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Assessing risks of uncertain but potentially damaging events, such as environmental disturbances, dis-
ease outbreaks and pest invasions, is a key analytical step that informs subsequent decisions about how
to respond to these events. We present a continuous risk measure that can be used to assess and pri-
oritize environmental risks from uncertain data in a geographical domain. The metric is influenced by
both the expected magnitude of risk and its uncertainty. We demonstrate the approach by assessing risks
of human-mediated spread of Asian longhorned beetle (ALB, Anoplophora glabripennis) in Greater Tor-
onto (Ontario, Canada). Information about the human-mediated spread of ALB through this urban
environment to individual geographical locations is uncertain, so each location was characterized by a set
of probabilistic rates of spread, derived in this case using a network model. We represented the sets of
spread rates for the locations by their cumulative distribution functions (CDFs) and then, using the first-
order stochastic dominance rule, found ordered non-dominant subsets of these CDFs, which we then
used to define different classes of risk across the geographical domain, from high to low. Because each
non-dominant subset was estimated with respect to all elements of the distribution, the uncertainty in
the underlying data was factored into the delineation of the risk classes; essentially, fewer non-dominant
subsets can be defined in portions of the full set where information is sparse. We then depicted each
non-dominant subset as a point cloud, where points represented the CDF values of each subset element
at specific sampling intervals. For each subset, we then defined a hypervolume bounded by the outer-
most convex frontier of that point cloud. This resulted in a collection of hypervolumes for every non-
dominant subset that together serve as a continuous measure of risk, which may be more practically
useful than averaging metrics or ordinal rank measures.

Overall, the approach offers a rigorous depiction of risk in a geographical domain when the underlying
estimates of risk for individual locations are represented by sets or distributions of uncertain estimates.
Our hypervolume-based approach can be used to compare assessments made with different datasets and
assumptions.
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1. Introduction

Assessing risks of uncertain but potentially hazardous envi-
ronmental events is a critical analytical step in deciding whether to
monitor those events and, if necessary, develop appropriate miti-
gation strategies. Examples include introductions of unwanted
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insects and diseases (Aukema et al., 2011; Meyerson and Reaser,
2003), as well as negative ecological and economic impacts from
fires, floods (Smith, 2013) and changing climate (Oppenheimer
et al.,, 2014; Schneider et al., 2007). By nature, these events are
uncertain and the sources of that uncertainty cannot be isolated
sufficiently. In many cases, the uncertainty appears to be irreduc-
ible, such as the uncertainty associated with the spread of non-
native harmful species (Melbourne and Hastings, 2009). Regard-
less, when predictive models (Carrasco et al., 2010; Hester et al.,
2010; Koch et al., 2009; Yemshanov et al., 2009), including
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ensemble analyses (Aradjo and New, 2006; Cheung, 2001), are used
to assess the potential impacts of such events, this uncertainty
greatly curtails the decision support value of their results.

In general, the risk of an undesirable event can be represented
by the probability of the event given a suite of conditions, along
with some characterization of its consequences (Kaplan and
Garrick, 1981). When knowledge about the event is poor, it may
not be possible to depict the risk of the event with a single value.
Instead, the risk can be depicted, at best, by a set (a distribution) of
plausible values. For example, one way to estimate risks of invasion
by an alien plant pest species in a spatial context is to simulate
spatial stochastic scenarios of the invader's spread and calculate the
probabilities of spread for each scenario, as well as the likelihoods
under each scenario that populations of the pest will become
established in newly-invaded locations. If the scenarios are
assumed to have equal probability of occurrence, then this would
essentially represent a distribution of likely outcomes with respect
to the event of interest for a given site.

When multiple sites (or alternative events) must be compared,
risk prioritization requires ordering the distributions of scenario-
based risk estimates for each individual site (or event). In theory,
if a distribution of plausible risk values can be approximated by a
functional form (e.g., Gaussian), it is possible to describe that dis-
tribution by its first moments and depict these moments across the
domain (e.g., as maps of mean risk values and their variance). This
approach has been widely adopted in mean-variance investment
analyses (Elton and Gruber, 1995; Keisler and Linkov, 2010; Linkov
et al,, 2006; Salo et al., 2011; Zhou et al., 2012). Indeed, these types
of one- and two-dimensional estimates of risk are popular (see
Sims and Finnof, 2013) because they make it possible to formulate
and solve a decision-making problem with common optimization
algorithms.

Unfortunately, the extent of knowledge about rare but poten-
tially harmful events may be insufficient to properly determine the
functional form of a distribution, and analysis may further be hin-
dered by unknown limitations in the modeling technique or un-
certainties in the data. Under such circumstances, comparisons of
multiple observations in a geographical data set can only be done
by considering the entire distribution (i.e., not just the first few
moments) of estimated risk values for each of those observations.
Ideally, this computationally complex task would be done using a
metric that factors in the uncertainty of those multiple distribu-
tions, so that the final measure reflects the impact of both the ex-
pected magnitude of risk and its degree of variation.

In this paper, we propose a continuous metric that can be used
to prioritize uncertain estimates of environmental risks that are
depicted by plausible sets (distributions) of values that characterize
the extent of impact or damage. Our metric is developed specifically
for geographical assessments of environmental risks. It builds upon
previous work (Yemshanov et al., 2012) in which we developed a
risk metric utilizing the concept of stochastic dominance (SD). We
first represent the sets of risk estimates for individual geographical
locations in a data set (such as a collection of risk values for a given
location generated under different modeling scenarios) by their
cumulative distribution functions (CDF), so that every geographical
location in the data set is characterized by its own CDF of risk es-
timates. We then find and rank distinct subsets of those spatial
locations (i.e., of their CDFs) using the first-order stochastic domi-
nance (FSD) rule. Ranking the subsets of spatial locations estab-
lishes their rank order along a gradient of risk. As described in
Yemshanov et al. (2012), the subsets are termed “non-dominant”
because each contains a group of CDFs that fail to dominate each
other under the first-order stochastic dominance rule. These non-
dominant subsets correspond to broad ordinal classes of risk that
are ranked from high to low. Notably, for a rational decision-maker,

a non-dominant subset would be perceived as a single risk class.
This is because it is impossible to establish preference order re-
lationships among the CDFs within a non-dominant subset (Levy,
1992; see more details in Section 2) due to uncertainty in the
data, which makes the CDFs in the subset indistinguishable from
each other in terms of FSD. This is why FSD is called a partial
ordering approach: it facilitates ordering among, but not within,
the subsets of a full set.

A relevant corollary is that when the data underlying a set of
values, as represented by their CDFs, are highly uncertain, using
FSD to compare all CDFs in that set will yield fewer and larger non-
dominant subsets than if the underlying data were known more
precisely. For decision makers, the ability to prioritize observations
according to their risk will be constrained by the uncertainty in the
underlying data. This restrictive behavior has important practical
benefits: although FSD will yield imprecise and therefore coarse
delineations of risk when applied to uncertain data, they are less
likely to lead to erroneous decisions than estimates that fail to
account for uncertainty and communicate false precision.

An acknowledged limitation of the SD approach is that it only
provides an ordinal ranking of CDFs (and the corresponding risk
gradations). As noted previously, non-dominant subsets are or-
dered from high to low risk under SD rules, but the actual difference
in the levels of risk between any two subsets is unknown. For
example, a geographical assessment of environmental risk (i.e., a
risk map) developed using the SD approach would depict the risk
levels of different geographic regions with ordinal ranks: 1st, 2nd,
etc. Regions classified as 1st and 2nd rank might have very similar
levels of risk, but in absolute terms, regions in the 2nd rank may
actually be closer to regions in the 3rd rank, or even a much lower
rank, than to regions in the 1st rank. Notably, an ordinal measure
like SD offers only weak support for decisions where these kinds of
fine-scale differences in risk may prove important, such as resource
allocation to mitigate risk under tight budget constraints. A
continuous measure, where the difference in the level of risk be-
tween the non-dominated subsets is quantified, would be far more
suitable for such tasks.

Our objective is to describe a new approach, based on the
concept of hypervolumes, which transforms the ordinal risk rank
measure generated with the FSD rule into a continuous one. Briefly,
we depict each non-dominant subset as a point cloud, where the
points consist of the CDF values of each observation in the subset at
defined sampling intervals. For each subset, we then define a
hypervolume that is bounded by the outermost convex frontier of
the point cloud and a chosen reference point. The result is a
collection of nested hypervolumes, each of which quantifies volu-
metrically the region within the entire multi-dimensional risk
space occupied by a non-dominant subset. Collectively, the calcu-
lated hypervolumes for these subsets act as a continuous measure
of risk for the full set. As a continuous measure, it has another
advantage over order-based risk metrics in that it can be used to
prioritize and compare multiple assessments based on different
datasets or risk assessment scenarios. We demonstrate the
approach with a contemporary example: assessing the risk of
human-assisted spread of the Asian longhorned beetle, an invasive
forest pest (Haack et al., 2010; Nowak et al., 2001), in the Greater
Toronto Area (Ontario, Canada).

2. Methodology
2.1. Assessing risks from scenario-based data
A set of uncertain risk estimates can be described by defining it

as a stochastic variable, with a cumulative distribution function
(CDF) of risk values x:
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Fx) = PX < X) (1)

where CDF F(x) returns the proportion of plausible estimates with
the risk value less than x, which represents the probability of
having a risk value less than or equal to x. If a risk estimate was
certain (i.e., a single value x), its CDF would appear as a vertical line
at x, such that CDF(x) returns a probability of 1 and any value other
than x returns a probability of zero (Fig. 1a). Multiple certain esti-
mates can be compared and ordered via equality/inequality oper-
ators. However, the CDF of an uncertain estimate is a monotonically
increasing curve (Fig. 1b). Ordering of multiple uncertain estimates
requires comparison of their CDFs.

One way to compare CDFs is by evaluating their pairwise
dominance/non-dominance relationships (Levy, 1998) under the
first-order stochastic dominance (FSD) rule. A CDF F(x) dominates
another CDF G(x) by FSD if:

F(x) < G(x) for all x and F(x) < G(x) for one or more x. 2)

when F(x) dominates G(x), then F(x) has a larger expected value, so
E(F(x)) > E(G(x)). Notably, application of FSD also supposes that a
rational decision-maker always prioritizes higher expected values
than lower expected values (Levy, 1998) among all realizations of x.
In our risk assessment case, this assumption generally holds
because a decision-maker typically places greater priority on esti-
mates of higher values (which denote greater risk of an undesirable
event) than lower values. When dominance conditions for Fand G
(i.e., F over G or G over F) fail, it is impossible to establish a pref-
erence order relationship between F and G, and their CDFs become
non-dominant to each other. Graphically, a non-dominance con-
dition between F and G occurs when their CDFs cross each other at
one or more points (Fig. 1b).

Dominance/non-dominance relationships among multiple ob-
servations (with uncertain estimates) in a set can be established via
recursive pairwise comparisons of their CDFs. When the
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Fig. 1. Depicting certain and uncertain estimates of risk in CDF form: a) — certain
estimates appear as vertical lines in CDF form and can be ordered using equality/
inequality operators; b) ordering uncertain estimates requires comparison of their
CDFs via dominance/non-dominance operators. Uncertainty in the underlying data,
including in a portion of the data, causes the CDFs to cross each other and form non-
dominant subsets, such as in Ay; ¢) more uncertainty provides more chances for CDFs
to cross each other, yielding fewer, larger non-dominant subsets and further
decreasing the number of distinct gradations of risk in the full set.

dominance condition fails between multiple pairs of CDFs, these
CDFs form a non-dominant subset. For any non-dominant subset,
there is always another CDF — or more commonly, another group of
CDFs — that it dominates or by which it is dominated. This property
has been used to establish rank order relationships between mul-
tiple CDFs (Yemshanov et al., 2012): a set of N CDFs can be ordered
by finding distinct non-dominant subsets that delineate succes-
sively lower levels of risk (Goldberg, 1989). After the first non-
dominant subset A; with the highest risk values is found in a full
set N, it is assigned the highest ordinal risk rank of 1 and removed
from the set temporarily. Then, the next non-dominant subset, A,
is found from the remainder of the set, N -A, assigned a risk rank of
2, temporarily removed from set N - A, and so on. The procedure
continues until all CDFs in set N are evaluated and assigned a cor-
responding rank.

As mentioned earlier, an important property of the non-
dominant subsets generated by this multiple comparison process
is that their sizes (i.e., the number of CDFs each subset contains) are
influenced by the amount of uncertainty in the underlying data.
This is perhaps best demonstrated graphically. When the under-
lying data have little or no uncertainty, the slopes of the CDFs in the
full set are steep (Fig. 1b), and dominance relationships may hold
for CDFs with minute differences between their estimated values.
Increasing the amount of variation in the data typically makes the
CDFs shallower in slope and increases the chance that CDFs with
similar estimated values will cross each other and subsequently
form a non-dominant subset (Fig. 1b,c). As the size of the non-
dominant subsets increases, there are fewer candidate subsets to
which an observation can be assigned, so each subset typically
contains more observations (i.e., more CDFs) than it would were the
underlying data more certain. Furthermore, because no preference
order relationships can be established within a non-dominant
subset, all observations in each subset must be assigned the same
risk rank value. In short, using less precise data leads to fewer and
larger non-dominant subsets, which subsequently provide coarser
risk gradations and fewer distinct risk classes (Fig. 1). These coarser
gradations have important implications for decision-making
because they make it difficult to distinguish just a small (i.e.,
restricted) number of observations with the highest (or lowest)
risk. Consequently, when determining their management priorities
based on the risk, decision-makers must devote enough resources
to address all of the comparatively larger groups of observations
ranked as high risk under the FSD rule.

2.2. Ordering the non-dominant subsets with a hypervolume metric

Stochastic dominance relationships can only provide a partial
rank ordering of the non-dominant subsets in a full set. Ideally,
each subset would be characterized with a continuous measure
that defines its absolute position in the same dimension space. Such
a continuous metric would enable comparison of different risk
rankings within the same frame of reference.

One approach to comparing non-dominant subsets is to use
performance indicators (Knowles and Corne, 2002). Essentially, this
means comparing any two non-dominant subsets in terms of their
indicator values. The indicator must be able to show quantitative
differences between the subsets and also accommodate a diversity
of subset configurations. We propose using a hypervolume indi-
cator (HV), also called the S-metric (Fleischer, 2003) or Lebesgue
measure (Laumanns et al., 2000). The hypervolume metric has seen
increasing use in multi-objective optimization to assess the posi-
tions of convex Pareto-optimal sets (Brockhoff et al., 2008; Fonseca
et al, 2006) (Fig. 2). Formally, the hypervolume of a non-dominant
subset A,A = N, is defined as the hypervolume of the k-dimensional
space that is dominated by subset A and is bounded by a reference
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Fig. 2. Geometric illustration of the hypervolume concept: a) an example non-dominant subset of four cumulative distribution functions (CDFs) sampled at three discrete intervals,
X1, X2 and x3: CDF1 (0.25, 0.375, 0.875), CDF2 (0.375, 0.5, 0.625), CDF3 (0.45, 0.45, 0.55) and CDF4 (0.125, 0.25, 1); b) depicting the set of CDFs 1—4 as a point cloud in dimensions of
CDF sampling intervals x; - x3. The hypervolume of the set (i.e., subset) of CDFs 1—4 is a volume under the convex frontier of points 1—4 and a chosen reference point (0,0,0).
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where A(S) is the Lebesgue measure of a subset A and [fi(a),
r1] x [fa(a), r2] x --- x [fi(a), ri] is the k-dimensional hypercuboid
consisting of all points that are dominated by any point a in subset
A but not dominated by the reference point r (Brockhoff et al.,
2008). Due to its unique properties (Zitzler et al., 2003), a subset
with a larger hypervolume presents a better trade-off between the
dimensions in which the hypervolume was measured than subsets
with smaller hypervolumes.

The HV indicator has several favorable mathematical properties,
including that it complies with Pareto optimality (Back et al., 1997;
Beume et al., 2007; Zitzler et al., 2003; Zitzler and Thiele, 1998). The
Pareto optimality concept describes a vector of multiple criteria for
which performance with respect to one risk criterion cannot be
improved without sacrificing performance with respect to at least
one other criterion (Pareto, 1971). The Pareto-optimal set repre-
sents the trade-off between the criteria and is defined with respect
to the concept of non-dominance between points in criteria space
(Back et al., 1997; Zitzler et al., 2003). HV is also known to be
monotonic with respect to Pareto dominance, thereby guaranteeing
that the Pareto-optimal set achieves the maximum hypervolume
possible (Zitzler et al., 2003). This property is beneficial in our case,
where a decision-maker needs to compare multiple non-dominant
subsets. The hypervolume also tends to prioritize convex sets
(Zitzler and Thiele, 1999) and is maximized when the set contains
all Pareto-optimal points (Fleischer, 2003) (Fig. 3a). Among
different non-dominant subsets, HV tends to better represent
boundary conditions in the Pareto-optimal set (Deb et al., 2005). A
single-point set with the hypervolume equal to a Pareto-optimal
set would have higher linear measurements in the dimensions 1,
2, ..., k than the points in a Pareto set (Fig. 3b).

To implement the HV indicator, we characterize each non-
dominant subset that has been delineated with the FSD rule by
sampling the CDFs it contains at k discrete intervals. Thus, we
represent each CDF, a member of a non-dominant subset, as a point
in a k-dimensional space, where each dimension represents the kth
sampling interval of the CDFs and the point's coordinate in the kth
dimension is the CDF value at kth sampling interval (Fig. 2).
Geometrically, a non-dominant subset of CDFs forms a k-dimen-
sional point cloud in the dimensions of these sampling intervals.
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Fig. 3. Geometric two-dimensional illustration of basic hypervolume properties: a) a
non-dominant subset with more Pareto-optimal points has larger hypervolume than a
subset with fewer Pareto optimal points; b) A single-point subset with a hypervolume
equal to a Pareto-optimal subset has higher linear measurements in the hypervolume
dimensions than any point in the Pareto-optimal subset.
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For each subset, we define a hypervolume that is bounded by the
outermost convex frontier of that point cloud (Fig. 2b). For multiple
non-dominant subsets, this results in a collection of hypervolumes
that define and quantify the regions occupied by the non-dominant
subsets in a continuous space.

When CDFs are sampled at a large number of discrete intervals,
the hypervolume must be calculated for a high-dimensional case.
This task is computationally demanding, which is one of the main
reasons HV has seen limited application before now (Emmerich
et al., 2005; Huband et al., 2003; Knowles et al., 2006). Recently,
several fast HV algorithms have been proposed (Bradstreet et al.,
2008, 2010; Bringmann and Friedrich, 2010; Fonseca et al., 2006;
While et al., 2006; Zitzler, 2001). For this study, we used the
exact HV algorithm from While et al., (2005).

2.3. Case study: assessing risks of human-mediated invasion of
Asian longhorned beetle, a high-threat alien pest in Greater Toronto,
Canada

We illustrate the hypervolume approach with a case study that
assesses risk of potential invasion of Asian longhorned beetle (ALB,
Anoplophora glabripennis (Motschulsky) (Coleoptera: Ceram-
bycidae)) beyond the boundaries of a quarantined area. ALB has
been introduced to the eastern U.S. and Canada and could poten-
tially have a catastrophic impact on several genera of hardwood
trees across North America, particularly in urban forest environ-
ments (Nowak et al., 2001). It was initially discovered in 1996 in
New York (NY) (Haack et al., 1996, 1997), and subsequently has been
found in Chicago (IL), Clermont County (OH), Jersey City (N]), Car-
teret (N]), and Worcester (MA) (APHIS, 2013; Haack et al., 2010;
Meng et al., 2015; Poland et al., 1998; Shatz et al., 2013; Trotter
and Hull-Sanders, 2015). In Canada, the first infestation was
discovered in 2003 in the Greater Toronto Area (GTA, ON) (Hopkin
et al., 2004; Turgeon et al, 2010). All of these introductions
involved specimens that had originated in China (APHIS, 2005;
Carter et al., 2009). Since 2001, the species has also been found in
Europe (EPPO, 2008; Maspero et al., 2007; Straw et al., 2015; van
der Gaag and Loomans, 2014). In invaded landscapes, maple (Acer
spp.) is the preferred host of ALB, but the beetle also attacks and
completes its development in birch (Betula spp.), poplar (Populus
spp.), elm (Ulmus spp.), willow (Salix spp.) and another half dozen
tree genera (CFIA, 2014; Faccoli and Favaro, 2016; Haack et al., 2010;
Hu et al., 2009; Lingafelter and Hoebeke, 2002; Meng et al., 2015;
van der Gaag and Loomans, 2014; Wang et al., 2005; Williams
et al,, 2004), making it one of the world's most threatening and
undesirable invasive forest pests (Haack et al., 2010; Nowak et al.,
2001). Eastern North America seems to be particularly vulnerable
because of the ubiquity of maple and suitable climatic conditions
(Peterson and Scachetti-Pereira, 2004). If the further spread of ALB
in North America is not contained, its impact could extend to many
commercial sectors that use the aforementioned tree genera
(Haack et al., 2010; Hu et al., 2009).

Some early detection techniques have been developed for ALB
(Nehme et al., 2014; Smith and Wu, 2008), but visual inspection of
trees for signs of attack remains the only practical method (Turgeon
et al., 2007, 2010). An initial 152 km? regulated area in the GTA was
declared free of A. glabripennis in April 2013 by the Canadian Food
Inspection Agency (the agency in charge of the eradication pro-
gram) after five years of negative survey results (CFIA, 2013). A few
months later, another breeding population, suspected of being a
satellite infestation of the population discovered in 2003, was
discovered outside that regulated area (Turgeon et al., 2015). The
regulated quarantine area of this residual infestation is approxi-
mately 46 km? (Fig. 4). Treatment of this infestation consisted of
removing all high-risk suitable host trees (infested or not) within

i volume,

2/ AADT,10%-yr.%:

| = <14k-yrt
14k- 20k
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0 5 10km
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Fig. 4. Case study area (Greater Toronto, ON, Canada): local street traffic (a proxy of
human-mediated spread of invasive species), average adjusted daily traffic counts
(AADT, 10° yr. ).

800 m of any tree found to be infested. The potential for extensive
further damage, high eradication costs and the need to maintain
market access, necessitate the assessment of the risk that ALB
might have spread beyond this quarantine area.

ALB is known to have slow natural spread rates (Smith et al.,
2001, 2004): 80% of a population is expected to spread 300 m or
less by its own biological means (Favaro et al., 2015; Straw et al.,
2016). However, most recent ALB introductions have been caused
by humans (Carter et al., 2009). Growing anecdotal evidence sug-
gests that the pest may hitchhike on slow-moving vehicles (Trotter
and Hull-Sanders, 2015; Turgeon, pers. obs.), similar to the docu-
mented spread of another invasive forest insect, the emerald ash
borer (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), in
urban settings (Buck and Marshall, 2008). In most cities and towns,
including the GTA, local road traffic (involving both passenger and
commercial vehicles) accounts for a large portion of the area-wide
movement of people and goods. Consequently, road traffic has been
recognized as a reasonable proxy for a variety of local economic
activities (SACTRA, 1999). This suggests that local vehicle traffic
could be a potential vector for ALB spread via an urban street
network. To assess risk of ALB spread in the GTA, we used local road
traffic data from the TrafficMetrix dataset, which describes traffic
flow patterns in Canada and the U.S. (Tetrad Inc, 2014). We inter-
polated these volumes to the networks' linear street segments such
that each individual segment was assigned a traffic volume based
on nearby points in the dataset (see Cook and Downing, 2013). The
ESRI StreetMap dataset (ESRI, 2014) served as the geospatial
foundation for the linear features comprising the Canadian and U.S.
networks (Cook and Downing, 2013), which we combined into a
single network.

We used volumes of local road traffic as a measure of activities
that could cause human-mediated ALB spread (see description in
Appendix S1). The GTA street network was divided into 400 x 400-
m blocks, each representing a potential survey site, and then we
used the local traffic volume data to estimate a matrix of proba-
bilities of ALB spread from block to block via the network. Our
choice of spatial resolution was dictated by the current ALB
response protocol in the GTA, which mandates immediate
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eradication and host tree removal within at least a 400-m distance
of any infested location, depending on the number of infested trees
(B. Gasman, CFIA, pers. comm.). An ALB population can survive on a
few host trees (Turgeon et al., 2015), so the local host density was
not used to adjust the establishment rate value (Appendix S1).

2.4. Model calibration and sensitivity analysis

The model of ALB invasion was used to calculate pj s, the
likelihood that ALB will spread to and become established in a
destination location j, with subsequent impact on the host trees
present in j. Importantly, the arrival rates (i.e., the ¢; values)
generated by the model (see Egs. S1-S3 in Appendix S1) were
relative values that required calibration. We calibrated the model so
that it generated successful infestations at a rate that agreed with
historical rates of ALB infestation in the GTA. Historically, ALB has
established an average of 12 new satellite infestations over the
survey period (Turgeon, unpubl. data). For the calibration, we first
simulated the likelihoods of ALB spread and subsequent estab-
lishment, p; o Next, we created new infestations via uniform
random draws against the p; ¢ values. We then compared the
number of created infestations to the historical rate and calibrated
the Avalue in Eq. S(1) (Appendix S1) to match the model-based rate
of roughly 12 new infestations per year throughout the GTA.

To characterize the uncertainty of ALB spread and establish-
ment, we estimated spatial patterns of p; esr values for 5000 sto-
chastic scenarios. Thus, each 400 x 400-m block j was
characterized by a distribution of 5000 plausible pj ¢s; values, which
served as our basis for illustrating the hypervolume approach.

Spatial assessments of risk often rely on interpolated data, so
interpolation represents another potential source of uncertainty.
We explored the response of the HV metric to errors introduced by
interpolation. For each of 5000 realizations of ALB spread and
establishment, we modified the p; sy values at individual spatial
locations by adding symmetric uniform random variation within a
fixed proportion of the actual p; value, i.e.:

DPj int = Dj est(1 = uniform[0;1]*a:) (4)

where o is a scaling coefficient that denotes this proportion.
Essentially, the transformation in Eq. (4) preserves the mean p;
values and does not change the relative positions of the CDFs, but
smooths local imperfections in the CDF shapes.

We also evaluated the response of the HV values when adding
uncorrelated uniform random noise to the data. We altered the p;
values in each of model realizations by adding symmetric uniform
random deviation error, i.e.:

Pj alt = Pj est + uniform[0;1]*B (5)

where £ is a scaling coefficient. We then compared the HV values of
the altered scenarios with the estimates calculated with the non-
altered pj values.

3. Results

We first depict the geographical patterns of spread and the HV
(i.e., continuous) and ranked (i.e., ordinal) risk measures based on
delineation of non-dominant subsets. To make the two measures
comparable, we rescaled the ranked risk values as 1 — rank/max
[rank], so that the ranks denoting the highest risk of ALB spread and
establishment are 1 and the lowest-risk rank values are 0. We also
calculated the kth root of the HV measure, HV'/¥, which similarly
varies within a 0—1 range and is therefore more compatible with
the rescaled rank values than the original HV measure. The map of

mean pj es; values, which can be interpreted as a basic risk map,
depicts semi-concentric patterns of spread probabilities that
decline with distance from the quarantine zone (Fig. 5a). The map
suggests that risk of infestation is high (pj est > 0.005) only at sites
proximal to the quarantine zone. As expected, the pj est values
appeared to be uncertain over the 5000 scenarios (Fig. 5b). The map
of the standard deviations follows the same general pattern as the
mean pj st map, however many sites adjacent to the quarantine
zone exhibit comparable variation in the pj es; values to sites further
away from the zone (Fig. 5b). This occurs because arrivals of ALB at
sites adjacent to the quarantine zone are more certain than arrivals
at more remote sites, which decreases their standard deviation
estimates.

The map of HV values (Fig. 6a) shows considerably more area
under high and medium risk than the map of mean p; e values. In
fact, regions of medium risk with HV values between 0.6 and 0.8
occupy roughly the same area as occupied by low-risk regions
(0.0001 < pj est < 0.001) in the map of pj es; values. The HV method
tends to assign higher risk to sites with more uncertain estimates.

The rescaled rank and HV measures show similar geographical
patterns of risk, although the HV'/¥ map shows fewer high-risk
locations (Fig. 6a,b). The similarities in the rescaled rank values
and HV'¥ values indicate that these metrics are correlated (see
Fig. 7a). We likewise found a consistent relationship between the
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~std. dev. (P est):

" []<0.0001
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[ 0.0005-0.001
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0 5 10km Il 0.005-0.01

Fig. 5. Geographical pattern of the likelihood of ALB spread and establishment in the
study area: a) map of the mean likelihood of spread and establishment, pj es: (an
average of 5000 model realizations); b) map of the standard deviation of the p; est
values.



194 D. Yemshanov et al. / Journal of Environmental Management 193 (2017) 188—200

T i [ ]<0.4 (lowest-risk)
s~ [o4-06

" B 0.6-038

Il 0.8 — 1 (highest-risk)

0 5 10 km
[ S

[ " Rescaled

N ¢ " order rank*™*:

T {': G / [ ]<0.4 (lowest-risk)

s . [Jo4-06

) B 0.6-0.8

Il 0.8 - 1 (highest-risk)

0 5 10km
[ S S

Fig. 6. Geographical patterns of the hypervolume metric and the rescaled risk ranks: a)
HV'¥ values; b) rescaled risk ranks. In both cases, values close to 1 denote locations
with the highest risk of ALB spread and subsequent establishment.

HV and pj est values (Fig. 7b). Although the rescaled ranks and HV'/
values are positively correlated (Fig. 7a), high-risk ranks appear to
have comparatively lower HV/¥ estimates, and this trend reverses
with low-risk ranks (except in the case of very low values, as noted
below). This is expected: In the rank order set, subsequent rank
values denote nested non-dominant subsets, but the increment
between adjacent subsets is always the same. Alternatively, the HV
measure quantifies the region occupied by each subset in di-
mensions of the CDF sampling intervals, and thus takes into
consideration the magnitude of differences between the non-
dominant subsets. For example, many locations with very low
risk values, p; < 0.0001, were identified as distinct ordinal ranks,
however when differences between the CDFs were taken into ac-
count they were assigned near-zero HV values (Fig. 7a, callout I).
We also explored the sensitivity of the hypervolume measure to
the number of CDF sampling intervals and compared the HV'/¥
estimates for the non-dominant subsets of CDFs sampled at 10, 30
and 60 intervals (Fig. 7). When the number of CDF sampling in-
tervals is small, the differences between the HV and rank values
increase rapidly (Fig. 7a). In the case of a scenario with few CDF
sampling intervals (e.g., k = 10), the resolution of the underlying
data is coarse, so the shapes of the CDFs are also coarse, thereby
limiting the number of distinct HV values and corresponding risk
gradations. This aspect was evident in our scenario with ten CDF
intervals, which identified fewer distinct HV values for high-risk
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Fig. 7. Relationships between the hypervolume metric, rescaled risk rank and mean p;
est Values: a) hypervolume versus risk rank. A 45-degree line denotes the equivalence
between the rescaled rank and the HV measures. Callout I shows a close-up of the
lowest-risk estimates with near-zero probabilities of spread; b) hypervolume as a
function of the mean p; .5 values. Points represent distinct geographical locations.
Callout II shows a close-up of the highest-risk locations. The conditions when many
distinct p; values have fewer distinct HV gradations appear as steps in the graph.

locations than the scenarios with 30 and 60 intervals (Fig. 7b, cal-
lout II). Coarser HV gradations appear as steps in Fig. 7b: Many
elements have different mean pj es; values but the same HV values.
This indicates that ten CDF sampling intervals do not provide
enough information to establish preference order relationships
between elements with only small differences in their pj es¢ values.

In general, errors (i.e., uncertainty) associated with interpolated
data appear to have a relatively modest impact on HV values.
Table 1 shows the number of non-dominant subsets that were
delineated when we simulated spatial errors that are typical of
interpolated data (see Eq. (4)). Higher levels of added symmetric
noise in the data provided more chances for the CDFs to cross each
other, which led to the delineation of fewer non-dominant subsets
than with unaltered p; est values (Table 1a,b). Nevertheless, while
the number of non-dominant subsets changed, this particular
transformation did not change the relative positions of CDFs along
the gradient of high-to-low risk. Rather, the HV estimates based on
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Table 1
Impact of the CDF sampling rate, interpolation and uniform random noise on the
number of delineated non-dominant subsets in the data.

Scenario Number of CDF sampling intervals®

10 30 60
a) Unaltered pj e values

1577 382 319
b) Interpolated data
o’ =01 1516 361 288
a=05 746 304 245
c) Data with added uniform random noise
6°=0.01 1291 313 234
6 =0.05 903 253 184

¢ Sampling from a distribution of 5000 p; es; values at intervals roughly corre-
sponding to 10, 30 or 60 percentile points.

b See Eq. (4) for data transformation description.

€ See Eq. (5) for data transformation description.

the interpolated data (« = 0.1, « = 0.5) were very close to the HV
values in the unaltered scenario (Fig. 8a). This behavior was
anticipated because the uniform variation added to the p; values
was symmetric and linearly proportional to the original p; values.

The HV estimates reacted differently to the addition of non-

195

correlated uniform random noise to the data (Fig. 8b). In this
case, the symmetric uniform variation that was added to the p;
values did not depend on the p; value, and as expected, the most
noticeable impact was associated with p; st values below the
maximum noise level (#). While rank order relationships could still
be established among the altered values, p; air that fell below this
noise level, information about the lowest risk values was masked by
the noise. This was demonstrated by the HV metric (Fig. 8b), which
leveled off in the altered scenarios (8 = 0.01, § = 0.05) at some
positive value corresponding to the average amount of added
uniform noise in the data. By comparison, when the p;j st values
were unaltered, the lowest-risk HV values were close to zero.
Because the amounts of added random variation were very small,
the HV values for high-risk sites were unaffected. However, in both
altered scenarios the added uniform variation reduced the number
of non-dominant subsets that could be delineated from the data
(Table 1).

4. Discussion

Many risk analysts consider the use of probabilities in risk
assessments to be an appropriate way to quantify uncertainties
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Fig. 8. Impact of data transformations on the hypervolume measures: a) impact of data interpolation. The x-axis shows the HV values in the unaltered scenario and the y-axis shows
the HV values in the scenarios (¢ = 0.1, « = 0.5) based on interpolated data; see Eq. (4) for data transformation algorithm; b) Impact of added uniform random error. The x-axis
shows the HV values in the unaltered scenario and the y-axis shows the HV values in the scenarios (§ = 0.01, § = 0.05) with added random noise; see Eq. (5) for data transformation

algorithm.
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about unknown undesirable events (Aven, 2010). However,
probabilities — in the objective, frequentist sense — do not pro-
vide an adequate characterization of epistemic uncertainties (i.e.,
uncertainties that arise from a lack of knowledge about the
phenomena of interest, rather than intrinsic variability), for
which it is impossible to determine an underlying probability
distribution (Paté-Cornell, 1996). It is thus no surprise that risk
assessments based on incomplete or ambiguous information (i.e.,
that have high levels of epistemic uncertainty) are often viewed
skeptically by decision-makers tasked with using these assess-
ments to implement risk mitigation measures (Brugnach et al.,
2007; Walker et al., 2003; White et al., 2015). It should also be
no surprise that the results of quantitative risk assessments are
seldom accepted as the sole basis for making risk mitigation
decisions (Apostolakis, 2004; Aven and Zio, 2014; Goerlandt
et al, 2015). Aven (2010) argued that epistemic uncertainties
can be communicated effectively to decision-makers using sub-
jective probabilities, which provide expert-qualified judgments
about unknown quantities (e.g., what is your degree of belief that
a model parameter exceeds value x?). Regardless, if the un-
certainties are characterized separately from the primary mea-
sure of risk, there is some danger that they will not be
incorporated into the decision-making process, which could lead
to erroneous choices (Yemshanov et al., 2015). The ability to
incorporate uncertainties, including epistemic uncertainties,
directly into output risk values is one of the primary advantages
of an SD approach (Canessa et al., 2016; Yemshanov et al., 2012).
Indeed, the SD concept originally came to prominence in eco-
nomics and finance as a robust way to order risky investment
choices that, despite being uncertain for some value of interest
(e.g., the expected return on investment), could still be compared
in terms of their ranges of possible values (Levy, 1992, 1998). In
particular, the FSD metric is consistent with distortion risk
measures used in financial management, such as the Value-at-
Risk (Jorion, 1997), which considers the CDF of returns on an
investment portfolio (De Giorgi, 2002).

A consideration of the entire distribution is also beneficial when
all sources of uncertainty in the underlying data (such as Type I/II
errors) cannot be identified. While various other statistical tests,
such as Kolmogorov-Smirnov's (Peacock, 1983; Smirnov, 1948),
Kuiper's (Kuiper, 1962) or earth mover's distance (Cohen and
Guibas, 1997; Rubner et al., 2000), can be used for pairwise com-
parisons of CDFs, they do not always preserve the preference order
relationships among distributions. By contrast, the FSD condition of
F(x) over G(x) ensures that any realization of x in F would be
preferred to G, i.e., if F dominates G by FSD, any rational decision-
maker would prefer F to G.

Other common risk measures that factor in uncertainty are
based on distribution moments, such as the certainty equivalent
(Gerber and Pafumi, 1998), which is a weighted average of mean
and variance, or more simply, depicting risk in dimensions of the
mean and its variance (Markowitz, 1952). However, both ap-
proaches require the distribution to conform to a known func-
tional type. Because the non-dominance conditions in our HV
approach (and the underlying FSD approach) are estimated with
respect to all variation in the distribution (i.e., the entire CDF),
they do not depend on the distribution's functional type (Fishburn
and Vickson, 1978) and do not rely on the distribution moments,
so the methods can be used with poor data. This has another
interesting practical benefit over measures based on distribution
moments: the delineations of risk become coarser when the un-
derlying information is poor. Poor data quality limits the ability to
differentiate CDFs and lead to coarse delineation of risk priorities.
Coarser gradations of risk provide decision-makers with fewer
prioritization choices. This creates a feedback between the quality

of the data and a decision-maker's ability to differentiate fine
gradations of risk. When the number of estimated risk levels is too
few to make sensible allocation of resources, indicating an
inability to distinguish between these elements sufficiently, this
may suggest deferring a decision action until a more confident
assessment of risk is possible.

In spite of their advantages, a key limitation of SD approaches is
that they can only generate ordinal risk ranks (Yemshanov et al.,
2012). Ordinal measures of risk offer limited decision-making
utility because they can only prioritize a sequence of decision-
making actions but do not indicate how much riskier one action
may be than another. Our hypervolume measure helps address this
issue by establishing quantitative gradations of risk. By giving
decision-makers more descriptive (i.e., quantitative rather than
ordinal) information on risk — even if the net result is a smaller set
of prioritization choices — our HV approach lends more rigour to
assessments of risk in time-critical situations than estimates based
on ordered ranks.

The hypervolume approach can be adapted to a broad range of
environmental applications; for instance, it could be used to assess
and map risks of pest and disease outbreaks, fires, floods, pollution
scenarios and other hazardous events. The HV metric can be used in
monitoring routines where a decision-maker needs to prioritize
uncertain estimates based on sampled uncertain data. Consider a
collection of monitoring plots where each plot is sampled at a
number of measurement points. Each plot is essentially repre-
sented by a distribution of imprecise measurements, with the error
structure of the sampling effort unknown. These distributions can
be ordered with the HV method.

The HV measure can also be applied as a priority measure to
guide invasive species control and eradication efforts in the same
manner as other common risk measures, such as probabilities of
species spread. For instance, risk priority measures are sometimes
used as input parameters for optimization-based models that
allocate resources for detection and management (see Sims and
Finnof, 2013). Our HV measure can serve as an input parameter
for optimization, and since it is based on FSD comparisons, has the
added advantage of preserving preference order relationships
between levels of risk (i.e., between non-dominant subsets of the
full set of risk values) (Levy, 1998). Notably, measures based on
averaging do not always preserve these preference order re-
lationships, and may not guarantee that a rational decision-maker
will, as expected, prioritize a subset with a higher mean risk value
over one with a lower mean risk value. In some cases, a risk-averse
decision maker may opt for an alternative characterization of risk
that does not involve ordering subsets by non-dominance, but
instead uses the worst-case combination of risks in a subset. It is
possible to calculate the hypervolume measure for a worst-case
scenario. In this case, one would need to construct a CDF that
delineates an upper bound of a non-dominant subset, which
represents the worst combination of risks for all elements of the
subset (Fig. 9a). In turn, hypervolume measures can be calculated
for this and all of the other upper bound CDFs. The hypervolume
of an upper bound CDF is expected to be higher than the hyper-
volume of an entire non-dominant subset, however the difference
may depend on the structure of the subset and the number of
elements in the subset. For example, in our case study, differences
between the upper bound and entire-subset-based HV estimates
appear to be relatively minor (Fig. 9b) because the number of el-
ements in the non-dominant subsets typically was small. For other
data types, the upper bound HV values may show more distinct
patterns. These estimates can provide practical insights when a
decision-maker is risk-averse and therefore perceives risk as a
worst-case scenario.
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4.1. Practical use of the hypervolume metric to prioritize
environmental risks

Previous use of the HV metric has been mostly confined to work
in the area of multi-objective optimization for computation and
engineering design (Wu and Azarm, 2001; Zitzler et al., 2003), and
is relatively new in ecological and environmental risk assessment.
The HV metric is built upon previous stochastic ordering tech-
niques, but also improves upon them as a continuous measure
estimated in the dimensions of the CDF sampling intervals.
Significantly, the HV metric can be used in conjunction with not
only SD, but any risk ordering technique that estimates multi-
criteria frontiers or Pareto-optimal subsets (Yemshanov et al.,
2013).

In practical terms, uncertainty in the underlying data influences
the associated HV metric in two distinct ways. As described earlier,
coarser information (regarding model formulation, parameters,
etc.) leads to delineation of fewer non-dominant subsets and
coarser gradations of risk. Secondly, larger non-dominant subsets
with more elements typically have larger hypervolumes than
smaller subsets or single elements with the same expected values.
This is a result of a unique property of the HV metric: the

hypervolume of a convex non-dominant subset is always bigger
than the volume of any single element in the subset (Fig. 3a).
Hypervolumes can be calculated for subsets with any number of
elements, which enables comparison of different risk assessment
scenarios (as long as the same CDF sampling intervals are used).

The method has simple data requirements: a vector of S sce-
narios, where each scenario is represented by N uncertain risk es-
timates. For FSD and HV calculations, the number of sampling
points N should be sufficient to represent the shape of CDFs. The
maximum data size is limited by the computational complexity of
the pairwise CDF comparisons and HV calculations. Current ca-
pacity on the order of N~10°-10° is sufficient for many environ-
mental applications but could be increased further by parallelizing
the pairwise FSD calculations.

Sometimes, the lack of data in risk assessment models is
compensated by interpolation techniques. Interpolation smooths
the data but may distort the shape of the CDFs and influence the
delineation of the non-dominant subsets. Ideally, the HV calcula-
tions should use the data in their real shape without interpolation.

The choice of the underlying risk metric is highly important
because it may change the interpretation of the uncertainty and
subsequently the delineations made with the HV metric. Moreover,
if the risk metric takes into account costs or is represented in a
monetary equivalent, then the HV metric could be used effectively
to prioritize cost-effective management actions in geographical
environments. The method is also sensitive to the number and
spacing of the CDF sampling intervals. A larger number of CDF
sampling intervals could provide more opportunities for CDFs to
cross each other, creating fewer non-dominant subsets. For
example, the CDF estimates based on 10 sampling intervals in our
study had 4.9 times more non-dominant subsets than the estimates
based on 60 sampling intervals (Table 1a). Using percentile points
to sample CDFs is a good general strategy, but other factors, such as
which percentile points are most important for decision-making,
should be considered.

The dominance conditions can also be affected by sampling er-
rors in the left tail of distributions. The importance of proper
sampling of the left tail of distributions was illustrated in the
sensitivity scenario where a uniform random error was added to
the pj values (Eq. (5)). As seen in Fig. 8b, the added noise essentially
masked out distinguishing knowledge about the lowest p;j e values,
so that the hypervolume estimates stayed much larger than zero for
even the lowest-risk estimates. Potentially, these errors could be
reduced by truncation of the distributions (Levy, 1992) or via
bootstrapping (Davidson and Duclos, 2006).

4.2. Potential use for the assessments based on model ensemble
predictions

The hypervolume approach addresses a common problem of
ensemble model predictions. When a distribution of estimates is
generated by models with qualitatively distinct properties, simply
averaging these estimates is inappropriate (Demeritt et al., 2007;
Makridakis and Winkler, 1983). A good example of this situation
is the assessment of impacts of a changing climate, where a set of
future projections is generated with different families of General
Circulation Models (GCMs). Currently, the Intergovernmental Panel
on Climate Change (IPCC, 2014) reports projections for about a
dozen future scenarios based on different GCMs and greenhouse
gas emissions scenarios (IPCC, 2010a). Much research is being done
on estimating future environmental risks under these various
scenarios (Oppenheimer et al., 2014), but the main findings are
often presented only in terms of selected scenarios (IPCC, 2010b).

A number of multi-model ensemble methods have been pro-
posed to summarize findings across climate change scenarios
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(Aragjo and New, 2006). Such methods have shortcomings that
have made them subject to criticism (see Collins, 2007; Tebaldi and
Knutti, 2007). Our HV approach can be used to prioritize risk from
model ensemble forecasts by estimating the HV measures based on
the entire set of scenarios comprising the ensemble. Because the
prioritization is done via pairwise FSD tests, there is no need to
define the expected mean values over the ensemble set, especially
since the FSD calculations integrate all variation between the sce-
narios in the set. This will be an area of our future work.

5. Conclusions

The proposed hypervolume approach addresses the difficult
problem of prioritizing uncertain environmental and ecological
risks in a geographical space (or “risk mapping”, see Venette et al.,
2010). Overall, the methodology offers a strategy for dealing with
the typical problem of combining uncertain assessments of pest
invasion risk into a one-dimensional risk estimate and generating
risk priorities based on imprecise data. Because the uncertainty is
incorporated directly into the risk measure via pairwise stochastic
dominance tests, the approach helps address the preference of
many decision-makers for a single risk-priority metric that they can
use to allocate response measures. The HV metric is a continuous
measure and thus can be used to compare assessments made with
different datasets and assumptions.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jenvman.2017.02.021.
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