summer.
Coal combustion and dust are the major API contributors,
whose emissions are the largest during winter and spring,
respectively. The weather is dry and windy with frequent
temperature inversion during the two seasons, leading to
more severe pollutant conditions.

The API data (http://www.mep.gov.cn) started from
middle 2000 in 42 key China cities, with seven more
sites added later in eastern China. The daily data from
January 2001 to December 2012, at 40 sites (all of the
first 42 but Urumgqi in NW and Lhasa in SW) were used
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Fig.3 Spatial distributions of concurrent correlation coefficients (%) between temperature and API for 1-, 5-, 10-, and 15-day and 1- and 3-month series
(a—f). See Fig. 2 for statistical significance with each color
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for this study. Western China (west of about 100° E) was
not included because of very sparse measurements.

Five meteorological variables of precipitation (R), sur-
face air temperature (7), wind speed (V), relative humid-
ity (RH), and air pressure (P) near the air quality sites
were used, which were obtained from the China
Meteorological Science Data Sharing Service Network
(http://cdc.nmic.cn).

2.3 Correlations at various timescales

The elements of the original daily data were averaged over
five periods of 5, 10, 15, 1 month, and 3 months to form
additional time series. The periods together with the original
1-day period were regarded as timescales, which are denoted
as 1d, 5d, 10d, 15d, Im, and 3m. Each series was
deseasonalized by averaging a specific element of the series
over 12 years and then subtracting the average from this ele-
ment. Considering the relatively large interannual variability
with the daily series, the deseasonalized daily series element
was obtained by subtracting the 5-day instead of 1-day
average.

Correlation coefficients between API and one of the
meteorological variables (MET = R, T, V, RH, or
P), r(MET, 1), were calculated for each timescale z. k= 0
for the concurrent correlation with no time lag or £ = 1 for
lagged correlation with the API lagging MET by one series
interval. Although concurrent correlations reflect the in-
stant impacts of weather to understand the processes and
mechanisms of air pollutions, they also can provide useful
information for prediction, as discussed later. Lagged cor-
relations reflect the subsequent impacts of weather on air
quality, which are traditionally used to find predictors of
statistical air quality models.

Statistical significance of correlations was tested at three
significance (SIG) levels of p < 0.001, 0.01, and 0.05. The
correlations meeting the corresponding critical values are
regarded as highly (HS), intermediately (IS), and marginally
(MS) significant, respectively.

2.4 Regional correlation scales

r{MET, t) measures correlations at individual sites. To find
those meteorological variables with statistical long-term
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Fig. 4 Spatial distributions of concurrent correlation coefficients (%) between wind speed and API for 1-, 5-, 10-, and 15-day and 1- and 3-month series
(a—f). See Fig. 2 for statistical significance with each color
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correlations at a certain number of sites, a regional corre-
lation scale, t,., (MET, SIG, N), was defined. The scale is
the largest ¢ value for r(MET, t) at the SIG level at N or
more sites. t..4 i inversely proportional to the SIG level.
Selection of N is arbitrary. A larger N means a larger region
but normally a shorter 7., . In this study, we used a value
so that N/N, = 1/3, where N, is the number of measurement
sites. This ratio is comparable to the math constant, e,
which has been extensively used to measure the attenua-
tion rate of a dynamic system (e.g., Liu and Avissar 1999).
The corresponding number was N= 14.

3 Results
3.1 Spatial patterns of concurrent correlations

ro(R, 1) is negative across eastern China, except at a few
sites for the Im and 3m series (Fig. 2), meaning that air
pollution becomes more severe with decreasing rainfall.
The areas with significant correlations remain large until
15d, especially in southern China. ro(R, Im) is HS or IS at

a few sites, while r¢(R, 3m) is not significant at HS or IS
everywhere. Note that the inverse distance weighting
(IDW) method (Li and Heap 2008) was used to interpolate
the correlation results at the 40 sites to the regularly dis-
tributed grid points when illustrating the spatial patterns.

ro(T, ) (Fig. 3) shows similar spatial distributions and
changes with timescale to 7o(R, f) but with opposite sign,
meaning that air pollution becomes more severe with in-
creasing temperature. o(7, #) has higher significant level,
HS in almost entire eastern China for 1d-15d. ro(7, Im) is
HS or IS in parts of CC, EC, and NC. ry(7, 3m) is signif-
icant at a few sites.

Unlike ro(R, 1) and ro(T, 1), ro(V, £) (Fig. 4) has varied
signs across eastern China. Negative ro(V, 1d) spreads over
entire region except eastern NW and western NC. This area
decreases in size with increasing timescale. 7o(R, 1m)
and 7o(R, 3m) are HS at many sites.

Similar to 7o(V, £), ro(RH, £) (Fig. 5) has varied signs and is
significant at Im and 3m scales. ro(RH, 1d) and ro(RH, 5d) are
negative across eastern China except in NC and NE. Positive
values occur in southern China for longer scales. ro(RH,
10d) and ro(RH, 15d) are HS in a majority of the region.
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Fig. 5 Spatial distributions of concurrent correlation coefficients (%) between relative humidity and API for 1-, 5-, 10-, and 15-day and 1- and 3-month

series (a—f). See Fig. 2 for statistical significance with each color
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Fig. 6 Spatial distributions of concurrent correlation coefficients (%) between air pressure and API for 1-, 5-, 10-, and 15-day and 1- and 3-month series

(a—f). See Fig. 2 for statistical significance with each color

ro(P, t) (Fig. 6) is negative in northern China and parts of
southern China and positive mainly in the southern coast. The
positive area expands northward with increasing timescale.
The correlations are mostly HS until 15d.

3.2 Spatial patterns of lagged correlations

r1(MET, ¢) has similar spatial patterns and signs to o(MET,
) but with much smaller magnitude for most variables.
r1(R, t), for example, is insignificant for all timescales.
The magnitude decreases more rapidly with timescale for
most variables. An exception is 7(V, £), which is HS even
at Im and 3m scales at many sites (Fig. 7). The area of
positive values is larger in 7(V, ) than ro(V, ?).

3.3 Regional correlation scales

The number of sites with HS correlations does not decrease
considerably until # = 1m for most variables (Fig. 8). For ex-
ample, the number for R is 28 for 1d, 32 for 5d (the only case
among all variables that the number increases from 1d to 5d
series), 20 for 10d, and 15 for 15d. It then drops dramatically to

four for 1m and zero for 3m series. However, no substantial
drops after the 15-day series are found for V. The value declines
steadily or changes little from 1d to 3m, which are 30, 24, 22,
14, 16, and 10.

While the regional correlation scales are at short term
(< 15d) for R and P at any significant level, and for 7"and RH
at HS, they reach long term, 1m for Vat the HS level and for T
and RH at the IS level, and 3m for Vat MS.

The regional lagged correction scales are at the long term
only for Vand RH (Fig. 9), lm for Vat HS, and 3m for Vat IS
and for RH at MS.

4 Discussion

The weather-air quality relationships in China depend on me-
teorological variables (Han et al. 2009; Zhang et al. 2014).
This study shows two types of variables with different spatial
patterns. The first type includes precipitation and temperature,
each showing a same correlation sign across China, negatively
with precipitation significant at large timescales mainly in SC,
and positively with temperature significant at large timescales
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Fig.7 Spatial distributions of lagged correlation coefficients (%) between wind speed and API for 1-, 5-, 10-, and 15-day and 1- and 3-month series (a—

f). See Fig. 2 for statistical significance with each color

mainly in EC and NC. The signs basically agree with the
previous studies (Duan et al. 2008; Li 2009; Li et al. 2012,
2013; Deng et al. 2013). Rainfall can wash out air pollutants
through wet deposition. Sands from dust storms and urban
construction sites are one of the major PM; o sources in north-
ern China. Warmer temperature lifts more dust particles from
the ground construction or desert into the air, though the at-
mospheric planetary boundary layer becomes less stable with
higher surface temperature, and therefore, it leads to more
vertical transport of ground air pollutants at urban sites.

The second type shows spatially varied correlation signs
with other variables. The daily correlations are positive in
western NW and negative in other regions for wind speed.
Higher wind speed in northwestern China lifts more dust par-
ticles from the ground to the air, which is a major PM;, source
during spring, but leads to larger transport and dispersion from
highly air polluted urban to less polluted rural in eastern China
(Tian et al. 2005; Ren et al. 2005; Han et al. 2007; Li et al.
2014). The daily correlations are mostly negative except in
NC and NE for relative humidity. Relative humidity is a
ratio of actual to saturated water vapor pressure values,
which are basically proportional to precipitation and air

@ Springer

temperature, respectively. The positive correlations for
precipitation explain the overall negative correlations for
relative humidity, while positive correlations for temperature,
especially in northern China, explain the positive correlations
for relative humidity in this region. The daily correlations are
mostly negative except in the southern coastal area for air
pressure. Kang et al. (2009) found that the atmosphere was
controlled by a stable high-pressure system after passage of a
cold front with rainfall, strong wind, and low air pollution
level, and air pressure was then reduced gradually and air pol-
lutants accumulated with PM( reached the highest level when
a stable low air pressure system prevailed.

For short-term air quality, Deng et al. (2013) found that
precipitation is the most important meteorological variable,
followed by wind speed, humidity, and temperature. This
study also finds large correlations with short-term air quality
for precipitation. However, for long-term air quality, this study
indicates that wind speed rather than precipitation becomes
most important, followed by humidity and temperature, while
precipitation is no more a factor.

Our study used deseasonalized time series. The correlation
coefficients with daily series are consistent with those from a
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Fig. 8 Site number with 40
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similar study also using deseasonalized meteorological vari-
ables over 11 years in the contiguous USA (Tai et al. 2010).
The correlation signs for air temperature and pressure,
however, are opposite to some studies using original data
series. Wang (2008) and Deng et al. (2013), using original
daily series of 3-year and 12-year periods, respectively, at
multiple sites across China, and Zhou et al. (2014), using
original monthly series during 2000-2010 at three NC sites,
found negative API correlations with air temperature and
positive with air pressure. This is simply because the API is
higher in winter and lower in summer, while precipitation and
air temperature are lower and air pressure is higher in winter
and opposite in summer. The original data series usually lead
to higher correlation magnitude. The daily correlations for
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precipitation from Deng et al. (2013) were between — 0.2
and — 0.4 at a majority of sites, while the correlations in this
study with the seasonal cycle removed are only about — 0.1.
The monthly correlations for precipitation from Zhou et al.
(2014) were — 0.43, — 0.37, and — 0.41 at the examined three
sites. The values are reduced to — 0.25, — 0.02, and — 0.14 in
our study using the data with the seasonal cycles removed.
(But we got pretty close values of — 0.40, — 0.36, and — 0.40
if also using the original data.)

The API mainly considers PM;, concentrations. China
started to monitor PM, 5, O3, and CO in 2012, which to-
gether with the air pollutants included in the API are used
to formulate the AQI, a better air quality index than the
API, because PM, s and O3 are more closely related to
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Fig. 9 Site number with
significant lagged correlations 40 (a) R
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regional smog and haze. Some differences are expected
between the two indices in their correlations with weather.
For example, wind speed and air temperature are positively
correlated with PM;, in the regions with large dust con-
centrations, but could be negatively with PM, 5 due to
strong horizontal and vertical transport and dispersion of
fine particles by wind. The AQI data have been used in
short-term weather-air quality correlation analyses (Chen
et al. 2015). They should be valuable for long-term analy-
ses in the future when long data series become available.
Also, weather-air quality relationships over time periods
beyond seasonal scale could exist under external forcing
such as El Nifio and climate change (Jacob and Winner
2009; Marlier et al. 2013), which were not analyzed in this
study due to limited length of data series.
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5 Conclusions

It can be concluded based on the weather-air quality relation-
ships obtained from this study that meteorological conditions
are valuable for statistical air quality prediction not only at
short-term (daily and weekly) but also at long-term (monthly
and seasonal) scales in many eastern China regions. Wind
speed is the most important variable for statistical prediction
of long-term air quality over a large area. Temperature and
relative humidity are also useful variables at less significant
levels. The major areas with significant long-term correlations
are different among the three variables. On the other hand,
precipitation, which was found in previous studies as the most
important factor for short-term air quality in China, and air
pressure are not important for long-term air quality prediction.
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Long-term air quality prediction could be made through
two approaches. One is based on the lagged correlations.
This is actually the technique often used to conduct, for ex-
ample, statistical weather prediction. This approach relates
meteorological elements as predictors, which are available at
current time from observations, to air quality as a dependent
variable or predict and at a future time. However, only wind
speed and relative humidity among the analyzed meteorolog-
ical variables have significant long-term relationships with
subsequent air quality in a large region. The other approach
is based on the concurrent weather-air quality relationships.
To predict air quality at a future time, weather conditions at the
same are used, which are available from operational weather
forecast provided in many world regions including China
(bcc.cma.gov.cn/channel.php?channelld=63). Besides
detailed short-term meteorological conditions, the forecast
products also include monthly and seasonal outlook. One
problem is that the outlook usually only includes temperature
and precipitation, while wind speed, which is the most impor-
tant variable for statistical long-term air quality prediction, is
often not available.
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