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Abstract. Research shows that some categories of human-ignited wildfires may be forecastable, owing to their temporal
clustering, with the possibility that resources could be predeployed to help reduce the incidence of such wildfires. We
estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal

land units in the United States, evaluating their forecast skill out of sample. Analyses show that an autoregressive
conditional Poisson model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample
compared with alternatives, and the simplest of the autoregressive conditional Poisson models performed the best.
Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire

hotspot forecast models using all model types were evaluated in a simulationmode to assess the net benefits of forecasts in
the context of law-enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive
net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools

were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires.
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Introduction

Wildland fire managers often have an objective to reduce the
number of unwanted human-ignited wildfires. Such wildfires
tend to be more damaging than other kinds of wildfires because,

on average, they are ignited closer to values at risk than naturally
ignited wildfires (e.g. Butry et al. 2002). People in their day-to-
day activities in wildland areas, including recreating and oper-
ating heavy equipment, accidentally ignite wildfires when fuel

conditions are amenable. Arsonists, in turn, ignite wildfires to
create damages to property and resources. Research has shown
that arson wildfires are clustered in space and time (Butry and

Prestemon 2005; Prestemon and Butry 2005; Prestemon and
Butry 2008). The tendency of certain kinds of crimes (e.g.
burglary) to cluster in space and time has been known for per-

haps centuries andwas documented in the literature at least eight
decades ago (e.g. Lottier 1938). Clusters of wildfires have also
been well known but less well documented until recent decades.
Butry and Prestemon (2005) and Prestemon and Butry (2005)

were the first, as far as we are aware, to quantify the tendencies
of arson wildfires to cluster at the daily time scale. Clusters were
found to persist for up to 10 days following the initiation of an

outbreak in Florida, and clusters were found to extend many
kilometres in space. In a similar study of national forests in
California (Prestemon and Butry 2008), wildfires were shown to

be clustered on national forests at the daily time scale. Pre-

stemon et al. (2012) documented the clustering of intentionally
ignited wildfires in Galicia, Spain, also at the daily time scale.
Prestemon et al. (2013a) showed how urban arson fires are also

clustered in time (days) and space. All of the above studies of
intentional firesetting documented temporal clustering at the
daily time scale separately from regular temporal patterns in the
numbers of wildfires associated with seasons (i.e. seasonality,

although some of these studies also quantified weekend day and
holiday effects). Although clustering at the daily time scale
implies possible clustering at larger temporal aggregates such as

weeks (again, separately from seasonality), research of which
we are aware has not documented this. And although all of these
studies examined intentional firesetting, no study of which we

are aware has examined this kind of clustering for other human-
ignited wildfires.

Clustering of wildfires can result from a variety of factors.
First, and true of all wildfire causes, fuel and weather conditions

may favour the successful ignition, spread, and then reporting of
a wildfire. Second, wildfire clusters may result from serial or
copycat firesetting behaviour (Prestemon and Butry 2005;

Prestemon et al. 2012). Further, clusters can arise from particu-
lar events that happen regularly or irregularly, such as in the days
around Halloween (e.g. Thomas et al. 2011) or during public
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disturbances, or in particular locations, such as ‘noman’s lands’,
where the threat of discovery is low. Average levels of human-
ignited fires, however, are a function of slower-changing bio-

physical factors such as climate and land cover as well as
socioeconomic variables that contribute to tendencies to inten-
tionally or accidentally ignite fires (e.g. population density,

economic conditions; see Thomas et al. (2012)). Rates can also
be modified by human efforts to limit their occurrence, such
as through wildfire prevention education efforts and law

enforcement (Prestemon et al. 2010; Abt et al. 2015) or fuels
management (e.g. Butry et al. 2010).

Clustering of crimes in space–time has motivated the creation
of operational predictive crime models, generally referred to in

the criminology and policing literature as hotspot tools (e.g.
Johnson and Bowers 2004). And as documented by Prestemon
et al. (2012, 2013b), because temporal and spatiotemporal

clustering is evident in intentional wildfires, it is possible to
design an arson prospective hotspot tool that could be used by
resource managers, firefighting organisations or law enforce-

ment. Such a tool for arson wildfires would utilise statistical
information about the manner of spatiotemporal clustering of
wildfires across a landscape or the temporal clustering of such

fires within a spatial unit to develop a forecast of future wildfire
activity.1 The predictability of firesetting processes implied by
the statistical model suggests that managers could respond to
cluster events or to conditions indicating imminent cluster events

early in the clustering temporal window. This response may
reduce either the size of the cluster (in space dimension, time
dimension, or space and time dimensions) or the damages that

occur from wildfires in the cluster. Reductions in the number of
wildfires within a cluster could avert the suppression expendi-
tures and the damages that would have occurred had the numbers

not been reduced. Predictability can also allow opportunistic
suppression resource pre-placement, which could enable shorter
response times and the application of greater suppression
resources on fires that occur, reducing the average size or per-

unit damages of wildfires that occur, either of which could
potentially reduce overall suppressionexpenditures anddamages.

Success in either reducing cluster size or decreasing wildfire

damages from fires that occur in the cluster requires that
managers (i) understand the clustering process, and (ii) can
predict its patternwith forecast skill. Success in economic terms,

however, requires also that (iii) predictions and responses to
them are less costly than the value of the losses averted. The
objectives of the present research are to (1) evaluate the predic-

tive abilities (forecast skills) of alternative forecast models
for incendiary2 and other human-ignited3 wildfires, based on
the level of technical sophistication and associated data

requirements, and (2) quantify, using a prototype economic
model based on the alternative forecasts and parameters from
recently published research on fire prevention (Abt et al. 2015),

the net benefits of deploying a prospective hotspot tool that
incorporates our forecast models. The spatial units of inference
are 23 US Bureau of Indian Affairs (BIA) tribal land units in the

United States (see Fig. 1). Models are based on weekly counts4

of historical data on incendiary and other human-ignited wild-
fires in the tribal land units, from as early as the first week of

January 1996 through the first week of October 2008. To gauge
forecast skills of these alternative models, they are each then
used to forecast wildfires from that point until the last week of
December of 2011, the end of our dataset. October generally

represents a low point in annual wildfire activity across the tribal
units studied. October 2008 also marks the end of,80% of our
data, allowing a forecast evaluation over the remaining 20% of

the data. The scientific advances we document include that: (1)
both incendiary and other human-ignited wildfires on tribal
lands in the United States demonstrate significant temporal

autocorrelation at the weekly time scale; (2) the simplest
forecast models tend to demonstrate the highest forecast skills;
(3) because incendiary wildfires respond more strongly to

increased law-enforcement whereas other human-ignited wild-
fires respond weakly, a prospective hotspot tool for incendiary
wildfires is more likely to yield positive net benefits and a high
return on its creation and deployment than is a prospective

hotspot tool for other human-ignited wildfires on tribal lands;
(4) prospective hotspot tools are more likely to yield positive net
benefits in places with larger wildfire clusters; and (5) the

selection of a forecast modelling form, from an economic
perspective, should consider the underlying wildfire risk – e.g.
sophisticated models are more appropriate for high-risk, wild-

fire-prone jurisdictions.
The remainder of this article begins with a description of five

alternative forecast approaches used to predict both incendiary
and other human-ignited wildfires, followed by a description of

the spatial and temporal domains of inference. Then, we
describe the hotspot tools and how net benefits are calculated
for an out-of-sample deployment in each tribal land unit.

Following this description, we report the net benefits of the
prospective hotspot tool and discuss the factors that help explain
the conditions under which such a tool is most likely to be

beneficial from an economic perspective.

Methods

Three forecasting approaches are considered based on the
assumed process generating the count of wildfire ignitions: (1) a

1In our analysis, we use the term ‘hotspot’ or ‘hotspot tool’ to be consistent with its usage in the fields of criminology and policing. Strictly speaking, our spatial

unit (defined in the next section) is the tribal land unit, so that the hotspot tool utilises information about temporal clustering (only) within the space defined by

the unit. Viewed across all units studied, spatiotemporal clusters – or hotspots – would be visible in space–time.
2The US Bureau of Indian Affairs identifies wildfires started intentionally by adults as ‘incendiary’. We use ‘arson’ when referring to the general concept of

intentionally setting a wildfire but use ‘incendiary’ when referring to the wildfire cause as classified in our dataset.
3The US Bureau of Indian Affairs identifies the following other human-ignited wildfire causes that we model in our study: campfire, smoking, fire use,

equipment, railroad, juveniles, and miscellaneous.
4The weekly time step was chosen because we assume that weekly model forecasts are more in line with the operational demands of land management,

firefighting and police organisations. These organisationsmay not have the staff available to daily enterwildfire occurrence data and generatemodel reports for

ensuing days but may have the resources to do this on a weekly basis.
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random-walk process; (2) an annualised moving-average pro-
cess; and (3) an autoregressive Poisson process. The associated
forecasting approaches vary in their level of technical sophis-

tication and data requirements.
The least sophisticated model, with little information needs

and hence simple to implement, is the random walk:

E Y ðtÞ½ � ¼ Yt�1 ð1Þ

where t indexes time, E[Y(t)] is the expected count and Yt�1 is

the count of wildfires from the previous period. It is obvious that
such a model would not be good at tracking, say, the rise and fall
of an outbreak andwould also yield an incorrect prediction at the

beginning and the period after the end of the outbreak. However,
this model would be particularly good at predicting zero fires in
long periods of wildfire inactivity.

A second method to predict the count would mimic the
‘CompStat’ approach first outlined and implemented in New
York City (e.g. Kelling and Bratton 1998) as a way of allocating
law-enforcement resources to address crime hotspots. Comp-

Stat, at its core, is backward-looking, using information on
recent crime occurrences to generate a crime probability map
for the coming operational period for each spatial unit under

consideration. It could be considered a random walk or, when
coupled with multiple periods of historical data, a moving-
average prediction of crime likelihoods for a given spatial unit.

For wildfire count prediction, we implement what we label the
‘CompStat53’ predictor, a 1-year lag of a 5-week moving
average of the observed count. The ‘53’ recognises that 1 year

is slightly more than 52 weeks and that we intend to forecast the

week’s count of wildfires that is approximately centred 365 days
previous to the current year:

E Y ðtÞ½ � ¼ Yt�55 þ Yt�54 þ Yt�53 þ Yt�52 þ Yt�51ð Þ=5 ð2Þ

Finally, the autoregressive conditional Poisson (ACP) (Heinen
and Rengifo 2003) is a time-series count model that relates

the count (of incendiary or other human-ignited wildfires in
our case) as a function of observedwildfire counts from previous
recent periods, exogenous predictors (such as temperature, a fire

index, an indicator variable, which may be from current or
previous periods), and lagged predictions of the number of
wildfires. Specifically, the ACP model parameterises a vector
autoregressive moving-average process that relates the condi-

tional mean in period t, E[Y(t)|F (t)]¼mt, to variables in the
information set, F (t), containing a set of exogenous predictors
(excluding a constant), x(t), p lagged observed counts,Yt�p, and

q lagged conditional means, lt�q:

mt ¼ exp xðtÞ0b� �
Oþ

Xp

i¼1

AiYt�i þ
Xq

i¼1

Bimt�i

" #

ð3Þ

where exp is the exponential operator; b, O, the Ais and the
Bis are parameters to be estimated; and i indexes the auto-
regressive moving-average process. In our modelling, we

describe three subtypes, which vary in their data requirements,
of the ACP model that is estimated to predict the counts
of incendiary and other human-ignited wildfires. First is a

‘pure’ ACP, i.e. excluding exogenous regressors, implying

Fig. 1. Locations of tribal land units in the United States modelled in this study.
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that exp[x(t)0b]¼ exp[0]¼ 1 and up to five lags of observed
counts, i.e. Y(t)¼ (Yt�1, Yt�2, Yt�3, Yt�4, Yt�5)

0. The second
subtype populates the x(t) vector with a set of 1-week lags of

weather variables. The third subtype replaces the weather
variables in x(t) with month indicator variables, intended to
capture regular seasonal variations in the occurrences of

incendiary and other human-ignited wildfires.
The likelihood function, calculated over all t¼ 1,y,T obser-

vations, associated with Eqn 3 is:

lnL ¼
XT

t¼1

Yt ln exp xðtÞ0b� �
Oþ A0YðtÞ þ B0lt�k½ �� ��

� exp xðtÞ0b� �
Oþ A0YðtÞ þ B0lt�k½ � � ln Yt!ð Þg

ð4Þ

In total, there are three ACP models, a random-walk model, a
CompStat53model and an ensemblemodel, which are described
in detail below, resulting in a total of six models being exam-
ined. Model parameters are separately estimated for each of the

23 tribal areas.
The ability of a predictive model of wildfires to yield

benefits depends in part on its predictive skill, that is, its

capacity to accurately forecast the number of wildfires occur-
ring in a future period given information available in the
current period. For the present study, we also define a success-

ful prediction as one in which a forecast model correctly
predicts whether there will be an outbreak. Given the low
counts of wildfires occurring in many of the tribal units we are

evaluating, we define an outbreak as a week with at least one
wildfire reported for the cause we are interested in (incendiary,
other human-ignited). Similarly, we define a forecast outbreak
as a forecast count .0.50.5

One way to evaluate forecast performance is to estimate the
parameters of a predictive model using a training sample and
then use the estimated model to predict wildfires over a hold-

out sample. Forecast skill, then, can be evaluated by comparing
an estimated model with a ‘null’ model, which could be
something simpler. In this study, we offer several measures

of comparison, all calculated on the outcomes of forecasts
made in the hold-out sample. These include the root-mean-
squared error (RMSE), bias (defined here as the average of the
actual value minus the predicted or forecast value), the mean

absolute error, and the proportion of weeks correctly predicted
to have at least one wildfire. A final measure we employ, which
is critical to hotspot tool success, is the rate of successful

outbreak forecast.
The value of a prospective hotspot model is a function of the

underlying statistical model’s predictive ability (whether an

outbreak is successfully predicted), the costs of hotspot tool
development and maintenance, the cost of redeploying
resources to respond to a prospective outbreak, and the manage-

ment costs and losses averted by deploying the hotspot tool,
including suppression expenditures averted and the wildfire

damage losses averted. We call this value the ‘net benefits’ of
a prospective hotspot tool implementation:

NB0 ¼ R0 � C0

R0 ¼ �PT

t¼0

e�rt dYt At � dAtð ÞðS þ DÞ½ � þ dAt Ytð ÞðS þ DÞ½ �

C0 ¼ I0 þ
PT

t¼1

e�rt Mt þ Ptð Þ

ð5Þ

whereNB0 is the discounted net benefit (e.g. in dollars),R0 is the
discounted benefit from averting wildfire damages due to
deployment of the tool, C0 is the discounted cost of using and
reallocating resources (police or firefighting resource preposi-

tioning) in response to the tool, r is the discount rate (fractional
interest rate per unit of time), T is the number of periods over
which costs and benefits are evaluated, dYt is the change in the

number of wildfires that occur in year t, At is the (average) area
of a wildfire averted in period t, dAt is the change in area from
average due to improved wildfire response (such as through

more effective resource deployment), S is the suppression
expenditure per unit area of wildfire, D is the damage from
wildfire per unit area of wildfire, I0 is the initial cost of tool
development,Mt is themaintenance cost of the tool, which could

include gathering of data on recent wildfire occurrences and the
re-estimation of predictive model parameters, and Pt is the
additional cost of prevention and deterrence from use of the

tool. Another way to evaluate net benefits of a tool would be to
relate long-run benefits to long-run costs as a ratio, the benefit–
cost ratio W0:

W0 ¼ R0=C0 ð6Þ

As shown inEqn 5, benefits of a hotspot tool can derive from two

possible mechanisms: a reduction in the expected number of
wildfires, dYt, which could happen owing to successful deter-
rence, arrest or pushing an arsonist to a less fuel-rich location; a

reduction in the area burned by the typical wildfire, dAt; and
through changes in those variables, a reduction in damages (D).
In the analyses reported in this study, we lacked information on
how effective a prospective hotspot tool would be at reducing

area burned by wildfires and therefore assumed that dAt¼ 0,
which implies Pt¼ 0, and that At¼A, a constant; hence, the last
square-bracketed term in the second line of Eqn 5 is zero.

Furthermore, in our base analyses for the purposes of this article,
we also ignore wildfire damages, that is, we setD¼ 0 (although
we conduct a sensitivity analysis that describes the potential

impacts of accounting for damages when calculating net bene-
fits, reported at the end of the Results section). Our analyses
therefore only account for the effect of a change in the number of
wildfires as a result of a prediction of wildfires in the coming

week and, through suppression (S), quantify this in terms of the

5Because autoregressive models rely on using observations that immediately precede the time period being forecast, they often struggle to forecast an incident

accurately when there is a preponderance of observations with a value of zero preceding that incident. For example, it is difficult for an autoregressive model to

predict awildfire outbreakwhen there have been long preceding periodswithout awildfire. In the data being analysed,manyweeks can go bywithout awildfire

in the spatial unit. For this reason, a single wildfire is considered an outbreak.
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suppression expenditures averted. So the change is not only a
function of how wildfires respond to a change in a response
variable but also the success of the model in predicting that

wildfires would occur: dYt¼ f(dZ, predictive success), where dZ
is the change in the response variable and predictive success is
the rate of correct prediction of incendiary or other human-

ignited wildfires.
To model the effect of a change in wildfires, we used

information on the effect of one response variable, law enforce-

ment, whose measure of effect was obtained from Abt et al.
(2015). In Abt et al. (2015), the effect of an additional full-time
equivalent sworn law-enforcement officer was to reduce the
occurrence of incendiary by 3.13%, which was statistically

significant at the 0.05 level. The average level of these officers
among the tribal land units studied was 27.9 from December
2008 through endDecember 2011. Hence, a one-person increase

represented a 3.58% increase in the number of full-time equiva-
lent sworn law-enforcement officers. The elasticity of the count
of arson wildfires was therefore �3.13/3.58¼�0.87. For other

human-ignited wildfires, law enforcement was statistically
significant at the 0.05 level only for equipment-ignited wild-
fires, and its elasticity was �2.80. Equipment-ignited fires

represent only ,15% of wildfires on the tribal lands, so the
average share-weighted elasticity was set at �0.12. But this
elasticity was allowed to vary across land units according to the
share of equipment-ignited wildfires among all other human-

ignited wildfires besides incendiary. The effective elasticity for
other human-ignited wildfires therefore varied from 0 to�0.59.

The predictive success of amodel, and the value generated by

employment of that model in a forecasting context, can be
improved by combining several, alternatively structured fore-
cast models into an ensemble (Levins 1966; Armstrong 2001;

Graefe et al. 2014). A central finding from the most recent
forecasting literature (e.g. Armstrong 2001; Graefe et al. 2014)
is that uncertainty about the data-generating process of the
forecast variable is alleviated by combining multiple models.

Armstrong (2001), in a study of 30 different published empirical
forecasts, found that an ensemble created by equally weighting
all component models generally outperforms individual com-

ponent models and alternative combinations that apply unequal
weights. The exception to the equal-weighting rule is when there
is strong evidence to suggest that one model should perform

better than others, in which case the former is given greater
weight. In our study, we equally weight three alternative
forecast models of the number of incendiary and other human-

ignited wildfires from the various models: the ACP model
without any additional covariates, the random walk and Comp-
Stat53. The simple ACP (purely autoregressive) model was
chosen in part because it had lower average out-of-sample

forecast RMSEs (see Tables S10 and S14 in the supplementary
material, available online), compared with the weather- and the
seasonality-augmented versions of the ACP. This ensemble is

also evaluated in terms of its net benefits, along with those of the
individual component models.

Finally, we emphasise that themodels used are intended to be

simple – with few data requirements – and are designed to

forecast. They are not intended to make inferences about the
underlying causes of incendiary or other human-ignited wild-
fires. Those interested in these underlying causes should exam-

ine published articles such as Abt et al. (2015), Prestemon and
Butry (2005, 2008), Prestemon et al. (2010, 2012, 2013b) and
Thomas et al. (2011). But it bears mentioning that the week-to-

week dynamics, which are one focus of the present analysis, are
not likely to be explained by information on the weekly
dynamics of most socioeconomic drivers, not least because

these drivers are unlikely to vary appreciably at this time scale,
but also because data on the drivers identified by those other
studies are not reported on a weekly basis and therefore not
available to the authors of the current study. Serial and copycat

firesetting, which is one social phenomenon identified by these
studies, however, is captured in our statistical modelling – the
autoregressive nature of fire occurrences, at least for incendiary

wildfires.

Data

Data on incendiary and non-incendiary accidentally ignited
(other human-ignited) wildfires were obtained from the

National Wildfire Coordinating Group (2012), assigning fires
according to the ignition start location and cause for each of the
23 tribal land units in the current study (Table 1). We note
significant variability in the rate of incendiary and other human-

ignited wildfires and substantial variability in the average costs
of suppressing an average wildfire across regions. Weather and
fire-weather data used in the weather data-augmented version of

the ACP model were obtained for the Remote Automated
Weather Stations (RAWS) recorded and made available on the
National Fire and Aviation Management Web Applications

website (FAMWEB) of the National Wildfire Coordinating
Group (2012). These weather data were processed through
software that uses all available RAWS weather station data to
create an area-specific set of monthly weather and fire-weather

index averages for each of the tribal units. Although many
possible weather variables and fire-weather indices could be
used in the analysis, we settled on four: the weekly average of

the daily maximum temperature (in degrees Fahrenheit), the
weekly average of the maximum daily relative humidity (in
percentage humidity), the weekly maximum modified fire

weather index (MFWI) (Goodrick 2002) (on a 0 to 100 scale),
and the weekly maximum Keetch–Byram Drought Index
(KBDI, Keetch and Byram 1968) (on a 0 to 800 scale). In all

model estimates, these variables were included as 1-week lags.

Results

Statistical model estimates

A total of six models were examined, with parameters being
estimated for 23 tribal areas. We estimated models that omitted

themoving-average portion (i.e. all elements ofBwere assumed
to be zero) of the models shown in Eqn 3 and instead estimated
only autoregressive models (i.e. A$ 0).6 ACP model estimates

without any additional variables beyond the autoregressive
terms were made by starting with up to six lags. Invariably, the

6Visual inspection of the correlograms of the incendiary and other human-ignited wildfire time series indicated that the autocorrelations declined in geometric

progressionwhereas the partial autocorrelations dropped off abruptly after a two to four lags and tended to be shorter than the autocorrelations across time lags.
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estimated models’ lag structures had to be shortened to permit
convergence in maximum-likelihood estimation. Progressively

shorter autoregressive specifications were attempted until con-
vergence was achieved. In nearly every case, when convergence
was achieved, all included coefficients of autoregressive terms

were significantly different from 1 (autoregressive terms were
estimated as exponentials) at stronger than 10% significance and
usually stronger than 1%. Convergence was not achieved in one

tribal unit for other human-ignited wildfires: for MNRLA. In
that case, counts ranged from 0 to 267 during the model esti-
mation period (data for this unit were available from the last
week in April 1996 to the end of the estimation period, the first

week of October 2008). In the tables of ACP model results
(available in Tables S1 through S6), the autoregressive terms are
estimated as exponentials, which constrains their sign to be

positive (tests of the joint significance of the autoregressive
terms being zero are available in Table S7); in other words, no
negative autoregressive behaviour is permitted in the data-

generation process modelled with Eqn 3. The column headers
call these terms A1, A2,y, referring to the elements of A iden-
tified in Eqn 3 and indicating the parameters estimated for
autoregression of first order, second order, etc. For the purely

autoregressive versions of the ACPmodel for incendiary (Table
S1) and other human-ignited wildfires (Table S2), between
two and five autoregressive terms were found. The weather-

augmented versions found (Tables S3 and S4) usually included
the 1-week lag of maximum temperature, relative humidity and
the MFWI, with the 1-week lag of KBDI less often statistically

significant. Seasonal subtypes of (1) (Tables S5 and S6), which
did not include the weather and fire weather indices but did

include month indicator variables to account for the seasonally
episodic nature of wildfires in each land unit, had month indi-

cator variables that were highly statistically significantly dif-
ferent from the expected ignition rate in December (the base
year). For most tribal land units, only a few month indicator

variables remained in the model, corresponding typically with
the fire season in the land unit. In the results in Tables S5 and S6,
where no value is shown, the month indicator variable could not

be estimated owing to failure of log-likelihood convergence. For
the weather- and seasonally-augmented versions of the ACP
models, often fewer autoregressive terms were sometimes
required to achieve convergence in maximum-likelihood esti-

mation. This lower autoregressive order implied that the
weather or month indicator variables accounted for some of the
autoregressivity evident in the incendiary or other human-

ignited wildfire process. We contend that this result indicates
that one source of autocorrelation was explained by the bio-
physical conditions (weather, fuels) that are likely to be simi-

larly temporally autocorrelated.
Model fit statistics for the hold-out sample (from the second

week of October 2008 to the end of December 2011) for all
models evaluated in this study reveal that the ACP types

typically were better at forecasting out-of-sample than the
random walk or CompStat53 approaches (Tables S8 through
S15). However, the ensemble of the simple ACP, the random

walk and CompStat53 usually had the best fit, when considered
across all fit measures. For example, the RMSE was lowest for
the incendiary wildfire forecast ensemble model in 14 out of 23

cases and the second-lowest in 3 more cases. In terms of the
mean absolute error, it was the lowest in only two cases (tying in

Table 1. Tribal units analysed and average weekly fire counts, January 1996 through April 2012

Fire data identifier Fire data name States included

in unit

Average incendiary

fires per week

Average other

human fires

per week

Suppression

expenditures

(US$ per fire)

AZFTA Arizona Fort Apache Agency Arizona 0.26 0.81 10 581

AZNAA Arizona Navajo Regional Office Arizona, New Mexico, Utah 0.42 1.17 10 581

AZPMA Arizona Pima Agency Arizona 2.20 1.64 10 581

AZSCA Arizona San Carlos Agency Arizona 2.77 3.01 10 581

CAHIA California Hoopa Valley Tribe California 0.28 0.41 17 416

CARVA California Round Valley Tribe California 0.76 0.25 17 416

CATIA California Tule River Indian Reservation California 0.81 0.08 17 416

MNMNA Minnesota, Minnesota Agency Minnesota 1.56 1.30 3683

MNRLA Minnesota Red Lake Agency Minnesota 0.35 5.89 3683

MTCRA Montana Crow Agency Montana 0.36 1.71 10 581

MTFPA Montana Fort Peck Agency Montana 0.35 1.77 10 581

MTRBA Montana Rocky Boy’s Agency Montana 5.34 0.64 10 581

NDFTA North Dakota Fort Totten Agency North Dakota 0.62 0.22 3093

NDSRA North Dakota Standing Rock Agency North Dakota 0.79 2.06 3093

NDTMA North Dakota Turtle Mountain Agency North Dakota, Montana 0.52 2.49 3093

OKANA Oklahoma Anadarko Agency Oklahoma 0.27 0.71 3068

OKCHA Oklahoma Chickasaw Agency Oklahoma, Texas 1.61 0.75 3068

OKCNA Oklahoma Cherokee Nation Tribe Oklahoma 0.58 0.46 3068

OKOMA Oklahoma Okmulgee Field Office Oklahoma 0.69 0.41 3068

OKOSA Oklahoma Osage Agency Oklahoma 1.05 0.81 3068

OKTLA Oklahoma Talihina Agency Oklahoma, Texas 0.34 0.29 3068

SDRBA South Dakota Rosebud Agency South Dakota, Nebraska 0.47 3.13 3093

WIGLA Wisconsin Great Lakes Agency Wisconsin, Minnesota 0.00 0.66 3683
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two others). Its success in predicting a week with at least one
incendiary wildfire was intermediate in success compared with

the performance with respect to the RMSE. The ability of the
other human-ignited wildfire forecast models to forecast out-of-
sample was not as good as for the comparable incendiary

wildfire models. But typically the ensemble model had fitness
statistics that were among the best or second best, comparing
across models.

Net benefits estimates

Net benefits and the benefit-to-cost ratio were estimated for
incendiary and other human-ignited wildfires. Estimates were

made for each of the 23 tribal areas, using each of the sixmodels.
Key assumptions of the net benefits calculations (Eqns 5 and 6)
are documented in Table 2. We assumed a plausible initial

cost for tool development for each tribal land unit, tending
towards high initial cost, at US$50 000 per model per tribal land
unit.7 In principle, all such tribal land unit models could be
estimated simultaneously for the wildfire, firefighting and law-

enforcement organisations concerned with such fires, which
would reduce the per-land unit cost significantly. For example,
dividing the cost equally among the 23 land units in our study

would bring the initial cost to just over US$2000. Weekly main-
tenance and use costs of the models were each set at US$75 per
week for both incendiary and other human-ignitedwildfires, as the

cost of maintaining and using such models is likely to be modest:
entry of the most recent week’s wildfire counts and the develop-
ment of the coming week’s forecast report. The time horizon for

assessing the tool is set at 5 years, which is conservative; such a
tool could be deployed for much longer. The discount rate, used
to sum up both the future costs of model maintenance and use
and the suppression expenditures avoided through deployment

of law-enforcement resources, was set at 3%. (A sensitivity
analysis showed that application of discount rates from 1 to 7%
did not affect the benefit-to-cost ratio appreciably, because both

benefits and costs would be affected by the discounting by a
similar percentage, although a higher discount ratewould tend to

reduce the long-run net benefits in cases in which these net
benefits are positive.) The number of hotspots per week (actu-

ally the number of weeks for which either incendiary wildfires
or other human-ignited wildfires were non-zero) varied from
0.05 to 0.61 for incendiary and 0.03 to 0.58 for other human-

ignited wildfires in the forecast period (the second week of
October 2008 through to the last week of December 2011). The
average count of such wildfires in weeks in which incendiary or
other human-ignited wildfires were non-zero ranged from 1.08

to 8.69 for incendiary and 0.75 to 11.26 for other human-ignited
wildfires in the forecast period. Suppression expenditure esti-
mates were obtained from Abt et al. (2015, their table 12), and

these also varied by location but not by wildfire cause: from US
$3068 per wildfire for eastern Oklahoma (all tribal land units
from Oklahoma in our study are assumed to be ‘eastern Okla-

homa’ in the net benefits calculations) to $17 416 for the tribal
land units in California (Table 1). The share of wildfire weeks
correctly predicted out of sample for bothmodels rangedwidely,
from a low of zero predicted to a high of all predicted success-

fully (see Table S11 for incendiary and S15 for other human-
ignited wildfires). Predictive success is a key determinant of
hotspot model net benefits. Across all tribal units and model

types, the average rate of prediction success for incendiary
wildfires was highest for the ensemble model, at 0.65, compared
with the random-walk and CompStat53 approach averages of

0.54 and 0.57 respectively, with intermediate rates for the var-
iants of the ACP models averaging ,0.58. For other human-
ignited wildfires, the ensemble was similarly better, with an

average rate of 0.65, whereas the random walk was 0.55,
Compstat53 was 0.56, and the ACPmodel variants were,0.62.

When modelling the effect of a change in law enforcement,
our base assumption was that law-enforcement spatial density

during the period of incendiary or non-incendiary human-ignited
wildfire outbreak would be increased by 25% from base levels.
The cost of this shift is not accounted for in the calculations

but it is presumed to be essentially costless to the extent that
during non-incendiary periods of the year, law-enforcement

Table 2. Assumptions of the baseline net benefits calculations with prototype hotspot models

Note: the ranges shown reflect the variation across tribal units

Incendiary assumptions Other human fire assumptions

Elasticity of wildfire count with respect to police patrol density �0.87 (0, �0.59)

Cost of hotspot tool development

Initial development (US$) 50 000 50 000

Maintenance (US$ per week) 75 75

Use (US$ per week) 75 75

Time horizon of evaluation (years) 5 5

Discount rate (%) 3 3

Number of hotspots per week [min., max.] [0.05, 0.61] [0.03, 0.58]

Number of pre-intervention wildfires per week [min., max.] [1.08, 8.69] [0.75, 11.26]

Suppression expenditure (US$ per wildfire) [min., max.] [3068, 17 416] [3068, 17 416]

Base response rate in law-enforcement patrol density (% increase in density) 25 25

Predictive success (rate of correct non-zero wildfires forecast) [0, 1] [0, 1]

7We do not imply here that the tribal unit would be the organisation financing the development of the hotspot tool; the tool could be financed through the Bureau

of Indian Affairs or another organisation. The net benefits analysis, however, does recognise the cost of its development as being borne by the same body

(e.g. the federal government) also shouldering the cost of wildfire suppression in our analysis.
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density could be reduced below base levels. In our simulations,
we vary this assumption to examine its impacts on net benefits.

Net benefits of hotspot tool development and deployment for

incendiary and other human-ignited wildfires are reported in
both dollar terms and as benefit-to-cost ratios in Tables 3–6. For
incendiary wildfires, net benefits are shown in Table 3 and

benefit-to-cost ratios in Table 4; for other human-ignited wild-
fires, net benefits are reported in Table 5 and benefit-to-cost
ratios in Table 6. In our case, the benefits are only suppression

expenditures averted because of fewer wildfires for which
suppression is applied. Clearly, there could be other benefits
to averting incendiary and other human-ignited wildfires,
including reduced rates of property and resource damages as

well as lowered rates of losses associated with human morbidity
and mortality and lost economic activity (in the case of large
wildfires) – see e.g. Butry et al. (2001). The cost is the

discounted sum of the initial tool development and the cost of
annual maintenance and use. For incendiary, net benefits under
the given assumptions ranged from 5-year net losses of several

tens of thousands of dollars (e.g. OKCHA tribal land unit) to
gains of over US$2.2 million (e.g. CAHIA). The largest gains,
we note, derive from the ensemble approach to forecasting, in

which forecasts of incendiary wildfire activity in the coming
week were made by averaging the forecasts of the simple ACP
model (no covariates besides the constant and an autoregressive
term), the random walk and CompStat53. Larger gains are also

evident for tribal land units with higher average rates of

incendiary wildfires; in these cases, by reducing the count of
incendiary wildfires through increased law enforcement, the
suppression expenditures averted are larger. For incendiary

wildfires, using the ensemble forecasting approach, 8 out of
the 23 tribal units would experience negative net benefits from
deploying an incendiary wildfire hotspot tool. A simple average

across tribal units reveals the most preferred incendiary fore-
casting approaches. The net benefits were lowest when a
weather-augmented ACP was used (US$99 312) and highest

when the ensemble was used (US$228 646). These results are in
line with the benefit-to-cost ratios (Table 4), in which 15 units
had ratios greater than 1, while CAHIA could demonstrate a
ratio of 27.67. On average across all land units, the lowest

benefit–cost ratio expected was the weather-augmented ACP
model (2.16) and the highest derived from the ensemble forecast
model (3.67). One finding that emerges from our results on

incendiary wildfire hotspot tool net benefits is that such benefits
are positively related to predictive success (from Table S11).
Locations with higher model predictive success tend to be those

with the highest net benefits. A similar finding emerges when
examining the net benefits for non-incendiary accidentally
ignited wildfires.

A sensitivity analysis (results not shown) of the effect of joint
model estimation for all units, which lowered the initial model
development cost from US $50 000 to US$2174, resulted in 20
out of 23 tribal units having benefit-to-cost ratios exceeding 1

using the ensemble model. A sensitivity analysis that increased

Table 3. Net benefits of a prototype incendiary wildfire hotspot tool for selected Bureau of Indian Affairs tracked tribal land units in the United

States

ACP, autoregressive conditional Poisson

Tribal land unit Net benefits (US$), multi-year discounted Average ignitions

per week

Simple ACP Weather-augmented ACP Seasonal-augmented ACP Random walk CompStat53 Ensemble

AZFTA �51 098 �41 206 �51 098 �33 786 �48 625 �18 948 0.17

AZNAA �41 762 �52 394 �56 501 �25 516 �17 990 �7316 0.71

AZPMA 168 543 �35 866 98 745 303 154 243 327 333 068 0.72

AZSCA 175 586 175 586 182 119 276 843 325 838 325 838 0.78

CAHIA 1 457 404 1 457 404 1 476 455 2 114 661 2 200 390 2 286 119 1.98

CARVA �4628 �4628 �4628 18 542 �68 344 1165 0.27

CATIA 63 587 63 587 96 767 100 914 212 895 188 011 0.28

MNMNA �29 722 �35 322 �12 922 �10 122 23 477 23 477 0.50

MNRLA 243 584 243 584 214 527 379 180 408 236 495 405 2.51

MTCRA �65 609 �65 609 �65 609 �55 553 �10 300 �40 469 0.14

MTFPA �76 872 �68 022 �76 872 �72 447 �79 084 �72 447 0.07

MTRBA 87 459 87 459 77 272 158 769 296 294 235 172 0.56

NDFTA 329 834 325 593 321 353 429 482 467 645 505 809 2.63

NDSRA �36 515 �72 302 �43 225 �25 332 �58 882 �21 977 0.51

NDTMA 17 240 10 139 6589 47 418 79 372 74 046 0.99

OKANA 62 073 67 831 63 992 138 849 150 366 176 278 1.35

OKCHA �79 525 �79 525 �79 525 �77 976 �85 722 �77 976 0.12

OKCNA 359 201 348 215 342 722 499 269 474 551 614 619 3.43

OKOMA 675 �4561 �20 270 36 019 32 092 63 509 0.89

OKOSA 90 668 86 749 82 829 161 224 220 021 208 262 1.78

OKTLA �15 362 �17 495 �19 627 628 �2570 29 412 0.69

SDRBA �68 053 �69 820 �71 587 �64 519 �64 519 �48 617 0.34

WIGLA �37 632 �35 227 �40 036 �20 801 �20 801 �13 587 0.38

Average 110 829 99 312 105 281 186 039 203 377 228 646 0.95
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the change in law enforcement presence by 50% rather than 25%

had the same effect using the ensemble model, increasing the
number of tribal units to 20 with a benefit-to-cost ratio exceed-
ing 1. In effect, lower costs of model development or mainte-

nancewould tend to increase net benefits.We note that, in actual
cases of development and field deployment, development and
deployment costs will likely differ significantly from the base

assumptions of our analysis.
For other human-ignited wildfires, net benefits (Table 5) are

much more modest and typically negative, and the benefit-to-
cost ratios (Table 6) are accordingly smaller. Because law

enforcement would be expected to have only a small effect on
the number of other human-ignited wildfires, the number of
other human-ignitedwildfires avertedwould be lower and hence

the suppression expenditures averted would also be lower. For
these other human-ignited wildfires, 5-year discounted net
benefits ranged from a loss of nearly US$86 000 (e.g. MTRBA

and CATIA) to a gain of US$18 515 (OKOSA) using the
ensemblemodel. As in the case of an incendiarywildfire hotspot
tool, tribal units for which tool development and deployment

would generate the highest net benefits were typically those
which had higher average rates of such other human-ignited
wildfires, but also those with higher proportions of equipment-
ignited wildfires (assumed to be the only cause of wildfire that

responds to law enforcement, as based on Abt et al. (2015)).
Averaged across tribal land units, the ensemblemodel generated
the highest net benefits, at �US$55 062, whereas the lowest

emerged from the random-walk wildfire forecast model, �US

$61 458. Benefit-to-cost ratios were generally less than 1 for
other human-ignited wildfires. The highest value shown was for
OKOSA (1.22 using the ensemble forecasting approach). Aver-

aged across tribal land units, the benefit-to-cost ratio was lowest
for the random walk and highest for the ensemble. Only one or
two land units (depending on the forecast model) were found to

have net benefits exceeding zero and benefit-to-cost ratios
exceeding 1. Sensitivity analyses that, like in the case of
incendiary wildfires, decreased the model development costs
to US$2174 or increased the law enforcement presence to 50%

had similar effects: the number of tribal units with positive net
benefits and benefit-to-cost ratios exceeding 1 increased to four,
five or six (depending on the forecast model) under both

sensitivity analyses.
Clear from the above discussion is that the cost of model

development is a primary factor working against economic

arguments for tool deployment. Lower model development
costs tend to improve the net benefits. As a sensitivity analysis
on this assumption, we evaluated what would be the maximum

cost of tool initial development needed to just achieve net
benefits that are positive. Tables 7 and 8 describe those amounts
for incendiary and other human-ignited wildfires respectively.
Amounts that are negative reveal cases in which the hotspot tool

could never yield positive net benefits, under base assumptions
for other key variables (Table 2). For incendiary wildfires, the
hotspot tool would be deployed with positive net benefits in all

Table 4. Benefit-to-cost ratio of a prototype incendiary wildfire hotspot tool for selected Bureau of Indian Affairs tracked tribal land units in the

United States

ACP, autoregressive conditional Poisson

Tribal land unit Net benefits (US$), multi-year discounted Average ignitions

per week

Simple ACP Weather-augmented ACP Seasonal-augmented ACP Random walk CompStat53 Ensemble

AZFTA 0.40 0.52 0.40 0.61 0.43 0.78 0.17

AZNAA 0.51 0.39 0.34 0.70 0.79 0.91 0.71

AZPMA 2.97 0.58 2.15 4.54 3.84 4.89 0.72

AZSCA 3.05 3.05 3.12 4.23 4.80 4.80 0.78

CAHIA 18.00 18.00 18.22 25.67 26.67 27.67 1.98

CARVA 0.95 0.95 0.95 1.22 0.20 1.01 0.27

CATIA 1.74 1.74 2.13 2.18 3.48 3.19 0.28

MNMNA 0.65 0.59 0.85 0.88 1.27 1.27 0.50

MNRLA 3.84 3.84 3.50 5.42 5.76 6.78 2.51

MTCRA 0.23 0.23 0.23 0.35 0.88 0.53 0.14

MTFPA 0.10 0.21 0.10 0.15 0.08 0.15 0.07

MTRBA 2.02 2.02 1.90 2.85 4.46 3.74 0.56

NDFTA 4.85 4.80 4.75 6.01 6.46 6.90 2.63

NDSRA 0.57 0.16 0.50 0.70 0.31 0.74 0.51

NDTMA 1.20 1.12 1.08 1.55 1.93 1.86 0.99

OKANA 1.72 1.79 1.75 2.62 2.75 3.06 1.35

OKCHA 0.07 0.07 0.07 0.09 0.00 0.09 0.12

OKCNA 5.19 5.06 5.00 6.82 6.54 8.17 3.43

OKOMA 1.01 0.95 0.76 1.42 1.37 1.74 0.89

OKOSA 2.06 2.01 1.97 2.88 3.57 3.43 1.78

OKTLA 0.82 0.80 0.77 1.01 0.97 1.34 0.69

SDRBA 0.21 0.19 0.16 0.25 0.25 0.43 0.34

WIGLA 0.56 0.59 0.53 0.76 0.76 0.84 0.38

Average 2.29 2.16 2.23 3.17 3.37 3.67 0.95
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cases except two (MTFPA andOKCHA) if the initial cost of tool
development were no higher than US$1383 (the maximum
allowed for SDRBA) using the ensemble model approach. If

tool development were no higher than US$9531, then only
SDRBA would drop below positive net benefits under the
ensemble approach. For other human-ignited wildfires, as long

as the initial cost of tool development were no more than US
$823 (for AZFTA), then six tribal units would be able to deploy
the hotspot tool with positive net benefits. Raising that cost to
US$5640 would allow five units to still have positive net

benefits. The implication of these results is that mechanisms
for lowering the cost of tool developmentwould allowwider and
more beneficial deployment. This lower cost could be achieved

by allowing a team of analysts to develop themodels for all units
simultaneously, and it could also be enabled by developing both
incendiary and other human-ignited wildfire hotspot models

simultaneously.
We mentioned in discussing the net benefits that the net

benefits would be higher if the losses experienced by tribes that

occur from wildfire damages (e.g. lost timber and structures)
were included in the net benefits calculations. In our final
sensitivity analysis, we modelled the effect of setting damages
at US$1000 per acre ($2471 per hectare) (across all land units).

Although arbitrary, this value is sufficient to describe the order
of magnitude of the effect of including losses from wildfire
damages. For the incendiary fires with the ensemble model,

including damages at US$1000 per acre increases the average
benefit-to-cost ratio from 3.67 to 6.88 and the number of units
with benefit-to-cost ratios greater than 1 from 15 to 20. For non-

incendiary human-ignited wildfires, the effect of including
wildfire damages in the net benefits calculations is to increase
the average (across all units modelled) ratios from 0.36 to 0.76

for the ensemble model. The number of units with ratios greater
than 1 increased from two (OKANA and OKOSA) to five
(adding AZPMA, MTCRA, NDSRA).

Conclusions

Wildland managers and law enforcement can benefit from the

deployment of forecasting tools that can predict with some
accuracy the number of wildfires expected in the coming plan-
ning period. In this study, we analysed several kinds of fore-

casting approaches that could be embedded in hotspot forecast
models for incendiary and for other human-ignited wildfires.
Models evaluated ranged from exceedingly simple (a random
walk) to somewhat more complex (involving autoregressive

terms based on historical data). We found that both incendiary
and other human-ignited wildfires demonstrate temporal auto-
correlation (clustering) on a weekly basis that can be used to

improve forecasts over the simpler models. In a test of the
benefits of ensemble forecasting, applying plausible assump-
tions on the costs of tool development and the effects of resource

Table 5. Net benefits of a prototype other human-ignited wildfire hotspot tool for selected Bureau of Indian Affairs tracked tribal land units in the

United States

Note: ‘na’ indicates a model that that could not be estimated or a time series of weekly ignitions out-of-sample that contained no weeks with non-zero other

human-ignited wildfires; ACP, autoregressive conditional Poisson

Tribal land unit Net benefits (US$), multi-year discounted Average ignitions

per week

Simple ACP Weather-augmented ACP Seasonal-augmented ACP Random walk CompStat53 Ensemble

AZFTA �46 567 �49 177 �51 787 �51 787 �67 449 �49 177 0.38

AZNAA �71 828 �72 218 �75 260 �74 323 �73 734 �72 667 0.98

AZPMA �17 309 �4826 �15 434 �29 990 �18 637 �17 309 0.98

AZSCA �66 688 �65 174 �68 777 �67 338 �69 999 �65 760 1.61

CAHIA �72 834 �56 391 �59 946 �65 776 �57 798 �63 628 0.19

CARVA �81 105 �81 105 �81 105 �81 105 �84 798 �79 259 0.17

CATIA �85 722 �85 722 �85 722 �83 636 �83 636 �83 636 0.11

MNMNA �82 178 �81 882 �80 701 �82 178 �80 996 �80 996 1.50

MNRLA na na na �84 750 �84 804 na 3.58

MTCRA �4789 �2178 �6015 �23 449 �1394 �8467 1.33

MTFPA �58 327 �52 687 �56 715 �63 161 �63 967 �55 910 0.92

MTRBA �85 722 �85 722 �85 722 �85 722 �85 722 �85 722 0.03

NDFTA na na na na na na 0.00

NDSRA �42 183 �45 912 �41 095 �50 975 �46 921 �44 360 1.28

NDTMA �78 212 �80 745 �79 031 �81 100 �80 378 �79 987 0.91

OKANA 235 12 542 8831 �9879 704 15 707 0.87

OKCHA �61 134 �60 897 �61 857 �65 771 �68 727 �58 964 0.62

OKCNA �65 958 �72 799 �74 700 �69 379 �68 619 �65 958 0.79

OKOMA �64 995 �64 917 �64 995 �64 509 �68 648 �63 514 1.06

OKOSA 12 558 2034 �843 5912 7492 18 515 1.78

OKTLA �79 745 �80 953 �79 745 �78 051 �75 312 �76 756 0.30

SDRBA �58 330 �52 632 �58 330 �65 721 �59 598 �59 061 1.05

WIGLA �78 765 �76 867 �77 500 �79 397 �85 089 �79 397 0.27

Average �56 647 �56 543 �58 281 �61 458 �59 911 �55 062 0.90
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Table 6. Benefit-to-cost ratio of a prototype other human-ignitedwildfire hotspot tool for selected Bureau of IndianAffairs tracked tribal land units

in the United States

Note: ‘na’ indicates a model that that could not be estimated or a time series of weekly ignitions out-of-sample that contained no weeks with non-zero other

human-ignited wildfires; ACP, autoregressive conditional Poisson

Tribal land unit Net benefits (US$), multi-year discounted Average ignitions

per week

Simple ACP Weather-augmented ACP Seasonal-augmented ACP Random walk CompStat53 Ensemble

AZFTA 0.46 0.43 0.40 0.40 0.21 0.43 0.38

AZNAA 0.16 0.16 0.12 0.13 0.14 0.15 0.98

AZPMA 0.80 0.94 0.82 0.65 0.78 0.80 0.98

AZSCA 0.22 0.24 0.20 0.21 0.18 0.23 1.61

CAHIA 0.15 0.34 0.30 0.23 0.33 0.26 0.19

CARVA 0.05 0.05 0.05 0.05 0.01 0.08 0.17

CATIA 0.00 0.00 0.00 0.02 0.02 0.02 0.11

MNMNA 0.04 0.04 0.06 0.04 0.06 0.06 1.50

MNRLA na na na 0.01 0.01 na 3.58

MTCRA 0.94 0.97 0.93 0.73 0.98 0.90 1.33

MTFPA 0.32 0.39 0.34 0.26 0.25 0.35 0.92

MTRBA 0.00 0.00 0.00 0.00 0.00 0.00 0.03

NDFTA na na na na na na 0.00

NDSRA 0.51 0.46 0.52 0.41 0.45 0.48 1.28

NDTMA 0.09 0.06 0.08 0.05 0.06 0.07 0.91

OKANA 1.00 1.15 1.10 0.88 1.01 1.18 0.87

OKCHA 0.29 0.29 0.28 0.23 0.20 0.31 0.62

OKCNA 0.23 0.15 0.13 0.19 0.20 0.23 0.79

OKOMA 0.24 0.24 0.24 0.25 0.20 0.26 1.06

OKOSA 1.15 1.02 0.99 1.07 1.09 1.22 1.78

OKTLA 0.07 0.06 0.07 0.09 0.12 0.10 0.30

SDRBA 0.32 0.39 0.32 0.23 0.30 0.31 1.05

WIGLA 0.08 0.10 0.10 0.07 0.01 0.07 0.27

Average 0.34 0.34 0.32 0.28 0.30 0.36 0.90

Table 7. Prototype incendiary wildfire hotspot tool maximum development costs needed to ensure that net benefits are non-negative, for selected

Bureau of Indian Affairs tracked tribal land units in the United States

ACP, autoregressive conditional Poisson

Tribal land unit US$

Simple ACP Weather augmented ACP Seasonal augmented ACP Random walk CompStat53 Ensemble

AZFTA �1098 8794 �1098 16 214 1375 31 052

AZNAA 838 �2394 �6501 24 484 32 010 42 684

AZPMA 218 543 14 134 148 745 353 154 293 327 383 068

AZSCA 225 586 225 586 232 119 326 843 375 838 375 838

CAHIA 1 507 404 1 507 404 1 526 455 2 164 661 2 250 390 2 336 119

CARVA 45 372 45 372 45 372 68 542 �18 344 51 165

CATIA 113 587 113 587 146 767 150 914 262 895 238 011

MNMNA 20 278 14 678 37 078 39 878 73 477 73 477

MNRLA 293 584 293 584 264 527 429 180 458 236 545 405

MTCRA �15 609 �15 609 �15 609 �5553 39 700 9531

MTFPA �26 872 �18 022 �26 872 �22 447 �29 084 �22 447

MTRBA 137 459 137 459 127 272 208 769 346 294 285 172

NDFTA 379 834 375 593 371 353 479 482 517 645 555 809

NDSRA 13 485 �22 302 6775 24 668 �8882 28 023

NDTMA 67 240 60 139 56 589 97 418 129 372 124 046

OKANA 112 073 117 831 113 992 188 849 200 366 226 278

OKCHA �29 525 �29 525 �29 525 �27 976 �35 722 �27 976

OKCNA 409 201 398 215 392 722 549 269 524 551 664 619

OKOMA 50 675 45 439 29 730 86 019 82 092 113 509

OKOSA 140 668 136 749 132 829 211 224 270 021 258 262

OKTLA 34 638 32 505 30 373 50 628 47 430 79 412

SDRBA �18 053 �19 820 �21 587 �14 519 �14 519 1383

WIGLA 12 368 14 773 9964 29 199 29 199 36 413
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reallocations motivated by tool deployment, we also showed
that such an ensemble model can outperform the individual
models that form the ensemble in the context of hotspot tool net
benefits. Although gains of the ensemble compared with indi-

vidual models were, on average, modest, there were in our study
tribal land units for which the gains were calculated to be sub-
stantial, particularly for incendiary wildfires. Moreover, simply

deploying a hotspot forecasting model based on any of the
individual or ensemble forecasting models would generate
positive net benefits in terms of suppression expenditures

averted. In some cases, the discounted benefits under this narrow
category of concern over a 5-year time horizon were calculated
to be nearly 28 times their discounted assumed tool deployment

costs. But overall, we find, under our base assumptions for costs
and the effects of law enforcement, that a hotspot tool designed
to motivate reallocation of law enforcement resources is
unlikely to yield positive net benefits for non-incendiary human-

ignited wildfires, primarily because of the weak response of
such wildfires to law enforcement. Responses of these wildfire
types, however, have been shown to be more significant when it

comes to other forms of wildfire prevention (e.g. Abt et al.
2015), and use of such a forecasting tool to respond in short order
to non-incendiary human wildfire outbreaks with greater pre-

vention education efforts might yield more cases of positive net
benefits.

As well, our analysis of incendiary and other human-ignited
wildfire hotspot forecast models would have found higher net

benefits had we assumed that such tools were jointly developed,
reducing their initial cost, and had we included the damages

caused by incendiary and other human-ignited wildfires. Sensi-
tivity analyses on such costs and inclusion of damage losses
indicated that such accounting could be important for judging
their economic net benefits. Although it is apparent that agency

administrators, working with nearly fixed budgets, care most
about averting expenditures on suppression, policy-makers
often care about more than agency costs – including the rare

occurrence of large and damaging wildfires that require evacua-
tions and extended efforts to extinguish. As Butry et al. (2001)
found, the majority of the sum of suppression expenditures and

economic losses from such wildfires is in the economic loss
category.

Similarly, the net benefits of a tool could be higher if one

effect of the tool were to reduce the area burned by the wildfires
that occur, if fire suppression resourceswere to be deployed such
that response times were shorter. Butry (2009) demonstrated the
effectiveness of shrinking response times at reducing the area

burned – and possibly also therefore suppression expenditures as
well as wildfire damages.

Significant questions remain, however, about the value of

such tools for incendiary wildfire and other human-ignited
wildfire forecasting and response. For example, we assumed
in this study that the number of wildfires expected each year is

not affected by past success by law enforcement to reduce
wildfire occurrence. If part of the success in reducing wildfire
occurrences through increased law enforcement effort is
achieved through arrests and convictions of firesetters, for

example, and these firesetters before arrest demonstrate serial
or copycat behaviours, then removing them from the landscape

Table 8. Prototype other human-ignited wildfire hotspot tool maximum development costs needed to ensure that net benefits are non-negative, for

selected Bureau of Indian Affairs tracked tribal land units in the United States

Tribal land unit US$

Simple ACP Weather augmented ACP Seasonal augmented ACP Random walk CompStat53 Ensemble

AZFTA 3433 823 �1787 �1787 �17449 823

AZNAA �21 828 �22 218 �25 260 �24 323 �23 734 �22 667

AZPMA 32 691 45 174 34 566 20 010 31 363 32 691

AZSCA �16 688 �15 174 �18 777 �17 338 �19 999 �15 760

CAHIA �22 834 �6391 �9946 �15 776 �7798 �13 628

CARVA �31 105 �3 1105 �31 105 �31 105 �34 798 �29 259

CATIA na na na �33 636 �33 636 �33 636

MNMNA �32 178 �31 882 �30 701 �32 178 �30 996 �30 996

MNRLA na na na �34 750 �34 804 na

MTCRA 45 211 47 822 43 985 26 551 48 606 41 533

MTFPA �8 327 �2 687 �6 715 �13 161 �13 967 �5 910

MTRBA na na �35 722 na �35 722 na

NDFTA na na na na na na

NDSRA 7 817 4 088 8 905 �975 30 79 5 640

NDTMA �28 212 �30 745 �29 031 �31 100 �30 378 �29 987

OKANA 50 235 62 542 58 831 40 121 50 704 65 707

OKCHA �11 134 �10 897 �11 857 �15 771 �18 727 �8 964

OKCNA �15 958 �22 799 �24 700 �19 379 �18 619 �15 958

OKOMA �14 995 �14 917 �14 995 �14 509 �18 648 �13 514

OKOSA 62 558 52 034 49 157 55 912 57 492 68 515

OKTLA �29 745 �30 953 �29 745 �28 051 �25 312 �26 756

SDRBA �8 330 �2 632 �8 330 �15 721 �9 598 �9 061

WIGLA �28 765 �26 867 �27 500 �29 397 �35 089 �29 397
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should result in lower numbers of future incendiary wildfires
(e.g. Prestemon et al. 2012). Furthermore, if stepped-up law
enforcement is part of a broader effort to prevent other human-

ignited wildfires through educational efforts (e.g. Abt et al.
2015; Prestemon et al. 2010), then also the number of future
wildfires would be lower. These lower numbers of wildfires

would tend to reduce the net benefits of tool deployment.
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