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Abstract

1. Streamflow is essential for maintaining healthy aquatic ecosystems and for sup-

porting human water supply needs. Changes in climate, land use and water use

practices may alter water availability. Understanding the potential effect of these

changes on aquatic ecosystems is critical for long-term water management to

maintain a balance between water for human consumption and ecosystem

needs.

2. Fish species data and streamflow estimates from a rainfall-runoff and flow rout-

ing model were used to develop boosted regression tree models to predict the

relationship between streamflow and fish species richness (FSR) under plausible

scenarios of (1) water withdrawal, (2) climate change and (3) increases in impervi-

ous surfaces in the Piedmont ecoregion of North Carolina, U.S.A. Maximum

monthly flow, the fraction of total flow originating from impervious surface run-

off, coefficient of monthly streamflow variability, and the specific river basin

accounted for 50% of the variability in FSR. This model was used to predict FSR

values for all twelve-digit Hydrological Unit Code catchments (HUC-12s) in the

North Carolina Piedmont under current flow conditions and under water with-

drawal, climate change and impervious surface scenarios.

3. Flow–ecology modeling results indicate that predicted FSR declined significantly

with increased water withdrawals. However, the magnitude of decline varied

geographically. A “hot-spot” analysis was conducted based on predicted changes

in FSR under each scenario to understand which HUC-12s were most likely to

be affected by changes in water withdrawals, climate and impervious surfaces.

Under the 20% withdrawal increase scenario, 413 of 886 (47%) HUC-12s in the

study area were predicted to lose one or more species. HUC-12s in the Broad,

Catawba, Yadkin and Cape Fear river basins were most susceptible to species

loss.

4. These findings may help decision making efforts by identifying catchments most

vulnerable to changing water availability. Additionally, FSR-discharge modeling

results can assist resource agencies, water managers and stakeholders in assess-

ing the effect of water withdrawals in catchments to better support the protec-

tion and long-term conservation of species.
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1 | INTRODUCTION

Environmental water studies over the last two decades have empha-

sised the inherent linkage and in some cases, the tension, between

maintaining water for human use as well as for ecosystem needs

(Acreman et al., 2008; Kendy, Apse, & Blann, 2012; Poff et al.,

2010; Shenton, Bond, Yen, & Mac Nally, 2012). Substantial emphasis

has been placed on the broad discharge patterns that influence the

structural, functional and life-history strategies of biotic communities

(Bunn & Arthington, 2002; Mims & Olden, 2012; Naiman, Latterell,

Pettit, & Olden, 2008). More recently, there has been an emphasis

on developing hydrological indices for characterising the flow regime

(Henriksen, Heasley, Kennen, & Nieswand, 2006; Monk, Wood, Han-

nah, & Wilson, 2007; Worrall et al., 2014), systematically arranging

streams and rivers into specific stream classes with respect to flow

regime characteristics (Archfield et al., 2013; Kennard et al., 2010;

Kennen, Henriksen, Heasley, Cade, & Terrell, 2009; Kennen, Henrik-

sen, & Nieswand, 2007; McManamay, Orth, Dolloff, & Frimpong,

2012; Olden & Poff, 2003), and building flow–ecology response

models that link changes in streamflow and water availability to

changes in assemblage structure and function (e.g. Arthington, Ber-

nardo, & Ilh�eu, 2014; Chessman, Jones, Searle, Growns, & Pearson,

2010; Freeman et al., 2013; Kennen, Riskin, & Charles, 2014; Ken-

nen, Riva-Murray, & Beaulieu, 2010; McManamay, Orth, Dolloff, &

Mathews, 2013; Stewart-Koster, Olden, & Gido, 2014; Turner & Ste-

wardson, 2014). All of these studies emphasise the identification of

the streamflow components needed to help determine ecological

and environmental endpoints and the inherent linkages between

changes in streamflow processes and ecosystem response.

Changes in riparian and watershed scale land-use and associated

alterations in stream habitat and streamflow processes have been

linked to declines in native stream fish populations (Olden, 2016)

and a general downward trend in aquatic biodiversity across the

globe (Dudgeon et al., 2006; V€or€osmarty et al., 2010). While min-

imising impervious surfaces and maximising the conservation of con-

tiguous tracts of forested lands in catchments supports the

preservation of stream fish populations (Kennen, Chang, & Tracy,

2005), alterations in water availability including impoundments,

streamflow regulation and water-resource development, which are

essential to meet the water needs of a growing population, are

strongly linked to changes in native fish diversity, abundance and

resilience (Conroy, Allen, Peterson, Pritchard, & Moore, 2003; Poff &

Zimmerman, 2010; Warren et al., 2000). Confounding the effects of

land-use change and streamflow alteration are projected increases in

drought frequency and duration associated with climate change

(IPCC, 2013; Melillo, Richmond, & Yohe, 2014) which place further

stress on water supplies and fish assemblage structure (Keaton,

Haney, & Andersen, 2005; Matthews & Marsh-Matthews, 2003;

White, Mchugh, & Mcintosh, 2016). Understanding these linkages

and the potential effect of changes in water availability on aquatic

ecosystems is critical for long-term water management in areas fac-

ing significant water stress, especially when the needs of humans

and aquatic ecosystems appear to conflict and sometimes result in

legal confrontations. This is periodically the case in the southeast

United States where water stress is known to occur in conjunction

with drought cycles (e.g. Seager, Tzanova, & Nakamura, 2009). It is

under these conditions that water managers must identify areas of

concern and make informed decisions about water conservation that

affect human and ecological use in these areas. Unfortunately, there

is a lack of decision support tools that identify areas of concern

across broad regions, especially tools with a spatial resolution rele-

vant to management decision making.

The primary objective of this study was to demonstrate the effi-

cacy of using relatively simple, large-scale hydrologic models in con-

junction with ecological data to develop empirical flow–ecology

response models that predict the effect of changes in water avail-

ability on fish species richness (FSR), an easily quantified assemblage

metric. Additionally, we sought to use this modeling approach to

identify catchments or “hot-spots” of FSR change under a plausible

set of future land use, climate and withdrawal change scenarios and

test the hypothesis that FSR in the North Carolina Piedmont, U.S.A.

will decrease with predicted changes in climate, increases in urban

land use (i.e. impervious surfaces) and increases in water

withdrawals.

2 | METHODS

2.1 | Study area

We focused on catchments in the Piedmont ecoregion of North Car-

olina to develop empirical relationships between stream flow and

FSR (Figure 1a). Seven major river basins are partially located within

the Piedmont region. These include the Broad (BRD), Cape Fear

(CPF), Catawba (CTB), Neuse (NEU), Roanoke (ROA), Tar (TAR) and

Yadkin (YAD) river basins (Figure 1). The North Carolina Piedmont

contains or intersects 886 twelve-digit Hydrological Unit Code

catchments (hereafter HUC-12s) identified by the Natural Resources

Conservation Service’s (NRCS) Watershed Boundary Dataset GIS

layer. North Carolina has one of the highest rates of population

growth in the U.S., and is now in the top ten most populous states

(US Census Bureau, 2016). Much of this growth has occurred in the

North Carolina Piedmont, which contains many of the state’s most
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rapidly growing cities (i.e. Charlotte, Durham, Raleigh and Winston-

Salem) (Figure 1a).

The Piedmont region of North Carolina (Figure 1a) has a humid

sub-tropical climate of warm summers and cool moist winters. The

region receives, on average, 107–117 cm/year of precipitation (NC

Climate Office, 2016), and is made up of gently rolling forested hills,

with altitudes ranging from 60 to 470 m. The geology of the Pied-

mont is dominated by metamorphic (gneisses and schist) and igneous

(granite, diorite and gabbro) rocks overlain by “clayey” ultisols (soils

with light upper layers and a reddish sub-soil) that were mainly

formed through physical weathering and alluvial processes. These

soils are rich in aluminium and silicates and contain eroded sedi-

ments mixed with organic material. Natural vegetative cover in this

region consists mainly of mesic mixed hardwoods (e.g. american

beech, tulip poplar, hickory, and red and white oak) though wetlands

occur in some lower altitudes and patches of pine forests are found

in more xeric regions. Population growth and development in the

North Carolina Piedmont have altered the natural landscape and

increased water demand. Surface- and groundwater withdrawals

have reduced baseflow and estimates of water use show that in

2010 the total gross fresh surface water withdrawals across the 54

counties in the region amounted to 11.7 billion m3 year�1 (Maupin

et al., 2014).

2.2 | Modelling approach

For this study, we implemented a multistep modelling approach (Fig-

ure 2). First, FSR was calculated for 385 distinct fish sampling sites

in the NC Piedmont using data collected by the North Carolina Divi-

sion of Water Resources (NCDWR). Average monthly streamflow for

the sites was then predicted using the well-documented Water Sup-

ply Stress Index (WaSSI) model (Caldwell et al., 2015). FSR and

streamflow predictions were used to build a boosted regression tree

(BRT) flow–ecology model which was used to predict the relation-

ship between a subset of ecologically relevant streamflow metrics

and FSR in all HUC-12s in the NC Piedmont. The results of the

#

# #

#

#

# #
76

5

4
32

1

# USGS Gauge

Gauged catchment
Richness

<10

10 – 14

14 – 18

18 – 22

>22
0 50 10025

Kilometers

Broad
Catawba

Yadkin

Cape Fear

Neuse Tar-Pamlico

Roanoke

Counties
Cities
River basins
Study area

Ecoregion
Coastal Plain
Piedmont
Mountain

0 50 100 15025
Kilometers

.

(a)

(b)

.

Fayetteville

Raleigh

Durham
Winston-Salem

High Point
Asheboro

Concord

Charlotte

Greensboro

BROAD

CATAWBA
YADKIN

ROANOKE

NEUSE

CAPE FEAR

TAR-PAMLICO

F IGURE 1 Map of North Carolina,
U.S.A. showing the study area spanning
the Piedmont ecoregion of North Carolina,
as well as parts of the Mountain and
Coastal Plain ecoregions (a), and the range
in fish species richness values for the
boosted regression tree model training
dataset in the NC Piedmont and locations
of seven USGS reference gauges used for
Water Supply Stress Index model
validation (b). Study area extent was
chosen based on best professional
judgement and discussions with North
Carolina Division of Water Resources
personnel (a). Each polygon in (b)
represents the delineated contributing
watershed for each sample site
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model were then used to predict FSR under three plausible scenarios

of future water withdrawals, climate change and increases in imper-

vious surfaces (Figure 2). Finally, a “hot-spot” analysis was used to

identify individual HUC-12s that were most likely to be affected by

changes in water availability.

2.3 | Biological data aggregation

The Biological Assessment Unit (BAU) of the NCDWR began sam-

pling each of the state’s 17 river basins on a 5-year rotation in 1990

(NCDENR, 2006). Streams wadeable from shoreline to shoreline

were sampled by the stream fish community assessment program for

an average distance of 183 m (600 ft.). A four-person team collected

all fish at each site using a modified two-pass depletion technique

with two backpack electrofishing units and two persons netting. All

fish were identified to species, enumerated, inspected for disease

and deformities, and total length was measured before fish were

released back into the stream. Specimens not easily identified in the

field were preserved in 10% formalin and transported to the BAU

laboratory in Raleigh, North Carolina. Between 1990 and 2012, 967

sampling events were performed by BAU at 385 unique sampling

stations in the North Carolina Piedmont region. Where unique sta-

tions were sampled multiple times, measures of FSR were averaged

across all sampling events, resulting in a final sample size of 385 for

developing flow–ecology relationships.

Upstream contributing catchments were delineated for each of

the 385 unique NCDWR sampling stations (Figure 1b). Delineations

were performed using Arc Hydro tools in ArcGIS 10.1 using digital

elevation models procured from the North Carolina Floodplain Map-

ping Program (NC Floodplain Mapping Program, 2013).

2.4 | Streamflow prediction

Streamflow was predicted for all study catchments using the WaSSI

model. WaSSI was developed by the U.S. Forest Service to assess

the effect of climate change, land-use change and population growth

on water supply stress, river flows and aquatic ecosystems across

the contiguous U.S. (Caldwell, Sun, McNulty, Cohen, & Myers, 2012;

Caldwell et al., 2015; Sun et al., 2011). WaSSI has been successfully

used in climate change assessments in the eastern U.S. (Lockaby

et al., 2011; Marion et al., 2013; Sun et al., 2013; Tavernia, Nelson,

Caldwell, & Sun, 2013) and examining the nexus of water and energy

at the national scale (Averyt et al., 2011, 2013). WaSSI is an inte-

grated monthly water balance and flow routing model that simulates

the full hydrologic cycle for each of 10 land cover classes at the

HUC-12 scale. The 10 land cover classes are aggregated from the

17 classes of the 2006 National Land Cover Dataset (NLCD) (Fry

et al., 2011). Infiltration, surface runoff, soil moisture and baseflow

processes for each HUC-12 catchment land cover were computed

using algorithms of the Sacramento Soil Moisture Accounting Model

(SAC-SMA) (Burnash, 1995; Burnash, Ferral, & Mcguire, 1973). State

Soil Geographic (STATSGO) databases (NRCS, 2012) were used to

compute the 11 SAC-SMA soil input parameters (Koren, Smith, &

Duan, 2003). Monthly evapotranspiration (ET) was modelled with an

empirical equation derived from multisite eddy covariance ET mea-

surements (Sun et al., 2011). Required data to estimate ET included

monthly mean Moderate Resolution Imaging Spectroradiometer

(MODIS) MOD15A2 leaf area index (LAI) (Zhao, Heinsch, Nemani, &

Running, 2005), potential ET (PET) calculated as a function of tem-

perature and latitude (Hamon, 1963), and precipitation (PPT). This

estimate of ET was then constrained by the soil water content
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F IGURE 2 Study modelling approach. Biological data were aggregated from North Carolina Division of Water Resources (NCDWR) stream
community assessment data. Streamflow was predicted using the Water Supply Stress Index (WaSSI) model
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computed by the SAC-SMA algorithm during extreme water-limited

conditions. Monthly precipitation and air temperature inputs were

based on Precipitation Elevation Regression on Independent Slopes

Model (PRISM) estimates (PRISM Climate Group, 2013). All water

balance components were computed independently for each land

cover class within each catchment and accumulated to estimate the

totals for the catchment. For the NLCD-based impervious cover frac-

tion, storage and ET were assumed to be negligible, thus all precipi-

tation falling on the impervious portion of a catchment for a given

month was assumed to generate surface runoff in the same month,

and was routed directly to the catchment outlet.

Although the WaSSI model can be calibrated, no calibration of

model input parameters were performed for this study. WaSSI was

developed to include the key ecohydrological processes that affect

the water balance with off-the-shelf input datasets while having an

acceptable level of predictive performance without calibration. In

doing so, the model is not subject to the complexities and uncertain-

ties associated with transferring model parameters from calibrated to

ungauged catchments (Sivapalan et al., 2003) and using the model to

assess the impact of climate or land cover scenarios outside of the

conditions for which the model is calibrated. Despite being uncali-

brated, WaSSI has been found to have similar predictive perfor-

mance at the monthly time-step to other calibrated, process-based

models (Caldwell et al., 2015).

Streamflow was estimated using the monthly WaSSI output from

the years 1991–2010. This output represented the average stream-

flow for each month of the year over the 20-year period and

resulted in 12 average monthly streamflow values for each site. We

calculated a suite of ecologically relevant streamflow statistics from

these monthly averages targeting flow metrics that account for the

magnitude and seasonality (timing) of streamflow (Poff et al., 1997)

in an effort to capture flow signals important to fish life history. This

included minimum monthly streamflow in m3/s (low flow; MinCMS),

maximum monthly streamflow (high flow; MaxCMS), average

monthly streamflow (average flow; AveCMS), average streamflow for

April, May, and June (spring flow; AMJCMS), average streamflow for

August (summer flow; AugCMS) and a measure of the coefficient of

monthly streamflow variability (FloVar). FloVar was computed by

dividing the standard deviation of the decreased monthly flow values

by the original monthly mean streamflow. This measure of stream-

flow variability is equivalent to “MA39,” a common measure of

monthly streamflow variability presented in Olden and Poff (2003)

and Henriksen et al. (2006). Additionally, the proportion of surface

flow coming from impervious surfaces was estimated for each catch-

ment (QFRAC_IMP). All statistics were estimated for contributing

catchments to each NCDWR sample site, as well as all HUC-12s in

the North Carolina Piedmont. The monthly time-step allows us to

evaluate the ability of large scale, easily parameterised models to

provide flow information that is useful for determining changes in

ecosystem integrity.

We validated the WaSSI model flow predictions by computing

classical hydrological model fit statistics as well as the prediction of

ecologically relevant flow statistics at seven USGS gauges located in

the study area (Table 1, Figure 1b). Gauges identified as reference

sites in the USGS Gages II database (Falcone, 2011; Falcone, Carlisle,

Wolock, & Meador, 2010) were selected for validation procedures,

and were either co-located with a fish training site or had one or

more fish training sites upstream. Classical fit statistics evaluated

included bias in mean streamflow, the Nash–Sutcliffe Efficiency

(NSE) statistic (Nash & Sutcliffe, 1970), the root mean squared error

and the coefficient of determination (R2). Flow statistics evaluated

included MaxCMS and FloVar that were used in the 4-variable flow–

ecology model (described below). Bias in mean streamflow within

�25%, 15%, and 10% were considered indicative of satisfactory,

good and very good hydrological model performance, respectively

(Moriasi et al., 2007). Similarly, NSE values that are greater than

0.50, 0.65 and 0.75 for prediction of monthly streamflow were con-

sidered to be indicative of satisfactory, good and very good model

performance, respectively (Moriasi et al., 2007). The NSE can range

from negative infinity to 1.0, the closer NSE is to 1.0 the better the

model fit. Negative values of NSE indicate that using the mean of

the observations provides a better fit than the model. A hydrologic

uncertainty of �30% was used to aid in placing model prediction

bias of flow statistics into context with inherent variability in stream-

flow and flow measurement (Murphy, Knight, Wolfe, & Gain, 2013).

2.5 | Flow–ecology model development

We developed a FSR BRT model using observed biological data and

WaSSI streamflow predictions for all 385 NCDWR sample sites in

the training dataset. BRT models are only briefly described here as

their use and technical details (e.g. Breiman, Friedman, Olshen, &

Stone, 1984; De’ath & Fabricius, 2000; Prasad, Iverson, & Liaw,

2006), as well as application (Aertsen, Kint, Van Orshoven, €Ozkan, &

Muys, 2010; Brown et al., 2012; Clapcott, Young, Goodwin, Leath-

wick, & Kelly, 2011; Elith, Leathwick, & Hastie, 2008; Leclere, Ober-

dorff, Belliard, & Leprieur, 2011; Waite et al., 2010, 2012) have

been widely presented in the literature. BRTs are part of the classifi-

cation and regression tree (CART) or decision tree family; a family of

techniques used to advance single classification or regression trees

by averaging the results for each binary split from numerous trees or

forests. The objective of BRT models are to reduce the predictive

error and improve overall performance (De’ath, 2007; Elith et al.,

2008). In BRT, after the initial tree has been developed, successive

trees are grown on reweighted versions of the data, giving more

weight to cases that are incorrectly classified than those that are

correctly classified within each growth sequence (Waite et al., 2012).

Thus, as more and more trees are grown in BRT, the large number

of trees increases the chance that cases that are difficult to classify

initially are correctly classified, thus representing an improvement to

the basic averaging algorithm used in random forest (De’ath, 2007).

Boosted trees and random forest models retain the positive aspects

of single trees seen in CART models, yet have improved predictive

performance, nonlinearities and interactions are easily assessed, and

they can provide an ordered list of the importance of the explana-

tory variables (De’ath, 2007; Leclere et al., 2011).
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Although BRT offers improved modeling performance over

CART, the simple single tree obtained from CART is lost, making it

more difficult to visualise the results. Partial dependency plots

(PDPs) provide a way to visualise the effect of a specific explanatory

variable on the response variable after accounting for the average

effects of all other explanatory variables (De’ath, 2007; Elith et al.,

2008); PDPs for selected variables important in models appear as

examples in the results. BRT models were run using the gbm library

in R and specific code from Elith et al. (2008).

Boosted regression tree models were developed using FSR as

the response variable and streamflow statistics and river basin as

explanatory variables. BRT models were developed using the training

dataset (Figure 1b). We used a bag fraction of 0.5, a learning rate of

0.004 and a tree complexity of 3. A bag fraction of 0.5 indicates that

each tree is developed using a random selection of 50% of the data.

The learning rate influences the total number of trees evaluated for

a model, while tree complexity controls whether interactions are fit-

ted, a value of 3 allows the assessment of up to 3-way interactions.

Variable relative importance (VRI) was calculated using formulae

developed by Friedman (2001) and implemented in the R gbm library

to estimate the relative importance of predictor variables (Waite

et al., 2012). Calculations of VRI are based on the number of times a

variable is selected for splitting, weighted by the squared improve-

ment to the models as a result of each split, averaged over all trees.

The relative importance of each variable is scaled so that the sum

adds to 100, with higher numbers indicating stronger influence on

the modelled response. Due to the size of the training dataset, we

implemented a k-fold cross-validation technique using the R function

gbm.step. The k-fold cross-validation splits the dataset into k parti-

tions, keeping one partition for testing and the remaining partitions

for fitting the model (Hastie, Tibshirani, & Friedman, 2009). This

technique generally has low bias and the predictive performance of

a k-fold cross-validation and validation using an independent dataset

are highly similar (Elith et al., 2008). Additionally, k-fold cross-valida-

tion is known to provide a computational advantage over leave-one-

out techniques and provides a more accurate estimate of the test

error rate (James, Witten, Hastie, & Tibshirani, 2013). Goodness of

fit was measured using the equivalent R2, estimated as (TD-RD)/TD

where TD = total deviance and RD = residual deviance.

Initially, we developed an 8-variable BRT model using the pri-

mary subset of ecologically relevant streamflow statistics outlined

above. BRT approaches have been shown to overfit models (Aertsen

et al., 2010; Elith et al., 2008). Therefore, we developed a reduced-

variable model using only those variables identified as having a rela-

tive importance greater than 10% (Figure 3). The final model vari-

ables were selected after evaluating a Spearman rank correlation

matrix of explanatory variables (Table 2), the effects on model fit

(i.e. equivalent R2), and by examining the PDPs of all eight explana-

tory variables (data not shown). This secondary evaluation allowed

us to reduce the number of explanatory variables from eight to four

TABLE 1 Summary of classical hydrological model fit statistics and bias in prediction of the flow statistics used in the 4-variable boosted
regression tree model across the seven USGS gauges used for Water Supply Stress Index model validation. Bias in mean streamflow within
�25%, 15% and 10% are considered indicative of satisfactory, good and very good hydrological model performance, respectively, while Nash–
Sutcliffe efficiency (NSE) values that are greater than 0.50, 0.65 and 0.75 for prediction of monthly streamflow are considered to be indicative
of satisfactory, good and very good model performance, respectively. A hydrologic uncertainty of �30% was used to aid in placing model
prediction bias of flow statistics into context with inherent variability in streamflow and flow measurement (Murphy et al., 2013). RMSE, root
mean square error; CMS, cubic metres per second. Definitions of ecologically relevant streamflow statistics can be found in the streamflow
prediction section

Site Gauge Description
Drainage
area, km2

Classical model fit statistics Flow statistics

Bias in
mean (%) NSE

RMSE,
cms R2

Bias in
MaxCMS
(%)

Bias in
FloVar (%)

1 02077200 Hyco Cr. Near

Leasburg, NC

121.7 16% 0.60 0.85 0.63 �12% �26%

2 02081500 Tar R. near Tar

River, NC

428.4 16% 0.74 2.05 0.76 �17% �34%

3 02082950 Little Fishing Cr.

near White Oak,

NC

460.9 10% 0.78 2.01 0.79 �17% �44%

4 02112360 Mitchell R. near

State Road, NC

205.3 �10% 0.50 1.17 0.70 2.4% 73%

5 02118500 Hunting Cr. near

Harmony, NC

400.5 13% 0.60 2.30 0.69 3.4% 3.7%

6 02125000 Big Bear Cr. near

Richfield, NC

144.5 6.9% 0.81 0.76 0.81 �11% �18%

7 02128000 Little R. near Star,

NC

273.5 �8.3% 0.71 1.45 0.72 �16% 0.8%

Mean (standard deviation) 290.7 (140.0) 6.2% (11.0%) 0.68 (0.11) 1.51 (0.62) 0.73 (0.06) �9.5% (8.9%) �6.4% (39.1%)
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without a loss of variability accounted for by the BRT response

model. The final reduced 4-variable model identified those variables

most critical for assessing the effects of climate, streamflow and

land-use changes on FSR and insured a high level of parsimony for

use in future management scenarios. We used the final reduced 4-

variable BRT model to predict FSR for all 385 NCDWR training sites

and regressed observed FSR against predicted FSR with a 95% confi-

dence interval (Pi~neiro, Perelman, Guerschman, & Paruelo, 2008).

2.6 | Scenarios

The final reduced 4-variable model developed for the training data

was then used to predict FSR in each HUC-12 in the North Carolina

Piedmont under current conditions as well as three future scenarios.

These scenarios included (1) projected average climate for the years

2041–60, (2) impervious cover projections for the year 2060, and (3)

plausible water withdrawals from each HUC-12. For climate projec-

tions, statistically downscaled 1/8 9 1/8° (c. 12 9 12 km) 1961–

2099 monthly precipitation and temperature predicted by NOAA’s

Geophysical Fluid Dynamics Laboratory coupled climate model

CM2.0 for the A2 growth and emission scenario was obtained from

the World Climate Research Programme Coupled Model Intercom-

parison Project Phase 3 (CMIP3) dataset (Meehl et al., 2007). The

Intergovernmental Panel on Climate Change (IPCC) Special Report

on Emissions Scenarios (SRES) (Nakicenovic et al., 2000) charac-

terised the A2 storyline as a very heterogeneous world with continu-

ously increasing global population and regionally oriented economic

growth with relatively slow technological change. The A2 (High)

SRES scenario was selected because it represents potentially the

most likely emission scenario as post-2000 global carbon emissions

estimates indicate that current emissions are tracking the higher of

the SRES emission projections (Raupach et al., 2007). The CM2.0 cli-

mate model was selected because it represents a “mid-range” sce-

nario among the 16 climate models evaluated in CMIP3 for the U.S.

(Treasure, McNulty, Myers, & Jennings, 2014). Average monthly pre-

cipitation and air temperature predictions were estimated for each

HUC-12 using area-weighted means. Predicted FSR for the 2040–60

time period was compared to the 1991–2010 time period to evalu-

ate potential climate change effects.

Impervious surface projections for the year 2060 were derived

from the U.S. Environmental Protection Agency’s Integrated Climate

and Land-Use Scenarios (ICLUS) project for A2 growth and emission

scenario (Bierwagen et al., 2010; USEPA, 2009) to match the climate

change scenario. The ICLUS project develops future impervious

surface scenarios that are “broadly consistent with global-scale,

peer-reviewed storylines of population growth and economic devel-

opment” (USEPA, 2009). Projections are based on regression models

that relate the 2001 NLCD impervious surface dataset with housing

density estimates (a derivative of demographic projections), which

enables forecasting likely changes under SRES growth scenarios (sce-

nario A2 was used for this project) (USEPA, 2009). Impervious cover

effects were assessed by comparing FSR under projected 2060

impervious cover to that of 2006 using the baseline climate data

from 1991 to 2010.

The North Carolina Ecological Flow Science Advisory Board

(NCEFSAB) recommended a “flow-by” criteria where ecological flow

should be 80%–90% of the instantaneous modelled baseline flow

(NCEFSAB, 2013). Consistent with this recommendation, we modelled

the effect of reduced flows on FSR by systematically decreasing the

amount of total streamflow predicted for each HUC-12 in the North

Carolina Piedmont from 5% to 25% at 5% intervals (i.e. a 95%–75%

flow-by), thereby bracketing the range recommended by the

NCEFSAB. We then used these decreased flow values as explanatory

variables in our BRT prediction models. Welch’s t tests were

performed to compare richness predictions for future withdrawal

scenarios to the 2010 predictions using the R function t test. Welch’s t

tests were performed to test for differences between mean expected

values for current conditions and values predicted under future

scenarios (water withdrawals, impervious surface projections and

climate change). The Welch’s modification adjusts the degrees of

freedom for predictions whose variances are not equal (Welch, 1947).

Significant (a < .05) p-values indicate that predictions are not equal.

3 | RESULTS

The WaSSI model reasonably captured the magnitude and variability

in observed flows at the seven validation sites within the study

region (Figure 4, Table 1). Model performance was satisfactory or

better at all sites evaluated for classical model fit statistics. Absolute

bias in mean flow was satisfactory (15%–25%) at two sites, good

(10%–15%) at three sites and very good (<10%) at two sites. The

Basin
QFRAC_IMP

FloVar
MaxCMS
MinCMS
AugCMS
AMJCMS
AveCMS

0 4 8 12 16 20 24 28 32

Basin

MaxCMS

QFRAC_IMP

FloVar

Relative Importance

0 4 8 12 16 20 24 28 32
Relative Importance

(a)

(b)

F IGURE 3 Summary of the relative importance of the predictor
variables included in (a) the full 8-variable (equivalent R2 = 0.47) and
(b) 4-variable (equivalent R2 = 0.50) boosted regression tree models
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NSE was satisfactory at three sites (0.50–0.65), good (0.65–0.75) at

two sites, and very good (>0.75) at two sites. The mean bias in mean

flow across all sites was +6.2% (absolute bias 11.5%) while the mean

NSE was 0.68, both statistics reflecting good performance overall.

Similarly, bias in the MaxCMS and FloVar statistics used in the 4-

variable flow–ecology model was generally within the range of

hydrologic uncertainty (<30%). Bias for four of the seven sites was

<30% for FloVar and was <30% at all sites for MaxCMS. Sites 2, 3

and 4 FloVar bias was >30%, however site 2 was only marginally

outside the range of hydrologic uncertainty at 34%. FloVar bias was

greatest for site 4 at 73%. Comments on flow modification in the

USGS Gages II database indicate that there are small reservoirs in

the headwaters of this catchment (Falcone, 2011; Falcone et al.,

2010), possibly reducing FloVar in the observed time series relative

to natural conditions simulated by WaSSI by supplementing flows

during dry periods (Figure 4). Indeed, FloVar was lowest at site 4

among all sites, thus small absolute differences in FloVar result in

large relative differences. Overall, the validation results indicate that

our hydrologic modeling approach provides reasonable approxima-

tions of flow statistics for flow–ecology modeling that fall within

commonly applied bounds of uncertainty and bias.

Observed FSR values in the North Carolina Piedmont ranged

from 5.0 to 28.5 across the 385 sites (Figure 1b, Table 3), with an

average of 16.4. Among river basins, the TAR, ROA and NEU had

the highest average FSR values, whereas the BRD, YAD, CPF and

CTB had slightly lower averages (Table 3). By comparison, the high-

est MaxCMS values were found in the TAR, BRD and NEU while

the CTB, ROA, YAD and CPF were slightly lower (Table 3). In addi-

tion to having the lowest MaxCMS values, the CPF had the highest

QFRAC_IMP values, followed by the NEU, CTB, YAD, BRD, TAR and

ROA (Table 3).

The explanatory variables in the reduced 4-variable model (all

variables with relative importance <10% removed) consisted of

Basin, QFRAC_IMP, MaxCMS and FloVar, with an estimated equiva-

lent R2 = 0.50 (Table 4). Basin was the most influential variable in

the model (31.3% relative importance), followed by MaxCMS

(23.7%), QFRAC_IMP (23.1%) and FloVar (21.9%) (Figure 3b). All

flow variables show distinct relations with the fitted values (Fig-

ure 5). Although each variable exhibits some variability, the overall

response pattern indicates a negative response between FSR and

QFRAC_IMP, and a positive response between FSR with both

MaxCMS and FloVar, although this response may not be linear (Fig-

ure 5). Further, the PDP for QFRAC_IMP shows a fairly rapid linear

decline in FSR at relatively low levels of surface flow coming from

impervious surfaces (Figure 5). Conversely, there is a strong increase

in FSR between 3 and 7 m3/s in the PDP for MaxCMS. The interac-

tions between MaxCMS, QFRAC_IMP and FloVar indicate that FSR

is highest when MaxCMS and FloVar are high, but QFRAC_IMP is

low (Figure 6). Across the ranges of MaxCMS and FloVar values,

FSR remains quite low when QFRAC_IMP is high (Figure 6). The

slope of the regression for observed FSR values versus those pre-

dicted by the BRT model was 0.41 (predicted

FSR = 9.73 + 0.41 9 observed FSR) with an adjusted R2 value of

0.48, indicating a relatively good predictive fit with only slight bias

across the range of values.

The northeastern part of the Piedmont including the ROA, TAR

and NEU river basins had higher FSR values than the rest of the

region under the baseline scenario as illustrated in Figures 2 and

10a. Projected climate change by 2041–60 increased FSR by 0.35

species (Table 4) on average (p = .0042), ranging from a decrease of

2.2 to an increase of 3.1 (Figure 7b). Projected changes in impervi-

ous cover resulted in an insignificant decrease (p = .1817) in FSR of

0.16 species across the region on average (Table 4). FSR decreased

significantly across the region as water withdrawals increased from

5% to 25% of baseline flows (Table 4; Figures 7d and 8). Under the

water withdrawal scenarios, a significant loss in FSR of 0.49 species

was predicted with a 15% reduction in flow (p = .0001) while a

reduction in flow of 25% was predicted to have an average loss of

one species (p < .0001) (Table 4).

Under each future scenario, some HUC-12s were more likely to

experience changes in FSR than the average HUC-12 (Figures 7

and 8). These results indicated that some HUC-12s will lose species

TABLE 2 Spearman correlations and p-values (in parentheses) of predictor variables for the boosted regression tree (BRT) models across the
385 North Carolina Division of Water Resources sample sites. Bolded p-values are significant (a < .05). Bolded variables represent those
retained in the 4-variable BRT model. Definitions of ecologically relevant streamflow statistics can be found in the streamflow prediction
section. FSR, fish species richness

Basin AveCMS MinCMS MaxCMS AMJCMS AugCMS FloVar QFRAC_IMP FSR

Basin 0.07 (.1802) 0.01 (.8556) 0.11 (.0258) 0.04 (.4061) 0.02 (.6536) 0.11 (.0310) �0.15 (.0025) 0.1 (.0508)

AveCMS 0.96 (<.0001) 0.99 (<.0001) 0.99 (<.0001) 0.94 (<.0001) �0.22 (<.0001) 0.05 (.2893) 0.2 (<.0001)

MinCMS 0.9 (<.0001) 0.96 (<.0001) 0.99 (<.0001) �0.42 (<.0001) 0.11 (.0359) 0.13 (.0092)

MaxCMS 0.96 (<.0001) 0.88 (<.0001) �0.09 (.0869) 0.01 (.8612) 0.22 (<.0001)

AMJCMS 0.94 (<.0001) �0.29 (<.0001) 0.03 (.6049) 0.18 (.0004)

AugCMS �0.42 (<.0001) 0.13 (.0128) 0.12 (.0147)

FloVar �0.21 (<.0001) 0.2 (<.0001)

QFRAC_IMP �0.21 (<.0001)

FSR
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more quickly than the region average. The hot-spots shown in Fig-

ure 8 (HUC-12s that could potentially lose more than one fish spe-

cies under the 5%, 10%, 15%, and 20% withdrawal scenarios)

identify the catchments that are most vulnerable to a loss in FSR

and provide managers with a mechanism for prioritising catchments

that are most susceptible to changing water availability. The per-

cent of HUC-12s predicted to decrease in FSR varied across river

basins, with some basins (CPF, CTB, TAR and YAD) appearing to

F IGURE 4 Observed (circles) and predicted (lines) mean monthly streamflow hydrographs for the seven USGS reference gauges used for
Water Supply Stress Index model validation
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be particularly susceptible to changes in flow (Table 5). Predicted

FSR decreased in the majority of HUC-12s under all flow reduction

scenarios (Table 5). Even under the climate change scenario, where

average FSR across all HUC-12s was predicted to increase, a large

percentage (33%) of HUC-12s were predicted to decrease in FSR

(Table 5). Further, the climate scenario showed a large increase in

mean MaxCMS (3.32–15.28 m3/s) across all major river basins

(Table 6), resulting in a mean increase in FSR. MaxCMS increased

in some catchments under the impervious scenario, however

QFRAC_IMP also increased (Table 6) resulting in a net decrease in

FSR (Table 4).

4 | DISCUSSION

In this study, we evaluated whether relatively simple hydrologic

models can be used in conjunction with ecological data to develop

empirical flow–ecology response models that predict the effect of

changes in water availability on FSR at a spatial scale relevant to

management. We also sought to use the empirical flow–ecology

models to identify “hot-spots” of fish richness change under plausi-

ble scenarios representing changes in water withdrawals (e.g. 5%–

25%), land use (derived from known build out scenarios), and climate

(the A2 high emission scenario), at the HUC-12 level. We postulated

that a decline in predicted FSR would be attributable to changes in

climate and increases in impervious surfaces and water withdrawals.

Our findings indicate that changes in streamflow associated with

plausible future water withdrawals may result in a significant loss in

fish species richness, and for the withdrawals scenarios across the

region as a whole, losses appear to be directly linked to the quantity

of water withdrawn. Although the future impervious scenario was

not found to be significant across the region as a whole, decreases

in FSR of one or more species were predicted in many HUC12s

proximal to the highly urban regions of North Carolina including

Raleigh, Durham, Chapel Hill and Charlotte (Figure 7c). Under the cli-

mate change scenario, FSR was actually predicted to increase signifi-

cantly across all HUC-12s. While this was contrary to our

hypothesis, there were many individual HUC-12s where FSR was

predicted to decrease (Table 5).

The key variable driving the average increase in FSR for the cli-

mate scenario appears to be MaxCMS (maximum monthly stream-

flow for the 20-year period of record). Under this scenario,

MaxCMS was the only variable from the 4-variable BRT model to

change substantially from the 1981–2010 average. MaxCMS was

highly correlated with FSR in the training data, so these results

should not be surprising. However, these findings could indicate a

link between predicted changes in climate, maximum monthly or

seasonal flows in river systems, and increasing FSR. In contrast to

the climate scenario, the flow variables for the impervious scenario

changed very little from the 1981–2010 average over the entire

study area (Table 6), which may help explain why there was no

significant changes in average FSR across all HUC12s for that sce-

nario. Increases in impervious surfaces are predicted to occur in

and around urban areas (USEPA, 2009), and likely would not

impact all HUC12s within a region the way that climate change

could. For example, even though increases in MaxCMS are posi-

tively correlated with FSR, when QFRAC_IMP is high, FSR tends to

be low (Figure 6). Conversely, when QFRAC_IMP is low, FSR tends

to be high, especially in larger streams with higher MaxCMS. Some

level of interaction is expected among flow attributes that

TABLE 3 Predicted mean (standard deviation) flow statistics and fish species richness (FSR) across the 385 North Carolina Division of
Water Resources sample sites for the Broad (BRD), Cape Fear (CPF) Catawba (CTB), Neuse (NEU), Roanoke (ROA), Tar (TAR) and Yadkin (YAD)
river basins. Definition of ecologically relevant streamflow statistics can be found in the streamflow prediction section

BRD CPF CTB NEU ROA TAR YAD All Basins

FSR 15.63 (2.8) 15.48 (4.36) 13.59 (3.63) 18.95 (3.82) 19.36 (3.37) 19.91 (3.65) 15.56 (3.95) 16.35 (4.32)

MaxCMS 2.8 (3.89) 1.43 (1.68) 1.76 (1.15) 2.46 (2.06) 1.79 (1.39) 3.07 (3.68) 1.75 (1.17) 1.95 (2.05)

QFRAC_IMP 0.08 (0.07) 0.21 (0.18) 0.2 (0.17) 0.21 (0.14) 0.05 (0.04) 0.06 (0.05) 0.12 (0.12) 0.14 (0.15)

FloVar 0.75 (0.04) 0.81 (0.12) 0.74 (0.09) 0.78 (0.08) 0.8 (0.1) 0.85 (0.06) 0.83 (0.16) 0.8 (0.12)

TABLE 4 Boosted regression tree predictions for the 4-variable model across the North Carolina Piedmont ecoregion. Welch’s t tests were
performed to test for differences between mean expected values for current conditions and values predicted under future scenarios (water
withdrawals, impervious surface projections and climate change). Bolded values represent a significant difference (p < .05) between current
conditions and predicted values. 2041–60 and IMP 2041–60 represent the time periods for the climate change and impervious surface
scenarios, respectively. Percentage values from �5 to �25 represent water withdrawal scenarios

4-Variable model (equivalent R2 = 0.50) 2041–60 IMP 2041–60 �5% �10% �15% �20% �25%

t Test p-value .0042 .1817 .7909 .1047 .0001 <.0001 <.0001

Mean expected 18.0441 18.0441 18.0441 18.0441 18.0441 18.0441 18.0441

Mean predicted 18.3896 17.8802 18.0119 17.8424 17.5503 17.2323 17.0478

Mean change (predicted � expected) 0.3455 �0.1639 �0.0322 �0.2017 �0.4938 �0.8118 �0.9963
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summarise information across broad spatial scales; however, such

findings are essential for supporting decision makers by giving

them the tools and information needed to manage water resources

when faced with multiple sources of change. For example, limiting

water withdrawals in an undeveloped catchment to maintain or

enhance FSR may not result in the desired endpoint if land-use

change results in increases in impervious cover and thus increases

in QFRAC_IMP. Therefore, focusing on a management action that

addresses only one streamflow component or that does not take

into consideration non-stationarity principles (Milly et al., 2008)

could cause an over-estimation of water availability, and result in a

significant over-allocation of the resource.

The value of a strong hydrologic foundation cannot be under-

stated for supporting a broader understanding of the connection

between changes in water availability and sustaining the long-term

viability of fish assemblages. The modeling approach presented in

this paper was vital for systematically assessing regional scale effects

and identifying areas of concern (i.e. “hot-spots”) where the com-

bined effects of land cover change, climate change and/or stream-

flow alteration may threaten water resources. Once hot-spots are

identified, fine-scale, physically based models of higher temporal

resolution could potentially be applied to those areas of concern to

provide more quantitative estimates of changes in water availability

and support sub-monthly ecologically relevant flow statistics using

more site specific inputs.

4.1 | Response of FSR to hydrologic change

Maintenance of hydrologic variability is critical to protecting biodi-

versity and maintaining the integrity of aquatic, riparian and wetland

ecosystems, and is the foundation of the Natural Flow Regime Para-

digm (NFRP) presented by Poff et al. (1997). Decades of observation

of the effects of human alteration of natural flow regimes have

established that streamflow variability is critical for maintaining the

ecological integrity of river systems because many aquatic species

have developed life-history strategies in response to these flow attri-

butes (Hill, Platts, & Beschta, 1991; Lytle & Poff, 2004; Mims &

Olden, 2012, 2013; Poff & Ward, 1989; Postel & Richter, 2012;

Richter, Braun, Mendelson, & Master, 1997; Stalnaker, 1990). The

coefficient of monthly streamflow variability (FloVar) was one of the

important predictors in our model. The PDP plot (Figure 5), before it

flattens out, generally indicates a strong positive response between
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F IGURE 5 Partial dependency plots for
variables in the final 4-variable boosted
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FSR and increasing streamflow variability which is in keeping with

the principles of the NFRP. Therefore, the strength of the response

for FlowVar in the model underscores the importance of maintaining

streamflow variability in support of a thriving fish assemblage (Bunn

& Arthington, 2002; Carlisle, Falcone, Wolock, Meador, & Norris,

2010; Poff & Zimmerman, 2010).

Although the goal of restoring streamflow to its “natural” condi-

tion may be unachievable in moderately to highly degraded urban

systems with high human demand for water or in systems with

numerous reservoirs designed for water supply purposes, it still may

be possible to offset future alterations in water availability resulting

from climate or land-use change by implementing proactive strate-

gies that maintain variable passing flows or flow-by standards that

are consistent with NFRP principles. For example, the North Carolina

Ecological Flow Science Advisory Board (NCEFSAB), which was

tasked with developing a scientifically defensible approach to estab-

lishing flows that protect the ecological integrity of streams and riv-

ers in North Carolina as required under Session Law 2010-143,

suggested an 80%–90% flow-by (i.e. 80%–90% of ambient modelled

flow remains in the stream; NCEFSAB, 2013) in combination with a

critical low-flow component. Results of our plausible withdrawal sce-

narios are highly consistent with the NCEFSAB’s recommendations.

4.2 | Modelling limitations

Streamflow metrics predicted by the WaSSI model were subject to

similar uncertainties associated with other hydrologic models (Cald-

well et al., 2015), including uncertainty in climate, land cover, soil

and leaf area index input data, as well as uncertainty in the repre-

sentation of the physical processes that govern streamflow magni-

tude and timing. Unlike calibrated models, the WaSSI model will be

less sensitive to errors associated with expanding the model domain

to catchments not included in the model calibration process, and

using the model to assess the effect of climate or land cover scenar-

ios outside of the conditions for which it was calibrated. The overall

accuracy of the model was considered satisfactory given the many

uncertainties in model inputs, model representation of the physical

system, and observed stream flow data (see Caldwell et al., 2015).
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projections by 2060 (b), 2060 impervious projections (c), and 20% withdrawals (d) using the 4-variable boosted regression tree model
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We acknowledge that there is considerable uncertainty in the pre-

diction of future climate and land cover, however the projections we

used provided a reasonable scenario of how they may change and

this was supported by our model validation results (Table 1).

We were not able to capture some of the more specific sub-

monthly streamflow attributes that may be important for fish migra-

tion and reproduction (e.g. annual daily minimum and maximum

streamflow, daily streamflow exceedances and recession rates; see
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F IGURE 8 HUC-12s in the North Carolina Piedmont predicted to lose greater than 1 fish species based on the 5% (a), 10% (b), 15% (c) and
20% (d) withdrawal scenarios

TABLE 5 Number (percentage) of HUC-12s, by river basin, with a predicted decrease in fish species richness under each scenario. Bolded
values represent a significant difference (p < .05) between current conditions and predicted values (note that significance was tested for the
region as a whole, not per basin). 2041–60 and IMP 2041–60 represent the time periods for the climate change and impervious surface
scenarios, respectively. Percentage values from �5 to �25 represent water withdrawal scenarios. Broad (BRD), Cape Fear (CPF) Catawba
(CTB), Neuse (NEU), Roanoke (ROA), Tar (TAR) and Yadkin (YAD) river basins

Basin 2041–60 IMP 2041–60 �5% �10% �15% �20% �25%

BRD (n = 49) 3 (6%) 15 (31%) 13 (27%) 13 (27%) 29 (59%) 49 (100%) 48 (98%)

CPF (n = 215) 87 (40%) 128 (60%) 148 (69%) 151 (70%) 177 (82%) 207 (96%) 211 (98%)

CTB (n = 100) 45 (45%) 50 (50%) 48 (48%) 66 (66%) 87 (87%) 98 (98%) 98 (98%)

NEU (n = 134) 39 (29%) 62 (46%) 50 (37%) 53 (40%) 54 (40%) 81 60%) 109 (81%)

ROA (n = 97) 25 (26%) 36 (37%) 45 (46%) 31 (32%) 40 (41%) 61 63%) 61 (63%)

TAR (n = 85) 33 (39%) 23 (27%) 57 (67%) 48 (56%) 43 (51%) 44 (52%) 59 (69%)

YAD (n = 206) 62 (30%) 95 (46%) 98 (48%) 123 (60%) 148 (72%) 189 (92%) 191 (93%)

All basins (n = 886) 294 (33%) 409 (46%) 459 (52%) 485 (55%) 578 (65%) 729 (82%) 777 (88%)
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Kennen et al., 2007; Konrad et al., 2008; Olden & Poff, 2003)

because the WaSSI model functions at a monthly time-step. How-

ever, even with this limitation we were able to develop a significant

4-variable BRT model that had good predictive power and helped to

better understand the potential effects of increasing water with-

drawal on FSR in the North Carolina Piedmont region. Hydrologic

models vary in their levels of complexity, temporal and spatial reso-

lution, and required level of calibration. Detailed and highly parame-

terised fine-resolution models such as distributed physically based

watershed and rainfall–runoff models are well suited for smaller

domains but can be computationally expensive and difficult to

parameterise at larger scales. In contrast, simple, easily parameterised

models such as monthly water balance models (e.g. WaSSI, the U.S.

Geological Survey Monthly Water Balance Model; Hay & McCabe,

2002) are useful for assessing broad implications of streamflow alter-

ation at a large scale and identifying potential water-limited areas,

but may have difficulty resolving unique sub-watershed scale physi-

cal and ecological processes and associated anthropogenic effects.

Leveraging the benefits of both simple, large-scale models with more

complex, high resolution models has the potential to allow more

robust evaluations of the effects of water withdrawal on aquatic

ecosystems. WaSSI, as demonstrated in this paper, can be used in

conjunction with biological data to develop flow–ecology models

that assess broad-scale regional impacts and identify specific catch-

ments of concern (“hot-spots”) where the combined effects of land

cover change, climate change and/or flow alteration may threaten

water resources.

There are also limitations implicit in flow–ecology models

constructed using machine learning techniques such as the BRT

model presented in this paper. The strength of BRT models is that

they improve on the basic averaging algorithm used in random forest

(De’ath, 2007), however, the improvements in prediction accuracy

may come at the expense of some loss of interpretation. For exam-

ple, many of the advanced machine learning techniques, such as

BRT, have a tendency to over fit the data (Aertsen et al., 2010).

Goodness-of-fit measures and k-fold cross-validation techniques, as

applied in this study, have been implemented to help practitioners

understand and offset this limitation (Elith et al., 2008). However,

care should be taken to make sure results are not influenced by spa-

tial sorting bias or spatial autocorrelation (Hijmans, 2012; Randin

et al., 2006). A general weakness of BRT models is that they are not

as familiar to scientists and managers as modeling methods such as

multiple linear regression. Thus, explaining how BRT models work

and how to interpret the results in a manner that positively impacts

management decisions can be a challenge. The general robustness

and greater predictive power of machine learning techniques greatly

outweighs their limitations and, as their application becomes more

commonplace in ecology, especially for modeling nonlinear relation-

ships, their level of acceptance in the management arena will also

increase.

4.3 | Improvements/future work

The use of FSR as the primary measure of fish assemblage integrity

as part of this study provides a level of simplicity and parsimony that

supports scientific reproducibility and management application at the

state and regional level. However, richness is only one measure of

assemblage integrity, and alone, it may limit broader interpretation

of the hydrologic effects on fish reproduction, life-history processes

and species of special concern. Moreover, there is a need to better

understand underlying mechanisms (sensu Poff, 2018, this Special

Issue) that explain local abundance and regional distributions of fish

species. Examining fish species traits is one such method that has

been shown to be a powerful tool in ecology for identifying trends

within and among species assemblages (Statzner, Hildrew, & Resh,

2001) and represent measurable characteristics based on morpholog-

ical, physiological or life-history attributes (Violle et al., 2007). Addi-

tionally, there is a need to more broadly implement trait-based

research in fish ecology, which to date, has largely been focused on

terrestrial plants and aquatic invertebrates (Verberk, Van Noordwijk,

& Hildrew, 2013). Therefore, results of this study could be enhanced

through the applications of functional traits as a means to better

understand the effects of hydrologic alteration on fish assemblages

and support the conservation of fish species of special concern in

the North Carolina Piedmont.

5 | CONCLUSION

In this study, streamflow indices including the maximum monthly

streamflow and the coefficient of streamflow variability were shown,

in part, to be particularly important for supporting the richness of

TABLE 6 Average difference between scenarios and 2010 predictions (scenario-2010) for changes in climate and imperviousness in major
river basins across the North Carolina Piedmont. Positive values represent a predicted increase under scenarios. Definitions of ecologically
relevant streamflow statistics can be found in the streamflow prediction section. Broad (BRD), Cape Fear (CPF) Catawba (CTB), Neuse (NEU),
Roanoke (ROA), Tar (TAR) and Yadkin (YAD) river basins

Scenario Variable BRD CPF CTB NEU ROA TAR YAD All basins

Climate MaxCMS 3.32 6.51 7.82 5.98 15.28 5.18 7.88 7.55

QFRAC_IMP �0.01 0.00 �0.01 0.00 0.00 0.00 0.00 0.00

FloVar �0.07 0.00 �0.07 �0.03 �0.02 �0.09 �0.05 �0.04

Impervious MaxCMS 0.01 0.24 0.21 0.51 0.04 0.03 0.18 0.21

QFRAC_IMP 0.00 0.03 0.03 0.05 0.00 0.00 0.03 0.03

FloVar 0.00 �0.01 �0.01 �0.02 0.00 0.00 �0.01 �0.01
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fish assemblages in the North Carolina Piedmont. The results

strongly support other studies that have shown that as the magni-

tude of high flows and natural variability in annual streamflow is

altered, the richness of species with life-history and behavioural con-

straints that rely on annual high flow patterns or fluctuations in flow

for reproduction may be reduced. Implementing water management

measures that meet the constraints of the NFRP has been a major

challenge for management agencies. Developing practical flow-pro-

tection standards that limit ground- and surface-water withdrawals,

interbasin transfers, or the implementation of designed flow releases

that protect essential streamflow variability, have been difficult to

achieve or have been met with strong resistance or legal actions.

Therefore, it is essential that management strategies developed in

collaboration with stakeholders that minimise flow alteration strive

to conserve FSR. Improved water management incentives need to

be established within the constraints of existing water law and gov-

ernment statutes that support designated uses, meet existing regula-

tory requirements and promote a balance between water supply to

support human needs and conservation of biological integrity.
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