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ABSTRACT

Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration ETo, and

rainfall deficit are essential for water-resources management and cropping-system design. Rainfall, ETo, and

water-deficit patterns and trends at Macon in eastern Mississippi for a 120-yr period (1894–2014) were analyzed

for annual, seasonal, and monthly periods. The analysis showed historical average annual rainfall, ETo, and

dryness index (DI) in the location to be 1307mm, 1210mm, and 0.97, respectively. Monthly rainfall and ETo

ranged from 72 to 118mmand from 94 to 146mm, respectively, betweenMay andOctober, resulting in amonthly

rain deficit from 22 to 62mm. Annual rainfall showed an increasing trend of 1.17mmyr21 while annual ETo

exhibited a decreasing trend of 20.51mmyr21, resulting in an annual DI reduction of 0.001 per year. Seasonal

trends were found for rainfall in autumn (1.06mmyr21), ETo in summer (20.29mmyr21) and autumn

(20.18mmyr21), and DI in autumn (20.006). An autoregressive, integrated, and moving-average (ARIMA)

approach was used to model monthly and annual rainfall, ETo, and DI and to predict those values in the future.

Low values of the root-mean-square error (RMSE) and mean absolute error (with both statistics being nor-

malized to themean of the observed values), low values of average percent bias, and low values of the ratio of the

RMSE to the standard deviation of observed data, along with values of 1.0 for Nash–Sutcliffe modeling efficiency

and the index of agreement, all suggest that the performance of the models is acceptable. The ARIMA models

forecast 1319mmofmean annual rainfall, 1203mmofmean annualETo, and 0.82 ofmean annualDI from2015 to

2024. The results obtained from this research can guide development of water-management practices and

cropping systems in the area that rely on this weather station. The approaches used and the models fitted in this

study can serve as a demonstration of howa time series trend can be analyzed and amodel fitted at other locations.

1. Introduction

Temperature, solar radiation, wind, rainfall, and ref-

erence evapotranspiration ETo are the major climatic

factors affecting agricultural production. Rainfall and

ETo are the most important variables for agricultural

water management and hydrological processes. Seasonal

changes in rainfall pattern may alter the hydrological

cycle and environmental processes (Delitala et al. 2000)

as well as the vegetation and the entire ecosystem

(Lázaro et al. 2001). Rainfall is also the most sensitive

component of watershed and agroecosystem models and

affects all other components, which in turn affects the

models’ predictions of hydrological processes, water

quality, and water quantity.

A good characterization of rainfall and ETo trends

and variability in time is necessary for many studies in

climatology, hydrology, and agriculture. Analysis of the

long-term trends in both precipitation and ETo is es-

sential for rain-fed farmland, which depends on rainfall

conditions, and irrigated farmland, for which rainfall

and ETo greatly affect irrigation scheduling. The
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knowledge of trends in ETo, rainfall, water deficit, and

number of rainy days at different time intervals is very

important for agricultural water use, regulation, and

planning in any region. Accurately predicting trends of

precipitation, ETo, and water deficit can play an im-

portant role in irrigation scheduling, water-resources

distribution planning and optimization, soil and water

conservation, and cropping-system design.

Attention has been paid to analyzing time series trends

of precipitation, ETo, and water deficit because of public

concern over climate change. Many studies have been

conducted to address spatial patterns and temporal

trends on global and regional scales. Increasing trends in

air temperature and decreasing trends in ETo have been

detected in the past 50 years inNorthAmerica (Burn and

Hesch 2007; Hobbins et al. 2004). Both decreasing and

increasing trends in mean annual rainfall have been re-

ported (Roderick et al. 2009a,b). Precipitation has high

spatial variability (Dyer andMercer 2013), and therefore

it is essential to conduct a detailed assessment of local

temporal characteristics, patterns, and trends in rainfall,

ETo, and water deficit. Long-term time series analysis of

past trends at local scales could lead to development of

reliable prediction tools for forecasting ETo, rainfall, and

water deficit, which could provide for more efficient use

of available water resources. The overall performance

of statistical weather-forecasting methods and dynamic

downscaling approaches of process-based climate models

was similar for prediction of temperature and rainfall

(Ahmed et al. 2013).

Mississippi is one of the most productive states in the

midsouthern United States as a result of fertile soils, a

relatively long growing season, and abundant annual

rainfall. Unequal rainfall distribution throughout the

year, as well as uncertain and unreliable rainfall during

the growing season, has led to intensive irrigation in the

region. In the western delta of Mississippi, over 90% of

irrigation water is pumped from 18 000 water wells. In-

creasing groundwater withdrawal from the Mississippi

River Valley alluvial aquifer has resulted in an alarming

decline in aquifer levels. In the east-central Blackland

Prairie of Mississippi, over 90% of irrigation water is

pumped from ponds harvested from rainfall and run-

off because groundwater is too deep and expensive to

pump. It is critical, therefore, to better understand tem-

poral trends, patterns, and variability in temperature

and rainfall from past records and to try to predict future

temporal trends, frequency, distribution, and amounts

of rainfall in relation to ETo so as to develop effective

irrigation management strategies. Little research has

been conducted in this region, however. One study as-

sessed spatial rainfall variability in multiple states at a

regional scale (Dyer and Mercer 2013) and found there

to be considerable spatial variability and substantial

inconsistency in rainfall patterns, but the researchers

stressed that their results could only be used in a general

sense. Therefore, our study has focused on time series

analysis of long-term weather records to evaluate rain-

fall, ETo, and water deficit at the local scale in an effort

to make more accurate predictions in the future for this

specific area.

The Mann–Kendall (MK) and Kendall methods

(Kendall and Gibsons 1990) have been widely used and

tested as common and effective methods to evaluate the

presence of a statistically significant trend in climato-

logical and hydrological time series (Birsan et al. 2005;

Norrant and Douguedroit 2006). The linearly fitted,

nonparametric model does not require any hypotheses

on a specific distribution of the variables (i.e., normal

distribution), and data outliers do not affect the results

(Renard et al. 2006). This study applied the MKmethod

to analyze a long-term time series of weather data from a

weather station located in the eastern Blackland Prairie

for the 1894–2014 time period. The purpose of this pa-

per is to model and characterize monthly, seasonal, and

annual distribution patterns, trends, and temporal var-

iability in rainfall, ETo, and water deficit to aid local

professionals and producers who rely on data from this

weather station in improving water-management prac-

tices for greater water-use efficiency.

2. Data and methods

a. Historical weather data

Historical weather data in the Black Prairie region were

assembled for the time period from 1894 to 2014. Data

from weather stations near Macon (latitude 33.18, longi-
tude 88.68, and elevation 60m) were selected for the

analysis. Weather data, including daily precipitation and

maximum and minimum air temperature, were obtained

online (http://ext.msstate.edu/anr/drec/; https://beaumont.

tamu.edu/climaticdata/StateMap.aspx?index52_14_0_

26&name5MISSISSIPPI; http://www.wcc.nrcs.usda.gov/

nwcc/site?sitenum52174&state5al). Precipitation was

measured by a tipping-bucket rain gauge (Texas Elec-

tronics, Inc., TR-525), and air temperature was measured

by thermocouple temperature probes with naturally as-

pirated shields (Campbell Scientific, Inc., 107LC). The

data quality of the long-term air temperature and pre-

cipitation was checked with quality-control procedures

recommended by Allen et al. (1998) prior to use.

b. ETo calculation method

Many methods have been proposed and are in use to

estimate daily reference evapotranspiration. Themethods
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range from simple empirical equations to sophisticated

energy- and mass-transfer models. The de facto standard

method is that described byAllen et al. (1998), referred to

as the FAO-56 Penman–Monteith, or FAO-56 method,

but it requires several weather parameters that are often

not routinely measured and are largely unavailable in

historical weather records. Many studies have been un-

dertaken around the world to evaluate alternative

methods of estimating ETo using more readily available

weather data when the complete weather dataset required

for using the FAO-56 method is not available. In the hu-

mid southeastern region of the United States, where the

Black Prairie and the state of Mississippi are located,

several studies were undertaken to evaluate alternative

ETo methods. Lu et al. (2005) and Yoder et al. (2005)

evaluated several alternative ETomethods and concluded

that themethod developed by Turc (1961) was superior to

other empirical methods. Fisher and Pringle (2013) eval-

uated the Turc method against two alternative ETo

methods recommended by Allen et al. (1998) when use of

the FAO-56 method was not feasible for six weather sta-

tions across Mississippi. Because their objective was to

evaluate ETo estimates that are based only on air tem-

perature, the Turc equation was used with measured air

temperature and estimated solar radiation, yet it per-

formed better than the recommended alternativemethods.

The Turc equation, on the basis of its performance

under humid conditions and the limited availability of

weather data, was chosen for estimation of ETo in this

study. Because reliable measurements of only air tem-

perature were available for the entire time period under

study, the method described by Fisher and Pringle

(2013)—which uses measured air temperature and es-

timated, rather than measured, solar radiation—was

used. This method is described in the following series of

equations.

Reference evapotranspiration is estimated as

ET
o
5 0:0133

�
T
mean

T
mean

1 15

�
(23:8856R

s
1 50), (1)

where ETo is reference evapotranspiration (mmday21),

Rs is solar radiation (MJm22), and Tmean is average air

temperature (8C);Tmean is calculated as (Tmax1Tmin)/2,

where Tmax and Tmin are measured daily maximum and

minimum air temperatures (8C), respectively. Solar ra-
diation is estimated using the Hargreaves and Samani

(1982) method and is calculated as

R
s
5 0:16(T

max
2T

min
)0:5R

a
, (2)

where Ra is extraterrestrial radiation (MJm22), which

is a theoretical estimate of the radiation striking a point

on Earth given that point’s latitude and the day of the

year. It is estimated as

R
a
5
24(60)

p
G

sc
d
r
[v

s
sin(f) sin(d)1cos(f)cos(d)sin(v

s
)],

(3)

whereGsc is the global solar constant (0.0820MJm22min21)

and f is latitude (radians), with degrees of latitude con-

verted to radians [radians 5 degrees 3 (p/180)]. The

remaining factors in Eq. (3) are then calculated on the

basis of calendar day:

d
r
5 11 0:33 cos

�
2p

365
J

�
, (4)

where dr is inverse relative distance from Earth to the

sun and J is calendar day,

d5 0:409 sin

�
2p

365
J2 1:39

�
, (5)

where d is solar declination (radians), and

v
s
5 arccos[2tan(f) tan(d)] , (6)

where vs is sunset hour angle (radians).

The Hargreaves and Samani solar radiation model

[Eq. (2)], recommended for use by Allen et al. (1998)

when Rs measurements are unavailable, has been eval-

uated extensively [e.g., by Liu et al. (2009)] and was

found to provide estimates with accuracy that is similar

to that of other, more-complex radiation models. Fisher

and Pringle (2013) evaluated the model on a daily basis

using long-term data measured across Mississippi. They

found solar radiation estimates to agree well with mea-

sured radiation, with average errors in daily estimates

ranging from 23.0% to 4.1% among six locations and

slopes of the regression lines between measured and

estimated solar radiation that are close to 1.0, ranging

from 0.91 to 1.09.

c. Rainfall deficit

Water deficit is often classified as a meteorological,

hydrological, and/or agricultural deficit (Mishra and

Singh 2010). Different indices have been proposed, such

as the Palmer drought severity index (Palmer 1965),

standardized precipitation index (McKee et al. 1993),

soil moisture drought index (Hollinger et al. 1993), crop

moisture index (Palmer 1968), and dryness index (DI;

Arora 2002; Budyko 1974). Among these indices, DI,

which is the ratio of ETo to precipitation P, is useful for

classifying the type of climate in relation to the water

availability and has been utilized for many purposes,
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including estimation of runoff in different regions of the

world (Arora 2002; Gao and Giorgi 2008; Li et al. 2012;

Nastos et al. 2013). The advantage of this index is that it is

feasible to convert to any vegetation or crop deficit index

using DI multiplied by the crop coefficient Kc. Therefore,

it is a universal index that can serve many purposes in

different research areas. Note, however, that DI is not

valid when P is 0, which is highly likely within short time

intervals, and therefore it is best suited for annual, sea-

sonal, or monthly indices. The dryness index is given by

DI5ET
o
/P . (7)

In addition, the difference between rainfall and ETo is

often used for water-management purposes. When the

difference is negative, rainfall is less than evapotrans-

piration, and the rainfall deficit RD is a negative value.

When rainfall exceeds evapotranspiration, the differ-

ence is referred to as a rain surplus (RS). The two

quantities are respectively given by

RD5P2ET
o
, P,ET

o
, and (8)

RS5P2ET
o
, P.ET

o
. (9)

d. Temporal-trend analysis method

Locally weighted scatterplot smoothing (‘‘LOWESS’’)

was used to fit a smooth line to the time series data over

time. This method guards against deviant points in the time

series and allows us to see the trend of the data (Cleveland

1979). LOWESS estimates the mean through a non-

parametric, robust local regression of the time series data

using a weight function. Smoothness of the fit increases

as the fraction of the data used to compute the mean at

each abscissa value increases. The MK rank-based non-

parametric method was used to detect statistically signifi-

cant trends over time. The MK statistic S, the variance of

theMKstatisticVar(S), and the associated standard normal

test statistic ZMK are calculated as follows (Li et al. 2012):

S5 �
n21

i51
�
n

j5i11

sgn(X
j
2X

i
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j
2X
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p51
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and

Z
MK

5

8>>>>>>><
>>>>>>>:

S2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p if S. 0

0 if S5 0

S1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p if S, 0

. (13)

In Eq. (10),Xi andXj are the time series observations in

chronological order, n is the length of the time series,

and sgn(Xj 2Xi) is the sign function, which returns only

the sign of the difference (either positive or negative). In

the variance calculation, q is the number of tied groups

and tp is the number of data values in the pth group,

where p sums from 1 to q, the total number of tied

groups. A tied group is a set of sample data having the

same value. Positive values of ZMK indicate increasing

trends, and negative ZMK indicates decreasing trends.

At the significance level a5 0.05, if jZj. Z12(a/2), then

the null hypothesis that there is no significant trend is

rejected and a significant trend exists in the time series.

The critical value of Z12(a/2) for the significance level

a 5 0.05 is 1.96.

The direction and magnitude of the trend in time se-

ries data were quantified using Sen’s slope, or b (Sen

1968). To derive an estimate of the slope b, the slopes of

all data pairs are calculated by

b
i
5

X
j
2X

i

j2 i
, i5 1, 2, . . . ,N, j. i . (14)

The Sen’s estimator of the slope is themedian of theseN

values of bi:

b5

(
b
(N11)/2

if N is odd

0:5[b
N/2

1 b
(N12)/2

] if N is even
. (15)

The sign of b reflects the direction of trend in the data,

and its value represents the steepness of the trend.

The MK test requires that a time series be serially

independent. The trend-free prewhitening (TFPW)

approach was applied to eliminate serial correlations

in the time series data, if they existed, so as to conform

to this requirement. This was done with the ‘‘R’’

software package using the Yue and Pilon method

(Bronaugh and Werner 2013). In this method, the

slopes were estimated using the Theil–Sen approach. If

the slope is almost equal to zero, then it is not neces-

sary to conduct the trend analysis. If the slope differs

from zero, then it is assumed to be linear and the data

are detrended by the slope; the autoregressive model

of order 1 [AR(1)] is then computed for the detrended

series. An explanation of AR(1) is detailed in section 2e.

The residuals should be an independent series, and
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then the trend and residuals are blended together. Last,

the MK test is applied to the combined series to assess

the significance of the trend. Once the MK test was

applied to the data, if there existed a significant trend at

the 95% level (a 5 0.05), the sequential MK (SQMK)

test was applied to detect possible shifts in trends.

When either the progressive row or the retrograde row

exceeds the confidence limits before and after the

crossing points, this trend turning point is considered to

be significant.

e. Forecast models

Autoregressive, integrated, and moving-average

(ARIMA) modeling was applied to forecast the time

series data for the period of 2015–24. ARIMAmodeling

predicts future values as a product of several past ob-

servations and random errors (Yürekli et al. 2007). The
model has an effect of smoothing (noise reduction) to

observe underlying fluctuation trends (Shumway and

Stoffer 2011) and is applicable to data that are stationary

in the mean and variance. The autoregressive method

regresses the current time point on previous values,

known as time-lagged values of the forecast variable.

This approach assumes that the future can be explained

by the past because of the autocorrelation between the

future and past, which is useful for forecasting. The in-

tegrated part of the model accounts for trends using

differencing; if there is any nonstationarity, the model

will include some level of differencing. The moving-

average (MA) part of the method models the relation-

ship between the noise variation and the current

observed data point. These models are written as

ARIMA(p, d, q), where p is the number of autore-

gressive lags, d is the order of differencing, and q is the

number of moving-average lags. These numbers help to

forecast and detect trends, dependence, and seasonality

in the data (Makridakis et al. 1998).

These models can be extended to account for seasonal

fluctuations, with the expression ARIMA(p, d, q)(P,D,

Q)s, where s is the length of the seasonal period. If s 5
12, the length of the seasonal period is annual. The pa-

rameters P, D, and Q are the number of seasonal au-

toregressive terms, number of seasonal differences, and

number of seasonal moving averages, respectively. The

modeling process includes model identification and di-

agnostic checking. The model identification is per-

formed by determining the appropriate values for p, d,

and q and for P, D, and Q. For each dataset of rainfall,

ETo, or DI, multiple candidate models were identified.

A parsimonious model selection was based on di-

agnostic checking, including the use of the Akaike in-

formation criterion (AIC) that penalizes the number of

parameters in a model. The more parameters that there

are in a model, the better is the fit, but the model will not

have any explanatory power if there are too many pa-

rameters. AIC is useful because it explicitly penalizes

any extra parameters in themodel, by adding 2(p1 1) to

the deviance. When comparing models, the model with

the smallest AIC will be the better fit for the data

(Akaike 1974). The residuals were also checked to make

sure that they were independent with equal variance and

followed a normal distribution.

f. Validation criteria of model performance

Statistical measures, including mean, standard de-

viation (STDev), root-mean-square error (RMSE)

normalized to the mean of the observed values

(RRMSE), mean absolute error (MAE) normalized to

the mean of the observed values (RMAE), ratio of

RMSE to the standard deviation of observed data

(RSR), average percent bias (PBIAS), Nash–Sutcliffe

modeling efficiency (EF), and index of agreement D,

were used to evaluate model performance (Legates

and McCabe 1999; Moriasi et al. 2007; Ahuja and Ma

2002; Ma et al. 2011, 2012).

RMSE normalized to the mean of the observed values

is calculated as

RRMSE5

"
1

N
�
N

i51

w
i
(P

i
2O

i
)2
#1/2,

O , (16)

where wi is the weight factor (often set equal to 1.0); Pi

and Oi are the model-predicted and experimentally

observed points, respectively; O is the mean observed

value; andN is the number of observed data points. The

RRMSE reflects the difference in mean values between

the experimental and simulated results for a dataset

with N measured points. The smaller the value of

RRMSE is, the better is the validation. The ratio of

RMSE to the standard deviation of measured data is

calculated as

RSR5

"
�
N

i51

1

N
(P

i
2O

i
)2
#1/2,"

�
N

i51

1

N
(O

i
2O)2

#1/2

.

(17)

MAE is defined as

MAE5 �
N

i51

jP
i
2O

i
j/N . (18)

Similar to RRMSE, the relative MAE is calculated as

RMAE5MAE
�
O . (19)
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Smaller RMAE values indicate better performance of a

model. The percent bias is calculated as

PBIAS5 100%3 �
N

i51

(P
i
2O

i
)

,
�
N

i51

O
i
. (20)

Modeling efficiency is calculated as

EF5 1:02

"
�
N

i51

(P
i
2O

i
)2
,

�
N

i51

(O
i
2O)2

#
. (21)

The EF is a measure of the deviation between model

simulations and observations in relation to the scattering

of the observed data.A value ofEF5 1 indicates a perfect

match between predictions andmeasurements. A highEF

indicates good agreement between simulated and mea-

sured values. The index of agreement is defined as

D5 1:02
�
N

i51

(P
i
2O

i
)2

�
N

i51

(jP
i
2Oj1 jO

i
2Oj)2

. (22)

Note that D is more sensitive than traditional correla-

tion measures to differences between observed and

predicted means and variances. IndexD varies from 0 to

1.0, with higher values indicating better fit (Legates and

McCabe 1999), and D 5 1 means perfect simulation.

Moriasi et al. (2007) suggested that multiple statistics

should be used in model validation to avoid biases.

Therefore, all of the above statistic parameters were

calculated for evaluation of our fitted models.

3. Results and discussion

a. Preliminary analysis

1) RAINFALL

The preliminary analysis for this study included

computing the mean, median, standard deviation, co-

efficient of skewness, coefficient of kurtosis, and co-

efficient of variation (CV) in the precipitation, ETo, and

DI time series. Table 1 presents these summary statistics

for the 120-yr time period studied (1894–2014). The

mean for annual rainfall was 1307mm, and annual

rainfall varied from 660 to 1959mm, with 55 of 120 years

receiving rainfall above the mean value. The data were

slightly skewed, with almost one-half of the years re-

ceiving annual rainfall below the mean. Mean rainfall

for the different seasons ranged from 253 to 386mm, and

monthly average rainfall varied from 72 to 144mm over

the 12 months of the year. Most rainfall occurred in

winter (December–February) and spring (March–May):

only 23% of total rainfall occurred in summer (June–

August), and 37% occurred during the crop-growing

season, from May to September. These results are in

agreement with the conclusions that high rainfall nor-

mally occurred in the cool seasons with more consis-

tency than in the warm seasons in Mississippi (Dyer and

Mercer 2013). The maximum difference between mean

and median values was less than 20mm, suggesting that

there were few outliers. Rainfall is positively skewed at

all temporal scales and is generally more skewed after

March, except for August. More-skewed months have

more rainfall events, and those events have lighter

rainfall.

TABLE 1. Summary of rainfall (mm) statistics for the study station: standard deviation (SD), skewness Cs, kurtosis Ck, minimum value

(Min), maximum value (Max), and coefficient of variation (CV).

Time Mean Median SD Cs Ck Min Max CV

Annual 1307.21 1283.03 364.95 0.28 20.28 660.14 1959.13 0.20

Winter 385.72 378.98 119.67 0.34 20.33 170.96 708.11 0.31

Spring 370.68 351.49 136.91 0.84 0.47 104.64 820.17 0.37

Summer 297.44 288.29 106.96 0.47 0.36 100.08 696.24 0.36

Autumn 253.37 242.56 121.02 0.74 0.20 46.99 654.31 0.48

Jan 130.66 121.16 66.04 0.84 0.82 13.46 369.07 0.51

Feb 130.81 122.42 64.54 0.66 20.12 32.01 309.11 0.49

Mar 143.54 133.86 75.38 1.00 1.61 10.91 432.80 0.53

Apr 125.56 110.24 79.05 0.85 0.39 6.35 380.24 0.63

May 101.58 84.59 63.16 0.96 0.82 6.35 329.94 0.62

Jun 91.61 83.85 59.41 1.27 2.46 3.56 353.56 0.65

Jul 118.43 108.45 66.70 1.11 1.26 11.68 354.58 0.56

Aug 87.40 84.07 53.53 0.36 20.72 0.00 220.74 0.61

Sep 82.71 71.12 60.97 1.08 0.99 0.00 296.68 0.73

Oct 72.03 54.86 58.74 1.19 1.12 0.00 270.00 0.82

Nov 98.63 90.17 63.50 1.14 1.67 0.00 354.13 0.64

Dec 125.62 116.57 68.12 1.09 1.55 7.87 369.04 0.54
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The coefficient of variation, a measure of dispersion

around the mean, was also calculated to analyze the

variability of the time series data. Coefficients of varia-

tion for annual and seasonal rainfall were low, but the

coefficients for monthly rainfall were high, ranging from

0.49 to 0.82 over the 12 months. Large variation co-

efficients and ranges of annual, seasonal, and monthly

rainfall, especially during the months of crop growth,

indicate that rainfall is a highly variable climatic factor.

The considerable variations present greater challenges

for water management—in particular, at field scales.

2) ETO

Table 2 shows ETo values and statistics for annual,

seasonal, and monthly time periods. Mean annual ETo

was 1210mm, and annual ETo varied from 1101 to

1372mm. Coefficient of variation and standard de-

viation were only 4% (CV value 3 100) and 53mm,

respectively. Annual ETo of one-half of the 120 years

was below the mean annual ETo, but maximum annual

ETo was only 162mm greater than the mean. The range

of ETo is much less than that of rainfall (Table 1). Unlike

rainfall, ETo did not showmuch variation over the years,

which implies that success in rain-fed agriculture de-

pends more on rainfall than on ETo. As expected, mean

ETo was the highest in summer, followed by spring,

autumn, and winter. Mean monthly ETo for the months

during the crop-growing season (April–September)

ranged from 117 to 157mm, and mean rainfall ranged

from 83 to 126mm for those same months.

3) WATER DEFICIT AND DI

Annual mean rain ‘‘deficit’’ (the difference between

rainfall and ETo) was 97mm, with the positive value

indicating that there was a rainfall surplus rather than a

deficit. The annual rain deficit/surplus ranged from 2602

to 795mm (Fig. 1c). The mean of annual rain surplus was

271mm, and the surplus varied from 10 to 795mm. Sur-

plus years accounted for 60% of the time period of 120

years. Only 48 of the 120 years had a rain deficit on an

annual temporal scale. It was found that 1896, 1901, 1903,

1904, 1907, 1910, 1921, 1924, 1952, 1954, 1958, 1978, 1981,

2000, and 2007 experienced annual deficits of more than

200mm, which resulted in severe-drought conditions

during crop-growing seasons. The rain deficit in summer

was as high as 160mm, and themonthly rain deficit ranged

from 222 to 262mm during the crop-growing season

from May to October. Even larger deficits of rainwater

can often be observed at shorter time periods such as

weekly intervals. This suggests that rainfall often cannot

meet crop water requirements in the region and that

supplemental irrigation is required to stabilize or maxi-

mize crop productivity.

Arora (2002) categorized climatic regimes into four

groups: arid (12 . DI $ 5), semiarid (5 . DI $ 2), sub-

humid (2 . DI $ 0.75), and humid (0.75 . DI $ 0.375).

Table 3 shows that mean annual DI was 0.97 and mean

seasonal DI ranged from 0.37 to 1.8 over the four seasons,

which suggest that the study area is in a subhumid region.

Dryness index as a ratio of ETo to rainfall is helpful in

determining the deficit of rainfall for meeting crop water

requirements and the need for irrigation. Large monthly

DI valueswith considerable variation are found in summer

and in the months of crop growing fromApril to October.

DI values ranged from less than 2 to almost 5, with great

variability throughout critical water-requirement stages of

crop growth, classifying these time periods in the semiarid

category for the subhumid region.

TABLE 2. As in Table 1, but for ETo (mm).

Time Mean Median SD Cs Ck Min Max CV

Annual 1209.94 1215.32 53.20 0.20 20.16 1101.15 1372.08 0.04

Winter 128.30 128.63 19.98 20.03 0.31 82.15 183.16 0.13

Spring 350.37 349.48 18.90 0.75 2.17 310.53 436.27 0.05

Summer 457.66 456.39 24.22 0.47 0.20 409.16 537.66 0.05

Autumn 273.62 271.59 17.48 0.23 20.68 235.19 311.42 0.06

Jan 40.45 40.35 7.72 20.01 20.36 21.21 60.35 0.19

Feb 49.30 49.34 9.54 0.10 0.63 19.30 81.45 0.19

Mar 86.80 85.74 11.30 0.12 0.22 56.27 120.08 0.13

Apr 117.31 116.34 7.79 0.29 0.40 97.52 145.47 0.07

May 146.26 145.74 8.62 0.40 1.16 124.39 181.28 0.06

Jun 153.68 151.94 10.43 0.34 20.60 128.95 176.84 0.07

Jul 156.60 156.17 10.33 0.51 0.37 135.77 191.39 0.07

Aug 147.38 146.96 8.98 0.38 20.12 127.12 172.54 0.06

Sep 122.09 120.56 8.76 0.19 20.67 103.71 142.92 0.07

Oct 94.12 93.48 7.64 20.01 20.60 76.77 109.83 0.08

Nov 57.41 56.90 6.35 0.21 20.38 42.44 74.35 0.11

Dec 38.85 38.99 6.88 0.05 1.25 14.65 60.78 0.18
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b. Historical time series trend characteristics

1) ANNUAL AND SEASONAL TRENDS

(i) Annual trend

LOWESS curves (Helsel and Hirsch 2002) were fit to

the time series data. Figure 1 illustrates historical time

series data along with LOWESS curve trends in annual

rainfall, ETo, water deficit, and DI from 1894 to 2014.

Rainfall varied substantially around the mean with the

LOWESS curve for annual rainfall (Fig. 1a), showing an

increasing trend in rainfall from 1894 to 1934, after

which the rainfall trend became stationary. Overall, the

curve that is based on annual data suggests an increasing

trend. LOWESS curves are used to show patterns and do

not explain statistically significant trends in the time

series. Therefore, the MK test was performed.

The magnitude of statistically significant trends was

determined using Sen’s slope estimator. The calculated

MK statistics ZMK and the Sen’s slope b of seasonal and

annual rainfall, ETo, rainfall deficit, and DI are shown in

Table 4, and monthly values are shown in Table 5. The

tests did not show the increasing trend in annual rainfall

to be statistically significant. Roderick et al. (2009a,b)

found an increasing trend in mean annual rainfall in

North America, and Karl et al. (2009) reported that

precipitation had increased by an average of about 5%

over the past 50 years in the United States. Liu et al.

(2012) also found that annual rainfall had increased

slightly over time across the midsouthern United States,

with the neighboring state of Tennessee exhibiting the

most significant increase in annual precipitation.

There appeared to be an increasing trend in ETo from

1894 to 1934, after which ETo decreased until 1968, and

then it increased slightly again. For trends that were sig-

nificant according to the MK test at the 95% confidence

level, the SQMK test was applied to analyze potential

FIG. 1. Historical time series data and LOWESS curve trend

(blue curves) in (a) annual rainfall, (b) ETo, (c) rainfall deficit, and

(d) DI from 1894 to 2014.

TABLE 3. As in Table 1, but for DI.

Time Mean Median SD Cs Ck Min Max CV

Annual 0.97 0.95 0.22 1.04 2.04 0.59 1.19 0.22

Winter 0.37 0.34 0.13 1.27 1.60 0.20 0.89 0.37

Spring 1.09 1.01 0.46 1.87 6.93 0.39 3.63 0.42

Summer 1.80 1.61 0.84 1.52 2.48 0.63 5.09 0.47

Autumn 1.43 1.13 0.96 2.27 6.62 0.40 6.25 0.67

Jan 0.44 0.33 0.47 5.83 44.48 0.10 4.48 1.06

Feb 0.50 0.38 0.32 1.95 5.00 0.15 1.96 0.65

Mar 0.97 0.60 1.30 4.76 25.08 0.20 9.17 1.34

Apr 1.76 1.05 2.36 4.73 30.12 0.29 20.22 1.34

May 2.54 1.67 3.16 4.38 23.70 0.44 24.99 1.24

Jun 3.24 1.84 5.10 5.89 42.39 0.40 46.29 1.58

Jul 2.01 1.43 2.00 3.70 15.91 0.38 13.90 0.99

Aug 3.65 1.75 7.06 5.96 42.85 0.00 63.51 1.94

Sep 4.67 1.61 11.59 5.11 27.62 0.00 83.95 2.48

Oct 4.89 1.50 14.65 6.64 47.84 0.00 128.37 2.99

Nov 0.99 0.62 1.06 3.08 12.73 0.00 7.68 1.07

Dec 0.48 0.34 0.61 5.20 30.78 0.10 4.79 1.27

TABLE 4. Mann–Kendall statistical test result ZMK and Sen’s

slope b of seasonal and annual rainfall P, ETo, rain deficit (RD) or

rain surplus (RS), and DI. An asterisk denotes significance at

a confidence level of 95%.

Test Winter Spring Summer Autumn Annual

P ZMK 0.02 20.02 0.04 0.23* 0.11

b 0.08 20.11 0.19 1.06* 1.17

ETo ZMK 20.04 20.06 20.03* 20.22* 20.15

b 20.01 20.08 20.29* 20.18* 20.51

RD/RS ZMK 0.01 20.02 0.08 0.24* 0.15*

b 0.07 20.11 0.45 1.21* 1.80*

DI ZMK 0.00 0.02 20.05 20.23* 20.13*

b 0.000 0.000 20.002 20.006* 20.001*
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significant shifts in the time series data. The test results

revealed that the trend in ETo shifted significantly around

1934 and shifted again fromdecreasing to increasing around

1968, but this latter trend was not significant. This de-

creasing trend in ETo was also detected in North America

by Burn and Hesch (2007) and Hobbins et al. (2004).

The pattern of annual rainfall deficit is similar to that of

rainfall (Figs. 1a,c), suggesting that the trends were de-

pendentmore onprecipitation thanon evapotranspiration.

In summer months, precipitation amounts are generally

much smaller than the amounts involved in evapotrans-

piration. The rainfall deficit curve exhibits an upward trend

in differences between rainfall and ETo, beginning below

0, representing deficit (negative) values, and lasting until

around 1917 (Fig. 1c). After 1917, a surplus trend is de-

tected at an annual temporal scale in this region. The sig-

nificant positive trend exhibits an increase in rain surplus of

1.8mm annually, due mainly perhaps to large surplus

values observed in the autumn season (Table 4).

The trends in annual DI significantly decreased by

0.001, resulting from increased rainfall and decreased

ETo. The reduced DI indicates a continuous relief of the

rain deficit in the last eight decades. There is an indica-

tion of decreasing changepoints. From the LOWESS

plot and the SQMK test, it is found that the annual de-

creasing DI trend significantly shifted in 1904, 1908, and

1926 at the 95% confidence level.

(ii) Seasonal trends

TheMK and Sen’s slope tests were also used to identify

seasonal trends between 1894 and 2014. Amix of negative

and positive trendswas seen in different seasons (Table 4).

Autocorrelation was only present for the autumn season

of rainfall; therefore, the prewhiteningmethodTFPWwas

applied to eliminate serial correlations before applying

the MK test and Sen’s slope estimator. A significant

positive trend in rainfall at a confidence level of 95% was

found in the autumn months, and rainfall increased by

1.06mm each autumn season (Table 4). The slight in-

crease is not very beneficial to crop production in this

region because most crops are already harvested or ma-

ture in autumn. Liu et al. (2012) also projected that the

climate is wetter in the region during autumn months.

Although the trends in rainfall also increased slightly in

summer and winter, they were not significant. A down-

ward trend in spring was found, and the mean rainfall was

as high as 371mm in spring months, which is only 15mm

less than the highest-rainfall winter season. Thewet spring

in this region meant that growers had a very short time

window for field operations and often delayed crop

seeding, and therefore the decreasing trend in spring

rainfall is actually good for agriculture production in the

southeastern United States. The wet and mild winter in

this region often causes significant runoff and leaching

that could result in degradation of surface and ground-

water quality. Therefore, some field activities that cannot

be conducted in spring because of high and frequent

rainfall and need to be performed in autumn are also

limited because of the wet winter.

As expected, cumulative ETo is the highest in sum-

mer, followed by spring, autumn, and winter (Fig. 2b).

There were significant decreasing trends in the summer

and autumn seasons, which primarily contributed to an

overall decrease in annual ETo of 0.51mm. ETo de-

creased by;0.29mm in summer and 0.18mm in autumn

(Table 4). Seasonal water deficit/surplus, shown in

Fig. 2c, occurred mainly in summer, and winter had the

highest water surplus. Water deficit/surplus was gener-

ally distributed around the 0 line in spring and autumn.

Autumn was the only season that showed a slight auto-

correlation, at lag 16; the remaining seasons showed no

autocorrelation. There was a significant increasing trend

in water deficit of 1.21mmyr21 for the autumn season.

Rain deficit displayed a decreasing trend in spring, but it

was not significant. In a similar way, the highest DI was

observed in summer, followed by autumn, spring, and

winter (Fig. 2d). A significant downward trend in DI was

detected, with DI decreasing by 0.006 for the autumn

season each year (Table 4). No significant shifts in DI

trend for any other seasons were found.

2) MONTHLY TIME SERIES TRENDS

Significant autocorrelation was detected for rainfall

in March, May, and August. There was also significant

TABLE 5. The ZMK and b of monthly P, ETo, and DI in the last 10 decades. An asterisk denotes significance at a confidence level of 95%.

Test Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P ZMK 0.06 20.01 20.06 0.02 20.05 0.004 0.003 0.08 0.14* 0.14 0.15 20.03

b 0.16 20.03 20.18 0.05 20.08 0.007 0.01 0.24 0.35* 0.29 0.34 20.07

ETo ZMK 20.13* 0.09 0.01 0.00 20.16* 20.25* 20.23* 20.19* 20.26* 20.13* 20.07 20.03

b 20.05* 0.03 0.00 0.00 20.07* 20.12* 20.11* 20.07* 20.10* 20.05* 20.02 20.01

DI ZMK 0.11 0.07 0.183 20.014 0.095 0.013 0.094 0.135* 0.045 0.057 0.051 0.095

b 0.010 0.008 0.038 20.003 0.033 0.005 0.042 0.054* 0.011 0.009 0.004 0.010
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autocorrelation for ETo in January, February, May,

June, July, September, and October. The autocorrela-

tions were removed using the prewhiteningmethod. The

MK test was applied on a monthly scale to detect trends

in the rainfall series and showed a mix of positive and

negative trends in different months. A significant up-

ward trend in September at a confidence level of 95%

was observed (Table 5), and rainfall was significantly

increased by 0.35mm each September, which greatly

contributed to the increasing trend in the autumn sea-

son. A slight decrease in rainfall was detected for Feb-

ruary, March, May, and December, although it was

not significant, which implies that those months were

trending generally toward drier conditions.

Table 5 highlights some significant small decreasing

trends in ETo for themonths of January, February,May,

June, July, August, September, and October. The de-

creasing trends during these months contributed to the

significant decreases in ETo in summer and autumn. The

monthly trend test found a significant increasing trend in

DI only for August. The DI increased about 0.054 for this

month each year.DI for all months exceptApril increased,

although the increase was not significant (Table 5).

c. Forecast models

1) ANNUAL FORECAST MODELS

(i) Annual rainfall forecast and validation

From the autocorrelation function (ACF) and partial

autocorrelation function (PACF) plots, it was observed

that annual rainfall was autocorrelated between years.

We removed the trend (seasonal, cyclic, or other trends)

by differencing the data, and then we classified the type of

model once the data were stationary in the mean and

variance. This process was repeated, and different models

were tested to comeupwith the best-fitARIMAmodel for

the data that would allow us to account for trend and

seasonality and, ultimately, to forecast future trends.

The best-fit model, ARIMA(0, 1, 1), was chosen for

prediction of annual rainfall. This model includes a

moving-average component with lag-1MA(1), indicating

that forecasting can be done using the residuals of the

previous time point observed. Forecasting is dependent

on one step before, which suggests that the model is able

to give accurate insight for 1 year ahead since the pre-

diction of annual rainfall in the next year is dependent on

the estimated values in the previous year. Figure 3a shows

that the ARIMA(0, 1, 1) model forecast 1319mm of

mean annual rainfall, with 775 and 1862mmbeing the low

and high levels of the 95% confidence interval for the

next 10 years. The forecast annual rainfall was 1307mm

in 2015, which is only 22mm higher than observed values

(Table 6). The plot of the observed versus predicted

rainfall also verified that the ARIMA(0, 1, 1) is a good fit

for prediction (Fig. 3a). Mean measured and predicted

annual rainfall amounts from 1894 to 2014 were 1307 and

1286mm, respectively. RRMSE, RMAE, and PBIAS

were 0.20, 0.16, and20.01, respectively. Those low values

indicate that the predicted estimates are very close to the

measured values.

(ii) Annual ETo forecast and validation

The ARIMA(1, 1, 1)(2, 1, 0)_15 was selected as the

model for prediction of annual ETo. Predicted annual

ETo from 2015 to 2024 ranged from 1168 to 1242mm,

with 1061 and 1368mm being the low and high levels of

the 95% confidence interval (Fig. 3b). The forecast an-

nual ETo (1169mm) was in near-perfect agreement with

measured ETo (1166mm) in 2015 (Table 6). Both mean

measured and predicted annual ETo amounts from 1894

FIG. 2. Seasonal (a) rainfall, (b) ETo, (c) rainfall deficit, and (d) DI

from 1894 to 2014.
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to 2014 were close to 1210mm. RRMSE, RMAE,

PBIAS, EF, and D were 0.04, 0.03, 0.00, 0.84, and 0.96,

respectively. Low values of RRMSE, RMAE, and

PBIAS and high values of EF and D indicate that the

model-predicted ETo was very close to the measured

values.

(iii) Annual DI forecast and validation

After examining diagnostics such as ACF residual

plots, ‘‘qqnorm’’ plots for normality check, AIC, and the

Bayes information criterion, it was determined that the

ARIMA(1, 1, 0) is the best-fit model and can be used to

predict DI for the next 10 years. Figure 3c shows that the

ARIMA(1, 1, 0) model predicted 0.82 of mean annual

DI with 0.02 and 2.0 being the low and high levels of the

95% confidence interval. Figure 3c shows that the actual

DI values fall within the 95% confidence intervals. Al-

though the point estimates for the forecast values are not

as close to the actual values, the predicted values, in

general, follow the pattern of observed values although

its peak is, sometimes, a little bit ahead of the observed

peak. The difference in annual DI between measured

and forecast value in 2015 was only 0.03 (Table 6). Mean

measured and predicted annual DIs from 1894 to 2014

were 0.97 and 0.99, respectively. RRMSE, RMAE, and

PBIAS are 0.23, 0.17, and 0.02, respectively. The EF and

D are as high as 1.0. These statistical indices indicate

good agreement between observed and predicted

values.

2) MONTHLY FORECAST MODELS

(i) Monthly rainfall forecast

Similar diagnostics and model-fitting exercises were

conducted for the monthly rainfall data. Significant au-

tocorrelations at lag 1 and 12 were found, showing

TABLE 6. Comparison of observed and forecast monthly rainfall, ETo, and DI in 2015, with associated statistics.

Rainfall (mm) ETo (mm) DI

Measured Forecast Measured Forecast Measured Forecast

Jan 157.48 129.56 38.48 36.98 0.24 0.33

Feb 126.49 128.66 32.60 47.85 0.26 0.43

Mar 136.40 139.04 83.05 85.69 0.61 0.75

Apr 134.40 124.78 112.47 114.12 0.84 1.14

May 86.61 99.48 140.37 142.71 1.62 1.83

Jun 43.94 91.29 144.31 148.06 3.28 2.08

Jul 133.09 117.31 158.38 150.88 1.19 1.55

Aug 108.46 89.37 143.43 143.43 1.32 1.92

Sep 37.08 85.96 118.35 117.47 3.19 3.63

Oct 70.39 75.72 86.84 90.90 1.23 1.57

Nov 112.77 102.09 56.92 54.50 0.50 0.64

Dec 138.36 123.29 50.30 36.41 0.36 0.36

Annual 1285.47 1306.55 1165.50 1169.00 0.84 0.81

RRMSE 0.22 0.07 0.37

RMAE 0.17 0.05 0.27

PBIAS 0.14 0.03 0.91

RSR 0.02 0.01 0.00

D 1.00 1.00 1.00

EF 1.00 1.00 1.00

FIG. 3. Observed data and simulated and forecast annual

(a) rainfall by a fitted ARIMA(0, 1, 1) model, (b) ETo by a fitted

ARIMA(1, 1, 1)(2, 1, 0)_15 model, and (c)DI by a fittedARIMA(1,

1, 0) model for the next 10 years after 2015.
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seasonal behavior of the temporal pattern. Seasonal

time series have a nonstationary mean, but the non-

stationarity is of a regular kind; that is, every year or

every month the cycle repeats. This type of time series

can be represented using a model that explicitly allows

for the seasonality. It was found that an ARIMA(1, 0, 1)

(0, 1, 1)_12 is the best fit for the model.

This model indicates a seasonal trend, resulting in the

need to difference between the same time points be-

tween seasons (e.g., January one year differenced with

January in the previous year, reflecting what was ob-

served in the MK test). It also indicates a seasonal as-

sociation (seasonality after accounting for trend) that

suggests current rainfall behavior can be explained by

the same month of last year’s behavior (Q 5 1) and by

last month’s rainfall (q 5 1). This means that the use of

recent observations would allow us to predict the future.

Figure 4 displays the monthly forecast results for the

next 10 years. The gray band is the 95% confidence in-

terval for the forecast monthly rainfall.

(ii) Monthly ETo forecast

From the ACF, PACF, differencing methods, and di-

agnostics, it was found that an ARIMA(1, 1, 2)(0, 1, 2)_12

is the best-fitmodel ofmonthly ETo, with smallerAIC and

fewer parameters. This model has a seasonal difference of

the original data, for a seasonal period of 12. It is capable of

forecasting monthly ETo for given years in the future. The

monthly ETo forecasts along with the 95% confidence

interval for the next 10 years from 2015 to 2024 are ex-

hibited in Fig. 4.

(iii) Monthly DI forecast

After examining the ACF and PACF plots, there is

seasonality and a nonstationary mean that needs to be

adjusted for in the data.We determined that anARIMA

(1, 0, 0)(0, 1, 1) was the best-fit model; this model can be

used to forecast DI for the next 10 years, as shown in

Fig. 4.

(iv) Validation of monthly forecast models

Performance of the monthly forecast models was

evaluated on the basis of the statistical indices: Moriasi

et al. (2007) rated model performance as acceptable

when EF . 0.5, 225 , PBIAS , 25, and RSR , 0.7.

Ahuja and Ma (2002) and Ma et al. (2011) suggested

that a more stringent rating should be used for a point

model: EF. 0.7,215, PBIAS, 15, and RSR, 0.5. If

RRMSE and RMAE are within 10% of the mean values

of all measurements, it is a ‘‘very good’’ performance.

Values of statistical indices for monthly rainfall, ETo

and DI observed from 1894 to 2014 are reported in

Tables 7–9. The standard deviation of predicted rainfall,

ETo, and DI were much lower than the observed values.

Both EF and D values of monthly rainfall, ETo, and DI

in each of 12 months are 1.0 (which indicates a perfect

match between predictions and measurements), as were

values of RRMSE, RMAE, PBIAS, and RSR for

monthly predicted rain and ETo (Tables 7–9).

At the conclusion of this study, monthly data for 2015

were not yet available.We are currently able to compare

the data that were forecast at that time with the ob-

served monthly data that are available now. Detailed

results are presented in Table 6. The differences in

monthly rainfall, ETo, and DI between measured and

forecast values ranged from 2 to 49mm, from 0 to

15mm, and from 0 to 1.2, respectively. All values of EF

andD in 12months reached 1.0 for rainfall, ETo, andDI.

The RRMSE and RMAE ranged from 0.05 to 0.37, that

is, within 10% of the measured values of rainfall, ETo,

and DI. Values of PBIAS are within the criterion of

615, and RSR values were close to 0, much better than a

satisfactory index of 0.5 (Table 6). All of those statistical

performance indices suggest that the three forecast

models are capable of predicting rainfall, ETo, and DI

with low values of standard deviation and root-mean-

square error.

FIG. 4. Observed data and simulated and forecast monthly (top)

rainfall by a fitted ARIMA(1, 0, 1)(0, 1, 1)_12 model, (middle) ETo

by a fitted ARIMA(1, 1, 2)(0, 1, 2)_12 model, and (bottom) loga-

rithm of DI by a fitted ARIMA(1, 0, 0)(0, 1, 1) model in the next 10

years after 2015.
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4. Conclusions

Sound water-management planning and cropping-

system design can be achieved with an understanding

of the statistical properties of long-term records ofmajor

climatic parameters such as rainfall and evapotranspi-

ration. This study analyzed trends in monthly, seasonal,

and annual precipitation, ETo, and water deficit at a site

in Macon, Noxubee County, in the Blackland Prairie of

Mississippi over a 120-yr period (1894–2014). The mean

observed annual rainfall was 1307mm, varying from 660

to 1959mm, with 37% of total rainfall occurring during

the crop-growing season from May to September. Un-

like rainfall, ETo did not show significant variation with

time. The mean annual ETo was 1210mm, and it varied

from 1101 to 1372mm. Monthly ETo from April to

September ranged from 117 to 154mm, and rainfall

ranged from 83 to 126mm. Monthly rainfall deficit

ranged from 222 to 262mm from May to October. A

mix of positive and negative trends was observed at

various temporal scales. An upward trend during Janu-

ary, April, June–November, winter, summer, autumn,

and annual rainfall was observed, but only those trends

in September and autumn were significant at a 95%

confidence level. Rainfall increased by 0.35mm each

August and by 1.06mm in autumn every year. In-

significant downward trends in rainfall in February,

March, May, and December and in spring were de-

tected. In contrast, decreasing trends were found for

most months except February–April, all seasons, and

annual ETo. The significant downward trends in ETo

were observed in January, May–October, summer, and

autumn. The decline in ETo ranged from 0.05 to 0.29mm

each year. Only one significant increasing trend in DI of

0.054 was found in August, although all remaining

months except April also exhibited upward trends.

Autumn and annual trends in DI decreased by 0.006 and

0.001, respectively.

Monthly and annual ARIMA forecast models were

fitted for prediction of rainfall, ETo, and DI in the fu-

ture. Low values of RRMSE (from 24.68 to 1.70),

RMAE (from 23.67 to 1.30), PBIAS (from 20.11 to

0.91), and RSR (from 0.00 to 0.07) and high values of EF

(1.0) andD (1.0) suggest that thesemodels could be used

TABLE 7. Comparison of observed and predicted monthly rainfall from 1894 to 2014.

Measured (mm) Predicted (mm)

Mean STDev Mean STDev RRMSE RMAE EF PBIAS RSR D

Jan 130.66 65.84 128.10 12.50 0.50 0.40 1.0 20.01 0.06 1.0

Feb 130.81 64.54 132.65 8.84 0.50 0.40 1.0 0.01 0.06 1.0

Mar 143.54 75.38 148.32 8.36 0.52 0.40 1.0 0.03 0.07 1.0

Apr 125.56 79.05 118.79 18.05 0.62 0.48 1.0 20.04 0.07 1.0

May 101.58 63.16 99.20 16.84 0.62 0.40 1.0 20.02 0.05 1.0

Jun 91.61 59.41 96.35 12.26 0.64 0.49 1.0 0.04 0.05 1.0

Jul 118.43 66.70 115.32 10.80 0.57 0.43 1.0 20.02 0.06 1.0

Aug 87.41 53.54 79.79 14.73 0.61 0.49 1.0 20.07 0.04 1.0

Sep 82.71 60.97 73.63 10.95 0.74 0.44 1.0 20.09 0.05 1.0

Oct 72.03 58.74 62.39 13.26 0.81 0.61 1.0 20.11 0.05 1.0

Nov 98.63 63.50 85.93 17.44 0.64 0.46 1.0 20.11 0.05 1.0

Dec 125.62 68.12 126.59 12.08 0.54 0.41 1.0 0.01 0.06 1.0

TABLE 8. As in Table 7, but for ETo.

Measured (mm) Predicted (mm)

Mean STDev Mean STDev RRMSE RMAE EF PBIAS RSR D

Jan 40.45 7.70 40.18 4.19 0.18 0.14 1.0 20.01 0.006 1.0

Feb 49.30 9.54 47.48 4.60 0.17 0.14 1.0 20.03 0.007 1.0

Mar 86.80 11.29 86.42 4.87 0.12 0.10 1.0 0.00 0.009 1.0

Apr 117.31 7.79 117.26 4.82 0.07 0.05 1.0 0.00 0.007 1.0

May 146.26 8.62 147.51 4.77 0.06 0.04 1.0 0.01 0.007 1.0

Jun 153.68 10.43 154.91 5.18 0.06 0.05 1.0 0.01 0.008 1.0

Jul 156.60 10.33 157.37 5.13 0.06 0.04 1.0 0.00 0.008 1.0

Aug 147.38 8.98 147.29 4.69 0.05 0.04 1.0 0.00 0.006 1.0

Sep 122.09 8.76 122.71 5.40 0.07 0.05 1.0 0.00 0.007 1.0

Oct 94.12 7.64 93.92 4.19 0.07 0.05 1.0 0.00 0.005 1.0

Nov 57.41 6.35 56.80 3.99 0.11 0.09 1.0 20.01 0.005 1.0

Dec 38.85 6.88 38.21 3.48 0.17 0.13 1.0 20.01 0.005 1.0
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to predict monthly and annual rainfall, ETo, and DI in

the next 10 years. These models forecast 1319mm of

mean annual rainfall, 1203mm of mean annual ETo, and

0.082 of mean annual DI from 2015 to 2024.

This study presented amethod tomodel and investigate

monthly, seasonal, and annual distribution patterns,

trends, and temporal variability in rainfall, ETo, and water

deficit to potentially improve water-management de-

cisions in the local area that relies on data from this

weather station. The purpose is to provide local pro-

fessionals and producers who rely on data from this

weather station with information on patterns and

trends, a prediction tool for development of field water-

management practices for greater water-use efficiency,

and a demonstration of how to achieve sucha goal at other

locations using the same approach and method. For ag-

ricultural water management, the field researchers, ex-

tension specialists, farm consultants, and growers must

often rely on a single nearby weather station to schedule

irrigation and design cropping systems. Future work en-

tails developing prediction tools and analyzing long-term

data from other weather stations in the Blackland Prairie

region to serve those professionals andproducerswho rely

on other weather stations in the region and to investigate

spatial patterns and variability of rainfall.
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