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Uncertainty about future outcomes of invasions is amajor hurdle in theplanning of invasive speciesmanagement
programs. We present a scenario optimization model that incorporates uncertainty about the spread of an inva-
sive species and allocates survey and eradication measures to minimize the number of infested or potentially
infested host plants on the landscape.Wedemonstrate the approach by allocating surveys outside the quarantine
area established following the discovery of the Asian longhorned beetle (ALB) in the Greater Toronto Area (GTA),
Ontario, Canada. We use historical data on ALB spread to generate a set of invasion scenarios that characterizes
the uncertainty of the pest's extent in the GTA. We then use these scenarios to find allocations of surveys and
tree removals aimed at managing the spread of the pest in the GTA. It is optimal to spend approximately one-
fifth of the budget on surveys and the rest on tree removal. Optimal solutions do not always select sites with
the greatest propagule pressure, but in some cases focus on sites with moderate likelihoods of ALB arrival and
low host densities. Our approach is generalizable and helps support decisions regarding control of invasive spe-
cies when knowledge about a species' spread is uncertain.
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1. Introduction

Human-assisted introductions of invasive alien species have result-
ed in extensive ecological and economic impacts worldwide
(Meyerson and Reaser, 2003; Perrings et al., 2005; Hulme et al., 2008;
Pejchar and Mooney, 2009; Aukema et al., 2011). In response to the
threat, various surveillance programs (Mehta et al., 2007; Reaser et al.,
2008; Davidovitch et al., 2009; Hauser and McCarthy, 2009; Cacho et
al., 2010; Epanchin-Niell et al., 2012) have been implemented to detect
arrivals of non-native species, ideally before they become established in
novel locations. In North America and elsewhere, significant resources
have also been devoted to large-scale programs to prevent or mitigate
damages from the most harmful of these species (Olson and Roy,
2005; Kim et al., 2006; Bogich et al., 2008; Tobin, 2008; Pyšek and
Richardson, 2010). For example, in 2007 the United States Department
of Agriculture (USDA) allocated $US 1.2 billion formanagement of inva-
sive pest species, with approximately 22% directed towards early detec-
tion and rapid response activities (NISC, 2007).
shanov).

r B.V. All rights reserved.
Deciding where and how to deploy scarce response resources in
areas that may have been infested with threatening pests is a funda-
mental challenge for invasive species managers and other biosecurity
decision-makers. The difficulties of this decision-making problem are
two-fold. Primarily, managersmustmeet immediate objectives tomon-
itor and manage an invasion given what is currently known about the
organism of concern, and must do so within their economic (such as
budget) constraints. They must also account for imprecise knowledge
and subsequent uncertainty regarding the organism's future distribu-
tion and spread (Melbourne and Hastings, 2009). The issue of uncer-
tainty becomes even more critical when a manager must evaluate the
need to implement costly eradication measures to stop or slow the
spread of invasion (Epanchin-Niell and Hastings, 2010), such as the
large-scale removal of host trees in ongoing Asian longhorned beetle
(Anoplophoraglabripennis (Motschultsky)) quarantine efforts in Canada
and the United States (Turgeon et al., 2010; Trotter and Hull-Sanders,
2015).

In the past, economic decisions regarding the deployment of surveil-
lance and control measures under uncertainty have been supported
with two broad types of analytical tools. Stochastic simulation models
have been used to forecast the spread of invaders (Hester et al., 2010;
Hester and Cacho, 2012; Rafoss, 2003; Yemshanov et al., 2009) and to
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Table 1
Summary of the model variables and parameters.

Symbol Parameter/variable name Description

Parameters:
j, J Potential survey sites in a study area j ∈ J,

J = 3208
s, S Stochastic spread scenarios s ∈ S,

S = 400
Nj Number of host trees at a site j Nj ≥ 0a

θ1js Proportion of trees at a site j in a scenario s that are infested θ1j ∈ [0; 1]b

θ2js Proportion of host trees at a site j in a scenario s in a
proximity zone that surrounds the nucleus with Njθ1js
infested trees

θ2j ∈ [0; 1]b

B Total budget Constraint
Mmin Minimum desired reduction in the pest's spread capacity

from the surveyed sites
Constraint

C Fixed survey cost Constraint
c1 Tree survey cost $6.83

tree−1

c2 Tree removal cost $1000
tree−1

pj Probability of the pest to spread to a site j pj ∈ [0; 1]a

qj Probability of the pest to spread from an infested site j to
other uninfested sites

qj ∈ [0; 1]a

pjk Probability of the pest to spread from a site j to site k pjk ∈ [0; 1]a

Decisionvariables:
xj Binary survey selection of a site j xj ∈ {0,1}a

Rjs Number of host trees removed at a surveyed site j in a
scenario s

Rjs ∈ [0;
Nj]a

a The parameter value is site-specific.
b The parameter value is site and scenario-specific.
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estimate the bounds of uncertainty on those forecasts (Carrasco et al.,
2010; Koch et al., 2009). Concurrently, resource allocation models
based on optimization have been used to develop cost-effective surveil-
lance and control strategies in temporal and geographical domains
(Cacho et al., 2010; Haight and Polasky, 2010; Hauser and McCarthy,
2009; Epanchin-Niell et al., 2012, 2014, Epanchin-Niell and Liebhold,
2015; Mehta et al., 2007; Sims and Finnof, 2013; Yemshanov et al.,
2014).While invasion spread forecasts are commonly rendered in a sto-
chastic setting, resource allocation models based on optimization re-
quire deterministic parameters to achieve specific management
objectives. Resource allocation under uncertainty can be achieved
with a special class of robust optimization models which incorporate
the uncertain parameters as random variables and represent them
with a large set of scenarios of possible outcomes (Kouvelis and Yu,
1997). These robust models can use the universe of uncertain spread
forecasts and thereby provide better support for economic decisions
about managing species invasions under uncertainty. In particular, sce-
nario-based optimization offers the opportunity to examine the notion
that uncertain future outcomes of an invasion may change the pres-
ent-time survey planning strategy, an aspect that has rarely been ex-
plored in pest surveillance models (but see the scenario-based model
in Horie et al., 2013).

This paper addresses the resource planning problemofmanaging in-
vasive species under uncertainty by combining a stochastic simulation
approach, inwhichwe predict the uncertain spread of a non-native spe-
cies through a landscape, with a scenario-based optimization model
that finds themost cost-effective deployment of survey and eradication
measures at a regional scale by evaluating eradication decisions at the
level of individual survey sites. We apply our modeling approach to al-
locate sites for verification surveys of Asian longhorned beetle (ALB)
in the Greater Toronto Area (GTA) of Ontario, Canada. ALB was initially
discovered in the GTA in 2003 (Smith et al., 2009), and a portion of the
GTA is currently under ALB quarantine (Turgeon et al., 2015).

We first use prior knowledge about the spread of ALB in the GTA to
develop a pathway-based, stochasticmodel that simulates the spread of
the pest in the area of concern, and then use this model to generate sce-
narios that depict uncertainty about the future extent and impacts of
ALB invasion. Next, we apply these scenarios in our robust optimization
model to identify optimal survey and eradication (i.e., host tree remov-
al) strategieswith the objective tominimize the number of infested and
potentially infested host trees on the landscape subject to budget con-
straints. Our survey planning model explores the following economic
problem. Surveys via host tree inspections of the pest population must
be allocated to specific sites in the landscape at the beginning of the
planning period in present time, using available knowledge about its
general pattern of current and anticipated future spread and current ex-
tent in themanaged area. Knowledge about where the organism has al-
ready spread, or where it may spread in the future, is uncertain. This
uncertainty stems from the fact that invasion is a dynamic and stochas-
tic process (Melbourne and Hastings, 2009; Epanchin-Niell and
Hastings, 2010). The uninvaded status of sites that are going to be sur-
veyed could change if infested trees are found, however, which current-
ly uninvaded sites will be invaded in the near future is unknown. We
represent this uncertainty with a large set of stochastic invasion scenar-
ios. Each scenario is characterized by the proportion of infested trees in
each site and describes a plausible invasion outcome.

Our model evaluates two sets of decisions. First, decisions about
where to allocate surveys are made before undertaking the surveys.
These decisions are based on the expected but uncertain pattern of
spread. Sites outside of the quarantine area are then surveyed and a
set of stochastic spread scenarios depicts possible current and future in-
festations at the end of the survey period. Because the outcomes of the
survey are uncertain, information about spread is available to deci-
sion-makers after the surveys are completed and subsequent eradica-
tion decisions depend on the surveys' outcomes. The overall cost of
survey and eradication (i.e., tree removals) must be within budget for
all spread scenarios. In our model, survey planning is done with respect
to the outcomes of all plausible scenarios including the costs of eradica-
tion in surveyed sites where an infestation is found. This makes the op-
timal allocation of survey sites robust to the uncertainty about the pest's
spread in the area to bemanaged. Ourmodeling concept helps achieve a
balance between the costs of surveillance and eradication under a limit-
ed project budget and addresses many practical situations when eco-
nomic decisions to survey or eradicate populations of an invasive
species are made under uncertainty regarding how the species may
spread in the future.

2. Material and Methods

2.1. Robust Allocation of Survey and Control Efforts

We formulate the model as a mixed integer problem by using con-
cepts from robust optimization (Kouvelis and Yu, 1997; Bertsimas et
al., 2011) and by incorporating basic aspects of the scenario-based opti-
mization model in Horie et al. (2013). Consider a landscape composed
of J sites, each containingNj trees suitable for the complete development
of the pest it may harbor (see Table 1 for summary of model parame-
ters). A site j, j=1,…,J, can have a proportion of trees that are infested,
θ1j, and a proportion of suitable trees that are in proximity (hereafter re-
ferred to as the “proximity zone”) to the infested trees and at risk of be-
coming infested soon, θ2j, which we term proximate host trees. The
number of trees in a site j that are infested is Njθ1j, and the number of
proximate trees in site j is Njθ2j, where θ1j, θ2j ∈ [0; 1] and θ1j + θ2j ≤ 1.
The proportion of trees in the proximity zone, θ2j, is estimated from
the number of trees within a specific radius around the nucleus of
Njθ1j infested trees.

A manager allocates surveys and subsequent eradication actions
across a subset of sites in J, with a defined budget level B. In our case,
eradication measures are aimed to stop or significantly slow the spread
of the pest population.When an infestation is found in a surveyed site j,
those measures include removal of all invaded host trees and as many
apparently uninfested but potential host trees as possible in the proxim-
ity zone that surrounds the infested nucleus. For simplicity, we assume
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that there is a single nucleus encompassing all infested trees at site j. The
maximum number of uninfested trees to be removed in the proximity
zone has an upper bound of Njθ2j.

Removal of apparently uninfested trees in proximity to the infested
trees is considered necessary because detection rates in pest surveys are
typically below 100%, so some infested trees at site jmay remain unde-
tected, thereby permitting the invader to spread in the future. This ne-
cessitates the creation of a buffer zone around the infested trees that
is of sufficient size to reduce the chance such spread will occur
(Reaser et al., 2008).We assume that the proximity zone around the nu-
cleus of infested trees at site j is defined by a circle that encompasses
proportion θ2j of the host trees.

The number of infested and proximate trees, remaining in a site j
after Rj host trees have been removed from site j is:

Njθ1 j þ Njθ2 j−Rj ð1Þ

The manager's objective is to select survey sites and tree removal
levels in the surveyed sites to minimize the number of infested and
proximate host trees remaining in the landscape:

min
XJ

j¼1

N jθ1 j þ Njθ2 j−Rj
� � ð2Þ

s:t:N jθ1 j xj ≤ Rj≤ Njθ1 j þ N jθ2 j
� �

xj ð3Þ

where xj is a binary selection variable indicating whether site j is sur-
veyed (i.e., xj = 1) or not (xj = 0). Tree removal only occurs at infested
sites that have been surveyed, so Rj=0 for all xj=0.We assume that all
infested and proximate trees are removed at surveyed sites, i.e.,
Rj ≥ Njθ1jxj.

The true proportion of infested trees, θ1j, at any site j is unknown, but
approximate θ1j values can be estimated based on the pest's expected
pattern of spread and the numbers of infested trees detected at other
sites during previous survey campaigns. These estimates are uncertain,
but their uncertainty can be depicted with a large set of probabilistic
scenarios, S, where each site j in an invasion scenario s, s = 1, …, S, is
characterized by the proportion of infested trees at the site,θ1js, and
the proportion of trees in the proximity zone, θ2js. The presence of the
pest (i.e., the spread pattern) and the θ1js values can be generated
with a stochastic invasion model.

We incorporate the uncertainty about the future spread of invasion
by representing the pest management problem as a scenario-based
model, i.e.:

τ ¼ min
1
S

XS

s¼1

XJ

j¼1

θ1jsN j þ θ2jsN j−Rjs
� �

2
4

3
5 ð4Þ

s:t: : θ1jsNj x j ≤ Rjs≤ θ1jsNj þ θ2sN j
� �

xj ∀ s ∈ S; j ∈ J ð5Þ

XJ

j¼1

c1xjN j þ
XJ

j¼1

c2Rjs ≤ B ∀s ∈ S ð6Þ

xj ∈ 0;1f g ∀ j ∈ J; ð7Þ

where c1 and c2 are per-tree survey and removal costs, and B is the total
project budget. The objective function in Eq. (4)minimizes the expected
number of infested and proximate trees in a management area of J sites
after survey and removal. Eq. (5) ensures that all infested trees in each
surveyed site are removed, and that removals are bounded by the num-
ber of uninfested trees in the proximity zone at the end of the survey pe-
riod. Eq. (6) specifies the total budget for surveys and tree removal,
whichmust bemet in each scenario.We assume that all trees are exam-
ined in each surveyed site j. Decision variables include the selection of
survey sites, xj, and the number of trees to be removed around the inva-
sion nuclei that is detected at the surveyed sites in each scenario, Rjs.

Without eradication management (i.e., removal of infested and
proximate host trees), the pest's capacity to spread from the proximity
zone of a site j can be estimated at the end of the survey period, in sim-
ple terms, as the sum product of the number of host trees (i.e., potential
propagule sources) in the proximity zone and the probability that the
pest could spread from site j to elsewhere, qj, as:

XJ

j¼1

θ1js þ θ2js
� �

N jqj

� �
ð8Þ

After the removal of Rjs trees, the pest's capacity to produce propa-
gules at site j is reduced by Rjsqj. Higher Rjsqj values cause greater impact
on the capacity to spread from j elsewhere. The minimum desired re-
duction in the pest's spread capacity from all surveyed sites can be spec-
ified as:

MD ≥Mmin; ð9Þ

where

MD ¼ 1
S

XS

s¼1

XJ

j¼1

Rjs q j

� �2
4

3
5 ð10Þ

Eqs.(4)–(7), (9) and (10) provide the basicmodel formulation. Since
Rjs=0when site j is not surveyed (i.e., xj=0), the survey selection var-
iable xj is not needed in Eq. (10). In short, the Mmin constraint sets the
aspirational target to slow the capacity of the pest to spread from sur-
veyed sites elsewhere over all the invasion scenarios, S. By increasing
the Mmin value, the model selects sites where removal of susceptible
trees yields the largest reduction in the pest's expansion.When the bud-
get for tree removal is insufficient to remove all proximate trees, a
higher Mmin value focuses more tree removal efforts on sites that are
likely to be higher sources of pest propagules, so that the procedure
still works effectively as a slow-the-spread measure. Note that the
spread capacity can only be reduced at sites that have been surveyed.

2.2. Case Study: Optimal Surveillance and Control for ALB Outbreak in
Greater Toronto Area (Ontario, Canada)

2.2.1. Model-based Assessment of ALB Spread in Urban Setting
The first detection of ALB in the Greater Toronto Area (GTA) oc-

curred in September 2003 and a regulated area was established soon
after. That regulated area was declared pest free in May 2013. Later
that year a small satellite infestation was discovered a few kilometers
outside the area that had been regulated between 2003 and 2013
(Turgeon et al., 2015). We applied our model to the case of managing
the expansion of this recent discovered satellite infestation of ALB. In
addition to the GTA, the insect has been introduced to other cities in
the eastern U.S., including New York (NY), Chicago (IL), Jersey City
(NJ), Clermont county (OH), Carteret (NJ) and Worcester (MA) (Haack
et al., 1997, 2010; Shatz et al., 2013; APHIS, 2013; Trotter and
Hull-Sanders, 2015; Meng et al., 2015). All of these are believed to be
separate introductions from China (APHIS, 2005; Carter et al., 2009).
This beetle has also been introduced in Europe (Maspero et al., 2007;
EPPO, 2008; Straw et al., 2015). In all these infestations, maple (Acer
spp.) is the main host of ALB, but the beetle also attacks birch
(Betulaspp.), poplar (Populus spp.), elm (Ulmus spp.), willow (Salix
spp.) and several other tree genera (Lingafelter and Hoebeke, 2002;
Williams et al., 2004; Wang et al., 2005; CFIA, 2014; Meng et al., 2015)
making it one of the world's most threatening invasive forest pests
(Nowak et al., 2001; Haack et al., 2010). Eastern North America is espe-
cially vulnerable because of the ubiquity of maple and the abundance of
suitable habitat conditions (Peterson and Scachetti-Pereira, 2004). If
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existing outbreaks are not contained, ALB is expected to impact many
industries in North America that utilize these hosts.

Several early detection techniques have been proposed for ALB
(Smith andWu, 2008; Haack et al., 2010; Nehme et al., 2014), but visual
inspection of trees for signs of attack is currently the only practical de-
tection method (Turgeon et al., 2010). The area around the existing
ALB infestation is characterized by high abundance of suitable trees,
with 5th–95th percentile density ranging between 1.7 and 40.7 trees-
ha−1. Due to significant costs of intensively inspecting and removing
the potential host material, the currently regulated area under quaran-
tine was limited to approximately 46 km2 (Fig. 1) from which all
infested and uninfested proximate host trees were removed between
September 2013 and April 2014. The potential for extensive damage
and high costs of eradication efforts necessitate the assessment of the
risk that ALB has spread beyond the currently quarantined area, as
well as a rapid-response plan were this to happen.

ALB is known to have slow natural spread rates (Smith et al., 2001,
2004): 80% of the population at a given site is expected to spread
b300 m per year (Favaro et al., 2015). Most recent ALB introductions
have been facilitated byhumans (Carter et al., 2009). Growing anecdotal
evidence suggests that the pest may hitchhike on slow-moving vehicles
(Trotter andHull-Sanders, 2015; Turgeon, pers. obs.), similar to the doc-
umented spread of another invasive forest insect, the emerald ash borer
(Agrilusplanipennis Fairmaire), in urban settings (Buck and Marshall,
2008). Inmost cities and towns, including the GTA, local road traffic (in-
volving both passenger and commercial vehicles) accounts for a large
portion of the area-widemovement of people and goods. Consequently,
road traffic has been recognized as a reasonable proxy for a variety of
local economic activities (SACTRA, 1999). We used volumes of local
road traffic as a measure of activities that could cause human-mediated
pj est:

< 0.0001 (low)
0.0001-0.0005
0.0005-0.001
0.001-0.005
0.005-0.01
>0.01 (high)

Fig. 1. Study location: Greater Toronto Area (GTA), Ontario, Canada. Map depicts the
model-estimated probability, pj est., that ALB will spread to and survive in a site in the
GTA outside of the quarantine area (blue zone). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
ALB spread beyond the boundaries of the regulated area. Briefly, we uti-
lized a dataset on local road traffic volumes in the GTA (Tetrad, 2014)
that had been linked to the GTA portion of the ESRI Street Map
geospatial database (ESRI, 2014, Cook and Downing, 2013) to estimate
probabilities of ALB movement from previously invaded locations (see
description in Appendix S1). We divided the GTA street network into
400 × 400-meter blocks, each representing a potential survey site, and
then used the local traffic volume data to estimate a matrix of probabil-
ities of ALBmovement from block to block via the network. This matrix
was used to simulate 5 × 106 randomized pathways of ALB spread from
sites in the quarantined area. We then adjusted the arrival rates by the
suitability of a given site for survival of an ALB population. The suitabil-
ity value was based on previous detections of the pest during the early
stages of the ALBmanagement campaign in the GTA. An ALB population
can survive on a few host trees (Turgeon et al., 2015), so the local host
density was not used to adjust the establishment rate value. The ALB
spread model was calibrated to match the historical spread rate of ALB
in the GTA as determined from previous survey campaigns prior to
the current eradication campaign (Appendix S1). During the calibration,
we first generated expected probabilities of ALB arrival with the spread
model (see definition in Appendix S1) and then created new infesta-
tions in the study area via uniform random draws against the expected
probability values. We next compared the number of generated nuclei
with the historical invasion rate prior to the current eradication effort
(i.e., 12 new nuclei over the 2004–2007 survey period, Turgeon, unpubl.
data) and recalculated the spread matrix by linearly adjusting the
spread probability values (the coefficient λ in Eq. (S1), Appendix S1)
until the model matched the historical invasion rate.

2.2.2. Parameterizing the Resource Allocation Model
Parameterizing the optimization model required a large set of inva-

sion scenarios. As noted earlier, each scenario had two associated sets of
proportions: the proportions of infested trees on invaded sites, θ1js, and
the proportion of proximate host trees, θ2js. We generated the scenarios
with a two-step process. First, we used our calibrated spread model to
estimate the probability of ALB spread to other uninfested sites, pj, for
each site jin the area of concern (Fig. 1). For each spread scenario s,
we generated a stochastic pattern of invaded sites via random draws
against the pj values. Next, each invaded site j in a scenario s was
assigned a number of infested trees that was randomly sampled from
an empirical distribution of the number of infested trees. This distribu-
tion was based on records of historical ALB detections in the GTA. The
proportion of infested trees, θ1js, at a site jin a scenario swas then
found by dividing the number of infested trees sampled from the distri-
bution byNj, the total number of host trees at site j.We assumed that the
invaded trees occupied a single nucleus at site j. Because the size of the
survey sites was relatively small and historical rates of ALB spread were
low, we felt this was a fair assumption.We then converted the area cor-
responding to the θ1js proportion of invaded trees at site j to a circle of
equivalent area in the center of the 400 × 400-meter survey block. We
determined this area based on the average tree density and host tree
species proportions reported in the City of Toronto's Every Tree Counts
survey (City of Toronto, Parks, Forestry and Recreation, Urban Forestry,
2013), which provided a detailed summary of Toronto's urban forest. To
estimate the total number of host trees (Nj) we first estimated the area
of tree cover at each survey site j from the SOLRIS (2008) land cover
dataset for the GTA. The area of tree cover was then converted into a
corresponding number of host trees by multiplying by tree density
and the host species proportion.

Having defined the circular area corresponding to the proportion of
infested trees, we then added a 200-meter buffer to that area to define
the surrounding proximity zone, and recalculated the area of the zone
including both infested and proximate trees. The proportion of host
trees in the proximity zone, θ2js, was found by dividing the area of the
proximity zone by the total area of the survey site. The proportion θ2js
depends on the proportion of trees that are infested, θ1js, and the local

Image of Fig. 1


90 D. Yemshanov et al. / Ecological Economics 133 (2017) 86–98
host density, Nj, hence the values θ1js and θ2js for a site j in a scenario s
represent a linked pair. The dependency between the number of
infested trees in the nucleus and the average θ2js values can be approx-
imated by a functional relationship (Fig. 2).

In theory, if the number of infested trees is large, the area of the
proximity zone may exceed the survey site's total area and the propor-
tion of both infested and uninfested trees, θ1js+ θ2js, may exceed 1. This
was not an issue in our case study because the number of infested trees
was small based on historical data from the 2003 infestation (i.e., be-
tween 1 and 28 trees per site; Turgeon, unpubl. data) and the proximity
zone area never exceeded the area of the survey site. The small number
of infested trees in each nucleus also explains limited variation in the θ2js
values (i.e., between 0.82 and 0.97).

We used the calibrated spread model to generate the probability of
the pest's spread from each surveyed site j to other uninfested sites, qj.
Appendix S1 describes the process bywhichwe estimated and calibrat-
ed the matrix of spread rates (i.e., probabilities), pjk, from all potential
survey sites jto other uninfested sites, k, k ∈ J, k ≠ j. The probability of
the pest spreading from a surveyed site j to other uninfested sites was
calculated as:

qj ¼
XJ

j;k¼1;k≠ j

pjk ð11Þ

where 0 ≤ qj ≤ 1. We then used the qj values to evaluate the Mmin con-
straint (Eq. (10)).

We also assessed the practical range of theMmin values byfirst calcu-
lating theMD value in Eq. (10) in the unconstrained solution, i.e., when
Mmin = 0. The MD0 value in the unconstrained solution represents a
baseline capacity to slow the spread at a given budget level, B. Note
that the Mmin constraint is only intended to reduce spread capacity
from surveyed sites, and does not affect unsurveyed sites. We then
solved constrained solutions with Mmin values set above MD0 by 25%
aswell as themaximumpercentage aboveMD0 that still yields a feasible
solution (i.e., around 40–50%). These scenarios depict increasingly
higher aspirations to reduce the pest's spread capacity from the sur-
veyed sites.

Additionally, themodel required a value for the budget constraint, B,
and the costs of survey and tree removal, c1 and c2. Because the surveys
are conducted in urban sites connected by a dense and accessible street
network, we assumed equal survey costs on a per-tree basis. We esti-
mated the survey cost from contractor rates paid to do visual tree
Number of invaded trees 
at a survey site 

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

2j
s

Fig. 2. Average proportion of suitable host trees, θ2js, in the proximity zone around the
invaded nucleus of a survey site as a function of the number of infested trees in the
nucleus.
inspections in previous ALB survey campaigns. This yielded an average
survey cost of $6.83 per tree. The cost of tree removal was based on cur-
rent tree disposal costs in the ongoing ALB eradication program andwas
set at $1000 per tree. The high cost of tree removal was due to regulato-
ry requirementswhen disposing of a tree, which require costly chipping
operations at designated disposal sites. We evaluated the optimal solu-
tions for project budgets B between $0.5M and $2Myr−1, which repre-
sents the anticipated range in size of the ALB verification survey
program outside of the quarantine zone in the GTA.

We also explored the impact of changing the project budget on key
survey characteristics, by calculating sensitivity values to the budget
changes by plus-minus 10% as:

0:5
wþ−w0ð Þ

w0
=

Bþ−B0ð Þ
B0

þ w−−w0ð Þ
w0

=
B−−B0ð Þ

B0

����
���� ð12Þ

wherew0 and B0 are the baseline survey characteristics and budget con-
straint values, while w+, B+ and w−, B− are the survey characteristics
and budget values in the solutions with the budget constraint (B) al-
tered by plus andminus 10% from its baseline value B0. Thew values de-
scribe the survey characteristics of interest (such as the proportion of
trees removed in close proximity to the quarantined area or the number
or surveys allocated at long distances).1 The sensitivity value shows the
ratio between the relative change, in absolute terms of the characteris-
tics of interest (such as the proportion of sites surveyed at short dis-
tances) and the change of the project budget constraint (B) by ±10%.

In addition to solutions with optimal apportionment of survey and
tree removal costs, we evaluated solutions with fixed survey costs, by
adding the following constraints:

XJ

j¼1

c1xjN j≤C for CbCopt and

XJ

j¼1

c1xjN j≥C for CNCopt

ð13Þ

where Copt is the optimal survey budget in the unconstrained solution.

2.2.3. Computing Bounds on the Objective Function Value
Ideally, the optimization model would be supplied with a very large

set of invasion scenarios, but the practical number of scenarios is limited
by computational capacity. Optimal solutions based on a finite number
of random scenarios provide an approximation of the true optimal solu-
tion. To better understand how close our model solutions were to the
solution with a complete set of scenarios, we estimated the upper and
lower bounds on the optimal objective function value using concepts
from Mak et al. (1999) and Lee et al. (2013).

The lower bound (L) was estimated as the mean of the objective
function values for the solutions to 25 independent replicate problems
with S scenarios. Each replicate used different, non-overlapping sets of
stochastic spread scenarios. We then re-used the replicate solutions to
compute the upper bound. Specifically, we re-computed the objective
function values for a set of 5000 different spread scenarios using the sur-
vey allocations from the replicate problems that we calculated for the
lower bound. In turn, we estimated the upper bound (U) as the mean
of the objective function values based on those 25 replicate sets. We es-
timated the optimality gap between the upper and lower bounds as the
relative difference between them, i.e.:

U−L
� �

=U ð14Þ

Table 1 provides a summary of the model parameters and variables.
The model was composed in SolverStudio (Mason, 2013) and GAMS
1 The survey characteristics are for diagnostic purposes and do not represent themodel
parameters or decision variables.
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environments (GAMS, 2015) and solved with GUROBI linear program-
ming solver (GUROBI, 2014). The optimization was terminated once
the optimality condition was reached or after a 22-hour time limit.

3. Results

3.1. Assessing the Optimality Gap

We estimated the upper and lower bounds on the objective function
value for problem solutions with 50, 100, 200 and 400 spread scenarios
(Table 2). The optimality gap values appear to be b2% for problemswith
50 ormore scenarios. Gaps for the problemswith 200 ormore scenarios
were b1%. The low gap value is a result of the particular formulation of
the objective function. Recall that the objective function depicts the
number of remaining proximate trees at a survey site. When only a
small portion of the area of interest (J) is surveyed the number of re-
maining host trees that could be infested in the area is large. In relative
terms, changes in the objective function value at small survey budgets
are small and cause the gap value to be low.We believe the result asso-
ciated with 400 scenarios is close to the unknown optimal solution be-
cause the optimality gap is very low (Table 2). The number of spread
scenarios also influenced other properties of the surveys (Table S1 in
Appendix S2). The solutions with 400 scenarios had no surveys at
sites with very low risk of infestation (pj b 0.001) and ten times fewer
surveys at distances N4 km from the quarantine area than the solutions
with 50 scenarios (Table S1 in Appendix S2). It does not appear that
solving problems with N400 scenarios would yield much benefit in
terms of precision or accuracy, but would greatly increase computation
time.

3.2. Spatial Survey Patterns and the Number of Invasion Scenarios

The number of scenarios, S, affects the spatial patterns of selected
survey sites, as evidenced by the survey selection patterns based on
the averaging of 25 optimization runswith independent sets of invasion
scenarios (Fig. 3). The most commonly selected survey sites (i.e., sites
selected for survey in a large percentage of optimization runs) and
greatest numbers of removed trees were found close to the northern
and eastern portions of the quarantine area, i.e., sites where the arrival
of ALB is most likely (Fig. 3, Fig. S1 in Appendix S2). The allocation of
surveys at long distances from the quarantine area was less consistent:
When the number of scenarios was low (i.e., S= 50), the surveys were
scattered across large portions of theGTA (Fig. 3a). The spatial allocation
of surveys at further distances from the quarantine area appeared to be
spatially random (Fig. 3, callout I), which indicates that 50 scenarios
were insufficient to characterize long-distance spread properly.

As the number of scenarios increased, surveys at locations away
from the quarantine area began to follow the network of main roads
closer to the quarantine area (Fig. 3c,d and Fig. S1c, d in Appendix S2).
Indeed, the solutionswith 400 scenarios revealed twomajor survey pat-
terns (Fig. 3d and Fig. S1d in Appendix S2): high-risk sites immediately
adjacent to the quarantine area (dark-shaded areas in Fig. 3d), but also
Table 2
Upper and lower bounds on the objective function value for differing numbers of spread
scenarios. Mean values of the objective function value for base casewith the total program
budget B = $0.5 M, computed with sets of 25 independent replicates with increasing
numbers of scenarios, S = 50, 100, 200 and 400.

Number of
spread scenarios,
S

Lower bound (L), 95%
confidence interval

Upper bound (U), 95%
confidence interval

Optimality
gap⁎

50 8194.4 ± 96.1 8368.1 ± 12.9 2.08%
100 8224.8 ± 88.7 8351.4 ± 35.4 1.23%
200 8227.9 ± 59.8 8311.5 ± 4.5 1.01%
400 8245.8 ± 35.7 8294.9 ± 3.3 0.06%

⁎ The optimality gap is ðU−LÞ=U (Mak et al., 1999).
sites along major streets with heavy local traffic at moderate distances
from the quarantine area. At moderate distances, survey selections
start to follow a rectilinear grid of the street network (Fig. 3, callout II)
and random selections of surveys at long distances (Fig. 3, callout I) dis-
appear. In summary, the map in Fig. 3d suggests that a combination of
two distinct strategies is usually the best approach to surveillance: (i)
survey the areas with the highest spread rates in proximity to the area
under quarantine, but also (ii) allocate a portion of resources to sites
at longer distances followingmajor streets and transportation corridors.
The proportion of the surveys at long distances should be relatively
small compared to the surveys in high-risk areas (i.e., between 4 and
20%). The number of removed trees followed the same pattern, but
the hotspots with large numbers of removed trees appearedmore com-
pact (Fig. S1d in Appendix S2).

3.3. Optimal Survey Solutions and the MminConstraint

Penalties from imposing the Mmin constraint on the objective func-
tion appeared to be minor (Fig. 4): Reducing the pest's spread rate
from surveyed sites by 40–50%, by targeting the sites expected to con-
tribute more to future spread, increased the number of remaining host
trees only by 0.2–1.5%. The survey pattern shifted from a mix of short-
and long-distance surveys (Fig. 4b, callout I) towards high-risk sites
near the quarantine area (Fig. 4b, callout II). Tree removal at those
sites would have the greatest impact on the pest's expansion.

The sites closest to the quarantine area contribute most to expected
future spread because they have the highest probability of ALB estab-
lishment. For ALB, the spread rate evenwhen factoring in human-medi-
ated dispersal is slow (i.e., b300 m per year) and the creation of distant
nuclei via spread is unlikely, so the sites with the highest likelihood of
pest arrival also have the greatest capacity to spread the pest
elsewhere.2 Without theMmin constraint, the model generally selected
sites with low host densities (Fig. S2a, b in Appendix S2). Similar behav-
iour was observed by Horie et al. (2013) for a model of oakwilt disease.
Sites with lower host densities were selected because those sites had
fewer trees to survey and fewer trees to remove if an infestation was
found, thereby lowering the total cost invested in each surveyed site.
As a result, more sites could be surveyed across the managed area.
Higher Mmin values increased the number of surveys and the number
of trees removed at sites with high host densities (Fig. S2a, b in Appen-
dix S2). Also, a higher percentage of host trees was removed at the sur-
veyed sites given larger budget levels (Fig. 5a).

Increasing theMmin values forces themodel to removemore trees at
the sites with high risk of pest arrival, which also have high capacity to
spread ALB to other sites. The survey patterns appear to be more com-
pact and located closer to the quarantine area (Fig. 4b). Higher Mmin

values also resulted in the omission of sites with very low spread rates
and led to a small increase in the proportion of the total budget devoted
to survey costs, because it costsmore to survey siteswith high host den-
sities (Fig. 5b). At the same time, more surveys were selected and more
trees removed at sites with high pest arrival rates (Fig. S2c, d in Appen-

dix S2), although the total arrival rate at surveyed sites, J

∑ðpj; xjÞ, de-
clined slightly (Fig. 5c). This happened because the pest arrival rates,
pj, and the spread rates to other uninfested locations, qj, which are
used in theMmin equation are not perfectly correlated.

3.4. Optimal Levels of the Survey Budget

Table 3 shows optimal solutions with unconstrained apportionment
of the survey and tree removal costs out of the total project budget. The
2 For ALB, distant nuclei may also be created by re-introductions with pest-specific im-
ports from the regions of the species' native distribution range. This aspect requires spa-
tially referenced data on imports of pest-associated commodities to GTA and will be a
focus of future work.



(a) (b)

(d)(c)

Fig. 3. Survey allocations (i.e., the percentage out of 25 optimization runs inwhich a site jwas selected for survey, xj=1) versus the number of invasion scenarios, S: a) 50 scenarios; b) 100
scenarios; c) 200 scenarios; d) 400 scenarios. Callout I shows random survey patterns at long distances from the quarantine area in the solutions with a small number of spread scenarios.
Callout II shows rectilinear survey patterns in close proximity to the quarantine area, which appear to follow major streets, in the solutions with a large number of spread scenarios.
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three project budget levels ($0.5-2M yr.−1) presented in Table 3 reflect
three hypothetical, but plausible, budget levels for ALB survey and con-
trol efforts outside of the quarantine area. At these funding levels, it was
optimal to spend approximately one-fifth of the budget on surveys and
the rest on tree removal. The low proportion of the total budget devoted
to surveyswas a result of thehigh per-tree removal cost, which also lim-
ited the number of sites that could be treated. The number of removed
trees depended on the project budget and varied between 190 and
390 and between 1267 and 1596 trees, respectively, in baseline scenar-
ios with project budgets of $0.5 M and $2 M. Notably, the portion of the
project budget devoted to tree removal is large despite the fact that the
number of infested trees, as suggested by historical data, is expected to
be low (i.e., 12 nuclei on average, between 1 and 28 infested trees each).

Optimal solutions had a sizeable percentage of sites with low host
tree density, especiallywhen the project budgetwas small (Table 3). Ba-
sically, surveys and tree removal at low-density sites cost less, which al-
lows for allocating more surveys. Surveying more sites increases the
chance of finding infestations, therefore it is optimal, beyond surveying
the highest-risk sites, to survey sites with moderate risk of invasion but
low host densities.

When the project budget level increased from $0.5 M to $2 M, the
proportion of surveyed sites with low host densities dropped from
59% to 28%, and so did the proportion of trees removed at sites with
high risk of invasion (i.e., from 46% to 35%). Indeed, the proportion of
trees removed from all sites – not just the highest-risk ones – near the
quarantine area also dropped from 40% to 13%, while the share of sur-
veys at longer distances increased from 21% to 43% (Table 3). This im-
plies that spending significant resources on long-distance surveys is
feasible only when the project budget is large. Notably, the budget
level did not affect the average percentage of host trees removed at
the survey sites (Table 3).

3.5. Survey Budget and the Performance of Pest Management Programs

Our observations of recent efforts tomanage the ALB outbreak in the
GTA revealed that decisions about survey and eradication measures are
usually made at different stages in the overall planning process. In past
years, a fixed portion of the program budget has been allocated for sur-
veys at the beginning of the season, whereas decisions to remove trees
have depended on the outcomes of surveys. To explore this aspect, we
evaluated a range of optimal solutions with fixed survey budgets, C,
for project budget levels (B) ranging from $0.5 M to $2 M. By setting a
fixed survey cost above the optimal value, we simulated a decision-
maker's aspiration to increase the survey area, and thus potentially de-
tect more new infestations, while accepting the reduced ability to re-
move susceptible trees due to the subsequent shortage of funds for
such efforts. Alternatively, fixed survey budgets below the optimal
level explored the possible scenario where a decision-maker's capacity
to conduct surveys is limited by other unforeseen factors, or he/she an-
ticipates that a large number of tree removalswill be necessary. In short,
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Fig. 4. a) Objective function valueτ (the number of suitable host trees remaining at the survey sites) as related to theMmin value at three budget levels. Symbol sizes depict three different
Mmin constraint scenarios: large symbols correspond to unconstrained solutions,MD0, where theMmin constraint was not used; medium symbols correspond to solutions whereMmin =
1.25MD0; and small symbols correspond to solutions with the maximum Mmin value before solution becomes unfeasible. Lower objective function values indicate better solutions. ⁎

Feasible solutions with the highest Mmin value. b) Examples of spatial patterns of survey selections in solutions with Mmin = MD0 (unconstrained) and with maximum Mmin values.
Callout I indicates a mix of short- and long-distance surveys in unconstrained solutions and callout II indicates a shift of the survey pattern towards high-risk sites near the quarantine
area in the solution with theMmin constraint.
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our results in this context explore the decision-making trade-off be-
tween surveying a larger area to increase the chance of detections yet
having less resources available for eradication, versus surveying a small-
er area but perhaps having a greater chance to disrupt the pest's spread
via tree removal.

As expected, deviations from the optimal survey budgetworsened the
objective function value (Fig. 6a) and decreased the capacity to slow the
spread from surveyed sites (Fig. 6b). As the survey budget increased, the
proportion of trees removed at the surveyed sites decreased because less
funding was available for tree removal (Fig. 6c). The pest arrival rate at
surveyed sites generally increased with the survey budget (Fig. 6d) be-
causemore high-risk sites (where ALB arrival ismost likely) could be vis-
ited given a larger survey budget. When the budget share left for tree
removal was small (e.g., b60% in the scenarios with B = $0.5 M, Fig.
6d), it was not optimal to survey the high-risk sites at all (Fig. 6d, callout
I). Because very few resources were available in this case to treat the
high-risk sites (which often have high host densities), removing trees at
sites with low host densities became more cost-effective.

Changes in the budget proportion spent on surveys versus tree re-
moval also influenced the spatial patterns of the surveys. When the ap-
portionment between survey and tree removal costs was close to
optimal (Fig. S3c in Appendix S2), the surveys were allocated in a
two-tiered fashion: The majority targeted high-risk sites near the quar-
antine area and the rest were assigned to medium-risk, but more dis-
tant, sites with low host densities. However, when the share of the
total budget devoted to tree removal was below the optimal ratio, it
was no longer possible to remove a desired number of trees in the prox-
imity zones at the surveyed sites. Instead, preferential treatment of sites
with low host densities was applied (Fig. S3b in Appendix S2). Further-
more,when the tree removal budgetwas very small, all surveyswere al-
located to sites with low host densities (Fig. S3a in Appendix S2). The
total number of survey sites also increased in this case.

Image of Fig. 4
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Fig. 5. Optimizationmodel results as related to theMmin constraint value: a) proportion of
susceptible host trees removed at surveyed sites vs. the Mmin value; b) the survey cost

proportion of the total budget vs. the Mmin value; c) pest arrival rate, J
∑ðpj; xjÞ , at

surveyed sites vs. theMmin value. The MD0 value represents the unconstrained solutions
where theMmin constraint was not used.

Table 3
Optimal solutions with unconstrained apportionment of survey and host tree removal
costs.

Parameter Project budget, B

$0.5 M $1 M $2 M

Survey costs, C (optimal value) $109.7 k $203.5 k $403.9 k
Objective function,τ 8202.3 7813.9 7037.4
% of trees removed at survey sites (average per
scenario)

4.9% 5.3% 5.6%

% of surveys at sites with high/low host tree density:
Low tree density (b100 site−1) 58.8% 39.3% 28.1%
High tree density (N300 site−1) 7.8% 24.6% 38.5%

Surveys at sites with high risk of ALB invasion (pj N 0.03):
% of surveyed sites 17.6% 19.7% 15.6%
% of removed trees 46.0% 45.2% 34.7%

Surveys in close proximity (≤400 m) to the quarantine area:
% of survey sites 27.5% 23.0% 17.7%
% of removed trees 39.6% 16.5% 12.9%

Surveys at long distances (≥1 km) from the quarantine area:
% of survey sites 37.3% 41.0% 43.8%
% of removed trees 20.6% 27.4% 43.2%
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When the amount of funds was sufficient for removing the sus-
ceptible trees at the surveyed sites, the model selected the highest-
risk sites regardless of how many host trees were at those locations
(Fig. S3d in Appendix S2). Increasing the survey budget from
$100 k to $500 k (assuming the same ratio between survey and
tree removal costs) did not change the spatial survey patterns (Fig.
S3d in Appendix S2). In absolute terms, a larger survey budget in-
creased the proportion of surveys and the number of removed trees
at sites with low risk of invasion (Fig. S4a,b in Appendix S2) and de-
creased the proportion of surveys at high-risk locations (Fig. S4c,d in
Appendix S2). As the survey budget increased, more surveys were
selected and more trees removed at distant sites (Fig. S4e in Appen-
dix S2).
3.6. Sensitivity to Changes in the Project Budget

The survey allocation strategy may also depend on the size of the
total project budget. We explored this aspect with a sensitivity analysis
of key survey characteristics to budget alterations by ±10% (Table 4).
The sensitivity values show the ratio between the relative change in
the characteristics of interest (see column 1 in Table 4) and the relative
change of the project budget (B) by plus-minus 10%. For example, the
sensitivity value 1.0 indicates that the change of the project budget by
plus-minus 10% causes the average change in the survey characteristics
by 10%. High sensitivity values indicatemore abrupt changes in the sur-
vey characteristics in response to the project budget deviations from a
given level, B. The sensitivities for the percentage of removed host
trees and the proportion of survey costs in total budget decreased
when the project budget (B) increased (Table 4). A sharp decline in sen-
sitivity was also found for the proportion of surveys at sites with high
host densities (Table 4).

For some parameters, the sensitivity values changed drastically once
the budget exceeded the $1 M threshold. In short, an incremental bud-
get increase at a budget level above $1 M had less impact on the survey
characteristics than at budget levels below $1 M. For example, the sen-
sitivities for the spread capacity, TD0, and the proportion of trees re-
moved at distances above 1 km (Table 4) peaked at B = $1 M and
then declined for larger budgets. The sensitivities for the proportion of
surveys and the number of trees removed at sites with high host densi-
ties declined sharply for budgets below $1 M and then stayed low for
budgets above $1 M. Overall, this indicates major changes in survey
strategy when the project budget exceeds $1 M. Budgets above $1 M
provide sufficient resources to survey high-risk sites and make the se-
lection of siteswith high host densities and at long distances less critical
than at small budget levels. Note that budget increases did not yield
abrupt changes in the sensitivities for the objective function value; rath-
er, the exhibited increase was gradual and linear (Table 4).

4. Discussion and Conclusions

Forecasts of biological invasions are often uncertain, which makes it
difficult to allocate surveillance and management resources effectively
(Epanchin-Niell and Hastings, 2010). When the range of possible out-
comes of invasion iswide, a robust resource allocation approach that ac-
counts for all plausible invasion scenarios can help decision makers
invest scarce resources for surveillance and eradication. Our scenario-
based model incorporates the entire distribution of invasion scenarios
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Fig. 6. Key survey selectionmetrics as related to the survey portion of the budget, C: a) objective function value τ vs. the survey budget; b)MD0 metric vs. the survey budget; c) proportion

of host trees in the site that are removed vs. the survey budget; d) pest arrival rate, J
∑ðpj; xjÞ, at the surveyed sites vs. the survey budget. Markers show the unconstrained solutions with

optimal apportionments between survey and tree removal costs. Callout I indicates a decrease of the pest arrival rate when the tree removal budget portion is very small.
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and creates risk-averse solutions3 by requiring that investments in sur-
veillance and eradication activities satisfy the budget constraint for all
scenarios while minimizing the number of infested and proximate
trees remaining.

Our scenario-based approach provides better capacity to factor in
uncertainty about spread than a single scenario approach based on the
expected probability values. In particular, our approach utilizes esti-
mates of spread made with stochastic models. If we instead used a sin-
gle scenario approach (i.e., used only the expected spread rate value),
themodel solutionswould generally follow the patterns of the expected
probability values. In this case, the optimal strategywould be to allocate
surveys starting from the sites with the highest risk of invasion and pro-
ceed until the budget is exhausted. However, such a strategy is simplis-
tic because it ignores the uncertainty aboutwhere the species is likely to
spread. Alternatively, solutions based on a scenario-based approach de-
pict a broader variation of spread and, in turn, allocate a portion of re-
sources to survey sites with lower invasion risk at longer distances.
Furthermore, the scenario-based approach provides a good platform
for incorporating risk-based objectives that aim to control the degree
of variation in the program cost or avoid incurring extreme costs due
to uncertainty. The formulation of risk-based constraints can be based
on variance or conditional value-at-risk concepts. Such formulations
3 This is also an acknowledged property for models based on the robust optimization
idea (Kouvelis and Yu, 1997).
would further improve the robustness of the optimal solutions and
would be especially meaningful for risk-averse decision-makers.

4.1. Insights for ALB Management

Ourmodel helps guide general strategies for surveillance of and con-
trol of invasive plant pests, including ALB, by combining four basic deci-
sion-making aspirations: (i) survey the sites with the highest
probabilities of pest arrival; (ii) minimize the expected number of re-
maining infested and proximate hosts in the managed area; (iii) reduce
the capacity of the pest to spread from the surveyed sites to uninvaded
areas and (iv) minimize the costs of surveillance and host removal. The
first aspiration is captured by using the probabilities of pest arrival, pj, as
random variables to generate the spread scenarios. The second aspira-
tion is depicted by the objective function,τ(Eq. (4)). The third aspiration
is captured by the spread capacity constraint,Mmin (Eqs. (9), (10)). The
final decision-making aspiration is explored in the solutions with a lim-
ited budget constraint, B, (Eq. (6)).

For ALB, removal of susceptible host trees from a zone surrounding
infested trees has emerged as one of few effective eradication strategies
(Haack et al., 2010), which is why the strategy has been adopted in the
GTA. Given the impact that broad-scale host removalmight have on the
available budget, it seemed logical to account for anticipated outcomes
of host removal during the survey planning stage. Our formulation pro-
vides practical insight into how expected outcomes of pest control
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Table 4
Sensitivity values for key survey characteristics. Shaded cells show peak sensitivity values.
The values show the relative change in the survey characteristics (as specified in column 1) in response to changes in the project budget constraint by plus-minus 10% from its defined
level, B.

Survey characteristics  
Project budget (B) $M General trend vs. 

a project budget increase  0.25 0.5 1.0 1.5 2.0 2.5

Objective function value, τ 0.02 0.04 0.10 0.16 0.22 0.28 Linear increase

The survey cost proportion of the total  

budget, Copt/B
3.35 2.54 1.80 0.99 0.89 0.62

Sharp decline for B ≤  $1M and  

very low values for B > $1M 

Minimum reduction in the pest’s spread 

capacity from the surveyed sites, MD0

0.77 0.81 1.65 1.04 0.55 0.71 Peaks at B = $1M

Average percent of host trees  

removed at surveyed sites  
0.31 0.66 0.27 0.12 0.05 0.08 General decrease

% of surveys at sites with low 

host density (<100tr.–site–1)
0.44 0.57 1.16 1.30 0.95 1.59 General increase

% of removed trees at sites 

with low host density (<100tr.–site–1) 
1.31 1.77 0.87 1.63 1.18 1.59 No clear trend

% of surveys at sites with high 

host density (>300tr. –site–1)
5.51 5.72 0.93 0.51 0.53 0.56

Very high values for B ≤  $1M and  

very low values for B > $1M 

% of removed trees at sites  

with high host density (>300tr.–site–1)
5.13 4.44 0.79 0.18 0.25 0.11

Very high values for B ≤  $1M and

very low values for B > $1M 

% of surveys at close distances 

to the quarantine area(≤400 m) 
0.14 0.39 0.62 2.04 1.15 0.51 Peaks at B = $1.5M

% of surveys at distances 

> 1 km from the quarantine area 
0.56 0.90 0.81 1.10 0.94 0.43 Peak sat B = $1.5M

% of removed trees at close distances  

to the quarantine area (≤ 400 m) 
0.99 0.65 1.04 1 .06 0.94 0.23 No clear trend 

% of removed trees at distances 

> 1 km from the quarantine area 
0.44 0.96 2.19 1.34 0.54 0.60 Peaks at B = $1M
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actions (such as host removal), combined with managers' aspirations to
slow the rate of spread, may alter decisions at this stage. Furthermore,
our scenarioswith differentfixed budgets (Fig. 6, Figs. S3 and S4 in Appen-
dix S2) provide insight into how best to allocate surveys and control mea-
sures in the event of an anticipated budget change. The way the
surveillance is planned at the present time depends on howmuch budget
is expected to be available for subsequent tree removals. When the eradi-
cation budget is anticipated to be large, surveys can target all high-risk
sites near the quarantine area. With a moderate eradication budget, it is
optimal to extend surveillance beyond thesehigh-risk sites to sites atmod-
erate distances from the quarantine area, and tomaximize the survey cov-
erage by selecting sites that can be surveyed and treated atminimum cost.

When the budget is low, it is unfeasible to allocate surveys at long
distances from the quarantine area, but instead, it is optimal to survey
at closer distances where tree removal for a given budget level can be
more effective. However, removal of some of the hosts in the proximity
zones of sites adjacent to the quarantine area is insufficient to stop the
spread of thepest population. Instead, it is optimal to selectively allocate
surveys to sites with very low host densities. Targeting low-density,
moderate-risk sites provide better use of the limited budget because,
during the eradication phase, removal of the same number of trees at
low- versus high-density sites effectively slows the spread over a larger
area. As the budget level increases, however, a portion of funds should
be set aside to survey sites at long distances because the resources
become increasingly sufficient to cover both short-distance, high-risk
and long-distance, moderate-risk locations. For example, the sensitivi-
ties of the proportion of surveys and percentage of trees removed at dis-
tances above 1 km from the quarantine area increase sharply when the
project budget exceeds $1 M (Table 4).

Notably, the geographical extent of the surveys (i.e., how far out they
extend from the quarantine zone) does not scale down linearly when
the program budget decreases. While the budget reduction generally
decreases the number of surveys at long distances, it does not eliminate
them completely. Effectively, our allocation approach follows a common
two-tiered planning strategy when even under strict budget con-
straints; a portion of the budget is always allocated to search for low-
risk incursions at further distances.

Ourmodel was designed to allocate surveys for a single planning pe-
riod, but it can be applied in a sequential fashion to multiple planning
periods. In this case, the outputs from the current period could be
used to allocate surveys and control measures for the next period and
so on. Alternatively, adding a second planning period to themodel itself
might improve its capacity to handle longer-term uncertainty. Howev-
er, this type of multi-period representation would require generating
a scenario tree with a very large number of invasion scenarios. While
several methods have been proposed to reduce the size of multi-period
scenario trees (e.g., Mulvey, 1996; Gulpmar et al., 2004), the number of
scenario combinations in a two-period model is likely to be orders of

Unlabelled image
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magnitude larger than in a single-period model, and thus would limit
the model applications to small datasets only.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecolecon.2016.11.018.
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