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ABSTRACT

The pace of environmental and socio-
economic change over the past 100 years 
has been rapid.  Changes in fire regimes, 
climate, and land use have shaped the 
structure and function of most forest 
ecosystems, including oak (Quercus spp. 
L.) forests in the eastern United States.  
New stressors such as air pollution and 
invasive species have contributed to and 
interacted with climate and fire to alter 
current forest conditions.  While chang-
ing fire regimes have altered species 
composition of the current forest, oak re-
generation is constrained by many fac-
tors that may affect future forests.  Over 
the remainder of the twenty-first century, 
an accelerating pace of climate and so-
cioeconomic changes will influence the 
future range of variation in eastern oak 
forests.  Some of these impacts will be 
direct, such as changes in tree growth 
rates, while other impacts will be indi-
rect, such as new disturbance regimes.  
While it is likely that fire will be import-
ant in shaping oak forests in the twen-
ty-first century, it is less clear exactly 
what that role will be.  For example, it is 
uncertain whether our current scientific 
knowledge on the use of prescribed fire 
in oak forests will be applicable under 

RESUMEN

El ritmo de los cambios ambientales y so-
cioeconómicos en los últimos 100 años ha 
sido rápido.  Cambios en los regímenes de 
fuego, en el clima y en el uso de la tierra han 
modelado la estructura y función de la mayo-
ría de los ecosistemas boscosos incluyendo 
los bosques de roble (Quercus spp. L.) en el 
este de los EEUU.  Nuevos agentes de estrés 
como la contaminación del aire y las especies 
invasoras han contribuido e interactuado con 
el clima y el fuego para alterar las condicio-
nes actuales reinantes en el bosque.  Mientras 
que el cambio en los regímenes de fuego han 
alterado la composición de especies en el 
bosque actual, la regeneración del roble está 
condicionada por varios factores que podrían 
afectar los bosques futuros.  En lo que queda 
del siglo XXI, un ritmo acelerado de cambios 
climáticos y socioeconómicos influirán en el 
futuro rango de variación en los bosques 
orientales de roble.  Algunos de estos impac-
tos van a ser directos, como cambios en las 
tasas de crecimiento, mientras que otros im-
pactos van a ser indirectos como nuevos regí-
menes de disturbios.  Si bien es muy proba-
ble que el fuego sea un importante modelador 
de los bosques de roble en el siglo XXI, no 
está tan claro cuál será su rol.  Por ejemplo, 
es incierto si nuestro conocimiento científico 
actual sobre el uso de quemas prescriptas 
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novel climate and changing socioeco-
nomic conditions.  We propose that the 
combination of climate change, wild-
fire, and other disturbances will create 
stand conditions that favor oaks with or 
without management.  However, man-
agement intervention (e.g., prescribed 
fire, thinning, or a combination) could 
reduce wildfire hazard, particularly in 
the wildland-urban interface, and create 
more desirable stand conditions that are 
resilient to future stressors such as 
changing precipitation patterns and 
warmer temperatures. 

será aplicable bajo las nuevas condiciones cli-
máticas y los cambios socioeconómicos.  No-
sotros proponemos que la combinación del 
cambio climático, los incendios y otros dis-
turbios crearán condiciones en el rodal que 
van a favorecer los robles con o sin manejo.  
Sin embargo, las intervenciones en el manejo 
(por ej. quemas prescriptas, raleos o una com-
binación), podrían reducir el peligro de incen-
dios, particularmente en la interfaz urbano-ru-
ral y crear condiciones deseables en el rodal 
que sean resilientes a futuros agentes de es-
trés como cambios en los patrones de precipi-
tación y las altas temperaturas. 
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INTRODUCTION

Contemporary oak (Quercus spp. L.) for-
ests in the eastern United States are undergo-
ing changes that include a greater abundance 
of mesophytic, fire-sensitive, and shade-toler-
ant tree species (Nowacki and Abrams 2008, 
Elliott and Vose 2011).  The historic role of 
fire in oak forests of the eastern US has been 
examined by numerous investigators who gen-
erally conclude that a regime of frequent, 
low-intensity fires has occurred over the much 
of the region (e.g., McEwan et al. 2011, Brose 
et al. 2013, Flatley et al. 2013, Abrams and 
Nowacki 2015, Stambaugh et al. 2015).  Fire 
was likely more frequent in communities 
adapted to (or tolerant of) fire, such as oak, 
mixed oak-pine (-Pinus spp. L.), and xeric 
pine-oak (Guyette et al. 2006, Brose and Wal-
drop 2014).  

While fire was likely a major causal factor 
in the establishment and maintenance of oak 
forests, the mechanisms underlying these 
changes are complex.  McEwan et al. (2011) 
suggested that fire, climate, and disturbance 
regimes in the nineteenth and early twentieth 
centuries enhanced and perpetuated oak spe-

cies, whereas wetter conditions and altered fire 
and disturbance regimes in the twentieth cen-
tury no longer favored oaks.  Nowacki and 
Abrams (2015) concluded that post-European 
settlement vegetation dynamics (i.e., an in-
crease in mesophytic species) has been driven 
primarily by lack of fire, with climate playing 
a minor role.  Hence, contemporary forests are 
changing because successional processes are 
no longer arrested by fire and other disturbanc-
es, and wetter conditions favor more meso-
phytic species.  Most notably, the expansion of 
more shade-tolerant Acer rubrum L. has been 
observed across most of the historical range of 
oak-dominated forests in the eastern US 
(Abrams 2005, Fei and Steiner 2007, Elliott 
and Vose 2011).  Other non-oak species are ex-
panding as well (Rentch et al. 2003, Ozier et 
al. 2006, McEwan et al. 2011).  For example, 
in the southern Appalachians, Elliott and Vose 
(2011) documented an increase in the impor-
tance of Liriodendron tulipifera L. and Betula 
spp. L., and a decline in importance of several 
oak species (Figure 1).  In the Missouri 
Ozarks, Hanberry et al. (2012) examined 
changes in forest composition by comparing 
General Land Office (GLO) records and cur-
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rent USDA Forest Service Forest Inventory 
and Analysis (FIA) data and found that the 
contemporary forest condition has changed 
from open oak-pine savannas and woodlands 
to more homogeneous mixed hardwood forests 
over the past 50 years.  They concluded that 
these forests would likely proceed to even 
denser forests of shade-tolerant species, as-
suming climate and disturbance regimes (such 
as fire) remained constant (Hanberry et al. 
2012).  

Although data are limited, the shift in com-
position to a greater proportion of mesophytic, 
fire-sensitive species in upland mixed-oak for-
est ecosystems across the eastern US has con-

sequences for ecosystem function.  Alexander 
and Arthur (2010) found that Acer rubrum al-
tered hydrology and nutrient availability by 
changing the amount, spatial distribution, and 
chemical composition of stemflow and 
throughfall.  Species also vary in litterfall de-
composition rates and nutrient release, with 
higher decomposition rates and nutrient cy-
cling rates generally associated with A. rubrum 
and Liriodendron tulipifera (Knoepp et al. 
2005, Ball et al. 2009, Keiser et al. 2013) ver-
sus oak species.  

Changes in species composition can also 
influence productivity and growth responses to 
climate variability.  For example, Hart et al. 

Figure 1.  Changes in forest species composition in southern Appalachian forests (updated and adapted 
from Elliott and Vose 2011).  Long-term changes for unmanaged forests; measured in 1934 to 1935, 1969 
to 1973, 1988 to 1993, and 2009 to 2013 within Coweeta Basin, western North Carolina (latitude 35° 03ʹ 
N, longitude 83° 25ʹ W).  Importance value = (relative density + relative basal area) ÷ 2.
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(2012) analyzed climate-growth relationships 
in the Cumberland Plateau and suggested that 
Acer rubrum is more sensitive to warmer and 
dry conditions than oaks.  Elliott et al. (2015) 
used a combination of dendrochronology and 
long-term, on-site climate records to evaluate 
climate-growth relationships of six dominant 
hardwood species in the southern Appala-
chians of North Carolina.  They found differ-
ences in climate sensitivities that corresponded 
with xylem anatomy, in which mesophytic 
species with diffuse-porous xylem (Acer ru-
brum, Liriodendron tulipifera, and Betula len-
ta L.) were generally more sensitive to precipi-
tation distribution (such as small storms and 
dry spell length) than xeric or semi-mesophyt-
ic species (Quercus alba L., Q. montana 
Willd., and Q. rubra L.) with ring-porous xy-
lem (Elliott et al. 2015).  In southern Indiana, 
Roman et al. (2015) found that carbon accu-
mulation in oak species was less impacted by a 
severe drought than were Acer saccharum 
Marshall, Liriodendron tulipifera, and Sassa-
fras albidum (Nutt.) Nees.  Fewer studies are 
available that assess the impacts of drought on 
mortality in eastern US forests and the rela-
tionships are complex and multifactored.  For 
example, Dietz and Moorcroft (2011) analyzed 
long-term forest mortality patterns and found 
that factors such as stand characteristics and 
air pollution were stronger drivers of mortality 
patterns than climate variation.  However, in a 
study examining species-specific mortality 
patterns across the southeastern US, Klos et al. 
(2009) found a much higher mortality rate in 
mesophytic species (Acer spp., Betula spp., 
Fagus grandifolia Ehrh., Liriodendron tulipif-
era, Magnolia spp. L., Nyssa spp. L.) versus 
oak species under severe drought conditions.  
Taken together, these observational data sug-
gest that mesophytic species are more vulnera-
ble to drought both in terms of reduced growth 
and higher mortality, and hence may be dis-
proportionately impacted by rising air tem-
peratures and changing drought regimes ex-
pected with climate change.  A key question is 

how these new drought regimes will interact 
with fire (wildfire and prescribed fire) to shape 
forest structure and function.

Because of the historic role of fire in east-
ern US oak forests, many researchers have as-
sessed the potential for re-introducing fire to 
alter species composition, with an overall ob-
jective of increasing oak dominance and re-
generation, while decreasing more mesophytic 
species.  The thick bark of many oak species 
imparts resistance to fire for larger trees, while 
a well-developed root system imparts fire re-
silience in smaller-stemmed advanced regen-
eration by promoting aggressive re-sprouting 
(Nowacki and Abrams 2008, Brose and Wal-
drop 2014).  Overall, most studies indicate that 
frequent fires are required to kill non-oak spe-
cies (Hutchinson et al. 2012, Arthur et al. 
2015) and that oak regeneration is enhanced if 
fire is used in combination with other treat-
ments such as thinning (Brose et al. 2013, 
Brose and Waldrop 2014).  While fire appears 
to be a viable tool for oak management in con-
temporary forests, prescribed fire is currently 
used over a small fraction of the range of 
mixed-oak forests (Melvin 2012).  As a result, 
if current climate and other disturbance re-
gimes are upheld, it is likely that the pattern of 
increasing mesophytic and fire-intolerant spe-
cies maintaining or gaining dominance in 
mixed-oak forests will continue in the eastern 
US (McEwan et al. 2011).  

APPROACH

Several recent papers have raised ques-
tions about how climate change and other fac-
tors (e.g., invasive species) will impact oak 
forests and interact with prescribed fire and 
other restoration efforts (Arthur et al. 2012, 
Hart and Buchanan 2012, Dey 2014); howev-
er, to our knowledge, there are no definitive 
experiments or studies that can be drawn upon 
for direct inferences.  When responses are un-
derstood at a mechanistic level, the ability to 
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extrapolate beyond historical observations and 
to model ecosystem dynamics is improved, but 
not without uncertainty.  An alternative is to 
synthesize our current understanding of spe-
cies responses to observed climate variability 
and altered disturbance regimes and project 
how these responses might shape the structure 
and function of future forests under new cli-
mate and disturbance regimes.  Hence, this hy-
pothesis-based approach provides a starting 
point for decisions about potential manage-
ment and restoration approaches, while recog-
nizing that uncertainty requires monitoring 
and adaptations as additional observations and 
experiments accumulate.  For example, a rea-
sonable hypothesis is that the rapid pace and 
magnitude of climate change will influence 
competitive dynamics and regeneration pat-
terns among species (Clark et al. 2014a) and 
increase wildfire frequency and area burned 
(Flannigan et al. 2009, Slocum et al. 2010a, 
Liu et al. 2012, Flannigan et al. 2013 ), all of 
which will favor oaks.  Alternatively, more se-
vere drought and an expanding wildland-urban 
interface may reduce the ability to utilize pre-
scribed fire in the future (Mitchell et al. 2014), 
limiting the ability of managers to use fire as a 
management tool to help shape the structure 
and function of future oak forests.  

An important question facing land manag-
ers is how to manage oak forests in anticipa-
tion of the direct and indirect effects of future 
climate change that include changes in wildfire 
regimes and potential limits to the use of pre-
scribed fire.  To address this question, we syn-
thesized existing literature to examine two 
propositions for the eastern US: 1) climate 
change will facilitate the re-establishment of 
oak dominance in hardwood forests; and 2) 
management intervention can be used to accel-
erate re-establishment of oak forests, but an in-
crease in oak dominance will occur with or 
without management.  Through these proposi-
tions, we advance the concepts that manage-
ment interventions will be more effective un-
der changing climate regimes and manage-

ment will be necessary to sustain ecosystem 
services in future oak forests.

PROPOSITIONS

Proposition 1: 
Climate Change Will Facilitate an Increase 
in Oak Dominance in Hardwood Forests 

of the Eastern US

As discussed by McEwan et al. (2011), 
causal factors underlying changes in eastern 
US oak forests over the past century are com-
plex, but changes in precipitation regimes (i.e., 
reduced drought severity and frequency; Ped-
erson et al. 2015) and disturbance regimes 
(Nowacki and Abrams 2015) were likely ma-
jor driving variables in the twentieth century.  
With a reduction in widespread fire and other 
disturbances, more mesophytic, shade-toler-
ant, and fire-sensitive species have taken ad-
vantage of these wetter conditions over the 
past century, with some suggestion that chang-
es in the structure of the canopy and litter pro-
motes a self-perpetuating mesic environment 
that provides a competitive advantage 
(Abrams 2005, Nowacki and Abrams 2008, 
Alexander and Arthur 2010, Kreye et al. 
2013).  Whether these changes will be suffi-
cient to offset the impacts of drier and warmer 
conditions projected for the future is unknown.  
Global Climate Models (GCMs) indicate that 
the climate of the eastern US will experience 
increasing temperatures and associated evapo-
transpiration throughout the twenty-first centu-
ry (IPCC 2014, Melillo et al. 2014).  Predict-
ing changes in precipitation is challenging and 
highly uncertain; however, in general, models 
predict an increased number of consecutive 
dry days for many areas within the range of 
eastern oak forests (Walsh et al. 2014).  Bedel 
et al. (2013) concluded that conditions in 
southern and mid-south regions of the US will 
likely become drier overall, given a warmer 
environment during future spring and summer 
seasons (Figure 2; http://nca2014.global-
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change.gov/report/regions/southeast).  Higher 
temperatures and altered precipitation patterns 
will likely result in changes in tree growth 
rates, mortality rates, competition, and species 
interactions, all of which can modify the distri-
bution of tree species in favor those more 
adapted to xerophytic conditions (Klos  et al. 
2009, Clark et al. 2012, Clark et al. 2014b, El-
liott et al. 2015, Zolkos et al. 2015).  

Historically, drought has been a major 
driver of large-scale tree mortality in the east-
ern US (Pederson et al. 2014) and recent stud-
ies have reported an increase in drought- and 
heat-related mortality across the globe and in 
the US (Allen et al. 2010, van Mantgem et al. 
2013, Williams et al. 2013); however, drought 
tolerance varies considerably among species 
(Meinzer et al. 2013).  The physiological basis 
regulating differential species responses to 

drought is largely driven by variation in the 
ability of tree species to survive long periods 
with substantial soil water deficits or high va-
por pressure deficits (VPD), or both (Domec et 
al. 2015, McDowell and Allen 2015).  This 
survival depends (in part) on stomatal control 
(the ability of leaf stomata to close when VPD 
is high) and on the hydraulic systems of trees 
(the ability to move soil water from roots to 
the leaves).  Trees that have a high degree of 
stomatal sensitivity to VPD and maintain leaf 
or xylem water potentials well above critical 
water potentials are classified as more isohy-
dric, whereas trees that allow actual leaf or xy-
lem water potentials to fall throughout the day 
and approach critical water potentials are clas-
sified as anisohydric (Klein 2014).  High VPD 
can stress the water-conducting system and 
elicit stomatal closure.  Excessively high tran-
spiration in response to greater VPD can result 
in cavitation (or air bubbles), which restricts 
water transport (Sperry 2011).  Hence, severe 
drought can cause irreparable cavitation in the 
xylem, resulting in hydraulic failure and sub-
sequent desiccation of foliage (Tyree and 
Sperry 1989, McDowell et al. 2011).  Alterna-
tively, trees can close their stomata to reduce 
the risk of hydraulic failure, but stomatal clo-
sure results in diminished photosynthesis that 
can reduce tree growth and lead to carbon star-
vation and eventual tree death (McDowell et 
al. 2011).  

Another factor determining vulnerability 
to cavitation among species is xylem anatomy, 
with ring-porous xylem being more vulnerable 
to cavitation than diffuse-porous or tracheid 
xylem anatomies.  In eastern US oak forests, 
mesophytic species (e.g., Acer spp., Lirioden-
dron tulipifera, and Nyssa spp.) are typically 
isohydric, diffuse-porous, whereas oaks are 
anisohydric, ring-porous (Table 1).  These dif-
ferences in stomatal conductance and xylem 
anatomy also influence whole-tree transpira-
tion rates, with significantly greater water use 
by diffuse-porous species than ring-porous 
species under the same climatic and environ-

Figure 2.  Projected future temperature across the 
southeastern US reflects the increase in number of 
days above 35 °C (from: http://nca2014.global-
change.gov/report/regions/southeast).
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mental factors (Ford et al. 2011a, von Allmen 
et al. 2015, Vose et al. 2016).  Some of these 
factors may translate into different growth sen-
sitivities to climate variability (von Allmen et 
al. 2015).  For example, recent studies exam-
ining growth responses to climate variability 
suggest that stem wood growth is generally 

more sensitive to dry periods in diffuse-porous 
species versus ring-porous species (Pederson 
et al. 2012, Brzostek et al. 2014, Elliott et al. 
2015).  Despite being anisohydric, drought tol-
erance of oak trees is facilitated by deep root-
ing depths (Abrams 1990, Meinzer et al. 2013) 
and other physiological adaptations that facili-

Species Hydrotypea Xylem anatomyb Stomatal controlc

Acer rubrum L. Mesophytic Diffuse Isohydric
Acer saccharum Marshall Mesophytic Diffuse Isohydric
Acer pensylvanicum L. Mesophytic Diffuse Isohydric
Betula alleghaniensis Britton Mesophytic Diffuse Isohydric
Betula lenta L. Mesophytic Diffuse Isohydric
Betula papyrifera Marshall Mesophytic Diffuse Isohydric
Carya spp. Nutt. Semi-mesophytic Semi-ring Intermediate
Fagus grandifolia Ehrh. Mesophytic Diffuse Isohydric
Fraxinus spp. (americana, pennsylvanica) L. Mesophytic Ring Anisohydric
Liriodendron tulipifera L. Mesophytic Diffuse Isohydric
Magnolia spp. (acuminata, fraseri) L. Mesophytic Diffuse Isohydric
Nyssa sylvatica Marshall Semi-mesophytic Diffuse Intermediate
Oxydendrum arboreum (L.) DC. Semi-mesophytic Ring Intermediate
Pinus spp. (rigida Mill., taeda L., echinata 
Mill., pungens Lamb., virginiana Mill.) Xerophytic Tracheid Isohydric

Pinus palustris Mill. Xerophytic Tracheid Isohydric
Pinus strobus L. Semi-mesophytic Tracheid Isohydric
Prunus serotina Ehrh. Semi-mesophytic Ring Anisohydric
Quercus alba L. Xerophytic Ring Anisohydric
Quercus coccinea Münchh. Xerophytic Ring Anisohydric
Quercus montana Willd. Xerophytic Ring Anisohydric
Quercus rubra L. Semi-mesophytic Ring Anisohydric
Quercus velutina Lam. Semi-mesophytic Ring Anisohydric
Robinia pseudoacacia L. Semi- mesophytic Ring Isohydric
Tilia Americana L. Mesophytic Diffuse Isohydric
Tsuga canadensis (L.) Carrière Mesophytic Tracheid Anisohydric

Table 1.  Common tree species across the eastern United States classified by hydrotype (mesophytic, 
semi-mesophytic, or xerophytic)a, xylem anatomy (diffuse-porous, ring-porous, semi-ring-porous, or tra-
cheid)b, and stomatal control (isohydric or anisohydric)c.  Classifications were extracted from the litera-
ture; a hydrotype (Flatley et al. 2015), b xylem anatomy (Ewers et al. 2007) and c stomatal control (Roman 
et al. 2015). 
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tate stable water use and xylem pressure (Mc-
Culloh et al. 2010, Meinzer et al. 2013, von 
Allmen et al. 2015).

Taken together, these physiological and 
morphological differences help provide a 
mechanistic understanding for field observa-
tions of reduced growth and higher mortality 
in mesophytic species (Acer rubrum, Lirioden-
dron tulipifera, and Betula lenta) versus oak 
species (Quercus alba, Q. montana, and Q. ru-
bra) under severe drought conditions.  Hence, 
if drought frequency and severity increase as 
projected in GCMs (IPCC 2014, Melillo et al. 
2014), these observed differences in drought 
tolerance between diffuse-porous and ring-po-
rous species are likely to influence forest dy-
namics over large areas of the eastern US.  
These dynamics will be driven by a combina-
tion of direct effects (e.g., changes in competi-
tive ability due to climate variation; Pederson 
et al. 2015) and indirect effects resulting from 
altered disturbance regimes (Nowacki and 
Abrams 2015).  Predicting future species com-
position in oak forests is challenging; howev-
er, modeling approaches suggest that temper-
ate forest stands will see an increase in oaks 
over the next 50 to 100 years due to altered 
climate conditions (Bachelet et al. 2003, Clark 
et al. 2014b).  An increased oak component 
could result from reduced growth and higher 
mortality of mesophytic, diffuse-porous spe-
cies relative to oak species; however, lon-
ger-term and sustained changes will also re-
quire successful oak regeneration (Abrams 
2005, Fei et al. 2011) and the ability of oaks to 
outcompete other xerophytic species that will 
also be favored under drier conditions (Table 
1).  The challenges of oak regeneration under 
current climate conditions and disturbance re-
gimes are well documented (Brose et al. 2013, 
Brose and Waldrop 2014).  Although it is diffi-
cult to predict how increased drought frequen-
cy and severity will impact oak recruitment in 
the future, some studies suggest that oak re-
generation will be favored.  For example, 
Ibáñez et al. (2007) suggested that Quercus 

rubra recruitment would benefit under climate 
change conditions that result in warmer and 
drier conditions.  In addition, more frequent 
and severe fires (as defined by Keeley 2009) 
resulting from drier fuels and greater fuel 
loads could also favor oak regeneration (Blan-
kenship and Arthur 2006, Brose et al. 2013). 

Fires in the eastern US could increase in 
frequency and area burned during periods of 
low precipitation and high temperatures (La-
fon and Quiring 2012).  Compared to the earli-
er period of 1979 to 1996, fire season length 
has increased across the globe during the peri-
od 1996 to 2013, in which temperatures, 
length of rain-free intervals, and wind speeds 
were more pronounced and significantly relat-
ed to fire season length (Jolly et al. 2015).  For 
example, fire season length has shown a signif-
icant increase in the eastern US Coastal Plains 
(Jolly et al. 2015).  Over the last decade, this 
region has witnessed a substantial increase in 
wildfires and a group of large fires in Okefeno-
kee National Wildlife Refuge, the Osceola Na-
tional Forest, and adjacent lands burned 
~243 000 ha in 2007 (Georgia Forestry Com-
mission 2007).  Several models using GCMs 
coupled with indices of fire danger have pre-
dicted significant increases in wildfire area 
burned and fire severity, particularly in the 
Northern Hemisphere, including the southeast-
ern US (Lafon and Quiring 2012, Liu et al. 
2012, Bedel et al. 2013, Flannigan et al. 2013, 
Mitchell et al. 2014).  These models converge 
on the projection that mixed-oak forests in the 
eastern US will likely experience greater pro-
longed dry periods, increased wildfire risk, and 
larger areas burned.   

In addition to climate change and fire risk 
predictions, future projections indicate rapid 
land use and land cover changes, with 12 to 17 
million hectares of new development by 2060 
(Wear and Greis 2013).  These changes are 
driven in large part by increase in human pop-
ulation (Figure 3a), and urbanization is great-
est at the periphery of urban centers, expand-
ing the wildland-urban interface (WUI) (Fig-
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ure 3b, Wear 2011) through many areas of the 
eastern oak forest range.  This increasingly 
fragmented landscape may decrease opportu-
nities for prescribed burning due to a larger 
WUI (Mitchell et al. 2014), while at the same 
time predicted hotter, drier conditions seem 
likely to increase wildfire risk (Krawchuk et 
al. 2009, Marlon et al. 2009, Liu et al. 2012), 
causing concerns for the safety and health of 
an expanding population in the WUI.

Proposition 2: 
Management Intervention May Accelerate 

Re-Establishment of Oak Forests, 
but Oak Dominance Will Increase with or 

without Management

If projections of future climate and fire in-
teractions are correct for the eastern US (Flan-
nigan et al. 2009; Slocum et al. 2010a, b; Liu 
et al. 2012; Mitchell et al. 2014), we propose 
that changes in the frequency and severity of 
droughts and wildfire will favor oaks over the 
long term with or without management.  A key 
question for land managers is whether they 
should anticipate and help guide these dynam-
ics using management tools such as prescribed 
fire (Ryan et al. 2013) and thinning over short-
er time scales or allow them to unfold without 
intervention over longer time scales (Figure 
4).  More frequent and severe wildfires may 
reduce tree vigor (Clark et al. 2012, Arthur et 
al. 2015), accelerate decomposition and nutri-
ent losses (Trammell et al. 2004, Knoepp et al. 
2009, Alexander and Arthur 2010, Nave et al. 
2011, Elliott et al. 2012), and decrease net pri-
mary productivity and carbon accumulation 
and storage (Brzostek et al. 2014).  If these dy-
namics occur, the resulting condition of these 
highly disturbed forest ecosystems may be in-
consistent with management goals.  As an al-
ternative, management actions could be used 
to facilitate a more rapid transition to greater 
oak dominance, which would, in turn, create 
stands more resistant and resilient to these fu-
ture climate stressors (Millar et al. 2007), 
while providing a greater level of ecosystems 
services.  We recognize that our propositions 
are simplifications of highly complex relation-
ships that depend on the interaction of factors 
such as local site conditions (e.g., xeric vs. 
mesic upland oak stands), initial species com-
position, and historical and contemporary dis-
turbance regimes that could yield a variety of 
potential outcomes in time and space (sensu 
alternative stable states; Nowacki and Abrams 
2008).  For example, under low and moderate 

Figure 3.  (A) Projected changes in human popula-
tion density (by county) from the time period 1997 
to 2060 (Wear 2011).  Data are the change in peo-
ple per square kilometer (values are approximate 
after unit conversions and rounding) under the In-
ternational Panel on Climate Change (IPCC) A1B 
emissions scenario.  Areas in green denote areas 
where population density is projected to decrease.  
(B) Forecasted change in the proportion of the 
county in urban land use, A1B scenario, 1997 to 
2060 (Wear 2011).

A

B
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precipitation deficits, mesic upland stands may 
have sufficient soil water availability to buffer 
low and moderate deficits, but they would 
reach a threshold at high precipitation deficits 
in which ecosystem condition would decline 
due to accelerated mortality of mesophytic 
species (Figure 5a).  In contrast, under high 
precipitation deficits, xeric upland sites may 
be less prone to threshold responses than me-
sic upland sites because they have a greater 
proportion of drought-adapted xerophytic spe-
cies.  Active management (prescribed fire, 
thinning, or a combination) could be used to 

modify species composition in favor of more 
drought tolerant species and reduce water de-
mand, both of which would decrease drought 
vulnerability and impacts on ecosystem condi-
tion (Figure 5b).  

It is difficult to predict changes in the vul-
nerability to invasive species; however, known 
(and unknown) invasive species could interact 
with drought and create new fire regimes that 
dramatically alter structure and function.  For 
example, the expansion of the highly flamma-
ble cogongrass (Imperata cylindrical [L.] P. 
Beauv.) in the US coastal plain forests could 

Figure 4.  Conceptual diagram of future pathways to more oak-dominated forests with passive manage-
ment or active management intervention (see Agee 2002).  With passive management, stand structure and 
function will be driven by drought and wildfire that will favor oaks; however, the stands will be less vigor-
ous and poorer quality.  As an alternative, active management would facilitate and sustain desirable stand 
conditions that are more resistant and resilient to current and future droughts and wildfire.  Active manage-
ment could include selective removal of mesophytic species with thinning and prescribed fire.
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have substantial impacts on fire regimes and 
fire behavior (Lippincott 2000) in that region.  
Invasion by Microstegium vimineum (Trin.) A. 
Camus, a non-native annual grass, resulted in 
a positive invasion-fire feedback in which bio-
mass and recruitment of the invasive species 
were greater in burned than unburned decidu-
ous forests (Wagner and Fraterrigo 2015).  

Similarly, more severe fires that expose miner-
al soil could facilitate establishment of a wide 
variety of light-seeded species.  The conditions 
created by changing climate, along with other 
global changes such as elevated CO2, more 
fragmented landscapes, and invasive plant and 
animal species, will likely create novel struc-
tural and functional characteristics (Hiers et al. 
2012) that are not analogous to most of the oak 
forests that existed prior to mesophication 
(sensu Nowacki and Abrams 2008).  Exactly 
how these external drivers will shape the struc-
ture and functions of eastern US oak forests is 
unknown.  This uncertainty emphasizes the 
need to closely monitor forest change and re-
sponses to management actions in order to 
adapt to unanticipated outcomes. 

What types of management actions could 
be implemented in current forests to help facil-
itate the transition to more resistant and resil-
ient oak forests in the future?  Prescribed fire 
will continue to be a critical management tool 
in oak forests (Ryan et al. 2013); however, 
there will be challenges to using prescribed 
fire in an increasingly human-dominated land-
scape (Figure 3b; Mitchell et al. 2014).  More 
variable climate conditions may also result in 
greater and more flammable fuels, especially if 
drought increases mortality (Klos et al. 2009).  
These changing conditions emphasize the need 
for collaborative partnerships between land 
managers and researchers to conduct large-
scale experiments, monitor change and effec-
tiveness, and implement adaptive management 
as needed.  As a starting point, some guidance 
is provided by the large number of prescribed 
fire studies in eastern US oak forests.  For ex-
ample, Brose and Waldrop (2014) reviewed 
the literature over the past 50 years and con-
cluded that oak regeneration is most success-
ful after multiple growing-season fires and af-
ter a substantial reduction in overstory density.  
The success of using fire to alter species com-
position is variable; however, a common 
theme is that single, low-intensity fires often 
increase the importance of mesophytic species 

Figure 5.  Ecosystem condition with (A) passive 
management and (B) active management (e.g., 
thinning, prescribed fire, or a combination of the 
two; see Agee 2002).  Relationships between 
drought and forest condition are complex and driv-
en by differences in site conditions, current stand 
structure and composition, and historical and cur-
rent disturbance regimes.  For example, within the 
continuum of site conditions that support oak for-
ests, we hypothesize that ecosystem condition 
(based on metrics such growth rate, mortality) on 
mesic upland sites will be more resilient to low 
and moderate levels of precipitation deficit relative 
to xeric upland sites; however, at high precipita-
tion deficits, ecosystem condition on mesic up-
lands will degrade in a “threshold response” due to 
high rates of tree mortality.  Xeric upland oak sites 
will be inherently more resistant and resilient to 
drought at all levels due to a greater proportion of 
dry site oaks (e.g., white oak [Q. alba], scarlet oak 
[Q. coccinea]).  Active management could be used 
to maintain a higher level of ecosystem condition 
and reduce the magnitude of response to drought.

A

Bprescribed fire, thinning
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(Elliott et al. 1999, Blankenship and Arthur 
2006).  Like oak regeneration, multiple fires 
are more likely to promote mature oak forests 
(Hutchinson et al. 2012), although frequent or 
mixed-severity fires can reduce the vigor of 
surviving oaks.  In addition to favoring oak 
dominance, reducing density of mesophytic 
species will likely create stands that are more 
drought tolerant and resistant to large-scale 
mortality from changing climatic conditions.  
Oaks also have the added benefit of requiring 
less water for evapotranspiration, and hence 
greater water yield would be expected in 
stands that have perennial or ephemeral 
streams (Ford et al. 2011b, von Allmen et al. 
2015, Vose et al. 2016).  This could have im-
portant implications for creating stand condi-
tions that sustain ecosystem services, such as 
water supply, under drier conditions.  In areas 
where prescribed fire is not feasible (e.g., WUI 
areas), stand structure could be altered by me-
chanical or herbicide removal of mesophytic 
species.   

CONCLUSIONS

Restoration ecology has been guided by 
the notion of historical reference conditions 
(e.g., Falk et al. 2006, Stanturf et al. 2014).  
Similarly, the concept of desired future condi-
tions has often been referenced by historical 
observations and experiences of land manag-
ers (e.g., Druckenbrod et al. 2006, Dey and 
Schweitzer 2014).  Recently, both of these 
concepts have been challenged because the 
rapid pace of environmental changes will cre-
ate novel conditions in which historical refer-
ence conditions are not appropriate and de-
sired future conditions are not achievable 
(Hobbs et al. 2014, Golladay et al. 2015, Han-
berry et al. 2015).  In the case of oak resto-
ration, using prescribed fire could be viewed 
as an example of congruence among historical 
reference conditions, desired future condi-
tions, and achievable future conditions.  This 
congruence is possible because the reference 

condition (i.e., oak-dominated forests) was 
created under climatic conditions and distur-
bance regimes that are likely to be represented 
in the coming decades as a result of climate 
warming in the eastern US.  

If an increase in oak dominance is the pri-
mary desired future condition, then only pas-
sive management may be required as we hy-
pothesize that an increase in drought, wildfire 
frequency and severity, and other disturbances 
will favor oaks over mesophytic species in the 
long term (Figure 5).  However, these new dis-
turbance regimes may result in undesirable 
changes (e.g., reduced biomass and productiv-
ity, invasive species) in forest structure and 
function and decrease ecosystem services pro-
vided by oak forests.  Instead of passive man-
agement, we advocate for active management 
(Agee 2002) to facilitate a more rapid transi-
tion to oak dominance that could alleviate 
some of the negative impacts of severe 
droughts and wildfire on forest health and pro-
ductivity, while at the same time protecting or 
enhancing ecosystem services such as stream-
water quantity and quality.  The primary con-
straint will be a growing WUI that will ulti-
mately limit the widespread application of pre-
scribed fire and increase pressure to prevent 
and extinguish wildfires.  

While our propositions are based on syn-
thesis and interpretation of the scientific litera-
ture, several unknowns could further shape 
these future oak-dominated forests, such that 
novel structural and functional characteristics 
may emerge that will require adaptive man-
agement and restoration strategies (Hiers et al. 
2012).  For example, invasive species (insects, 
plants, diseases) and other global changes such 
as elevated CO2 could play a role in forest dy-
namics and disturbance regimes.  In addition, 
if future wildfires are more frequent and se-
vere, then reduced tree vigor and nutrient loss 
could decrease stand productivity.  We propose 
that the combination of climate change, wild-
fire, and other disturbances will create stand 
conditions that favor oaks with or without 
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