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Abstract. Understanding fine-scale variability in understory fuels is increasingly important as physics-based fire behavior models
drive needs for higher-resolution data. Describing fuelbeds 3Dly is critical in determining vertical and horizontal distributions of
fuel elements and the mass, especially in frequently burned pine ecosystems where fine-scale fuels arrangement drives fire intensity
and resulting fire effects. Here, we describe research involving the use of highly resolved 3D models. We create fuelbeds using
individual grass, litter, and pinecone models designed from field measurements. These fuel models are distributed throughout the
fuelbed to replicate fuel distribution in rectified nadir photography taken for each plot. The simulated fuelbeds are converted
into voxel arrays and biomass is estimated from calculated surface area between mesh vertices for each voxel. We compare
field-based fuel depth and biomass with simulated estimates to demonstrate similarities and differences. Biomass distributions
between simulated fuel beds and terrestrial laser scan data correlated well using Weibull shape parameters (r = 0.86). Our findings
indicate that integration of field, simulated, and terrestrial laser scanner data will improve characterization of fuel mass, type,
and spatial allocations that are important inputs to physics-based fire behavior models.

Résumé. La compréhension de la variabilité a petite échelle du sous-bois combustible est de plus en plus importante étant donné
que les modeles de comportement du feu basés sur la physique motivent le besoin d’avoir des données de plus haute résolution. La
description des couches de combustibles en 3 dimensions est essentielle pour déterminer les distributions verticales et horizontales
des éléments combustibles et la masse, en particulier dans les écosystemes de pin fréquemment brulés, ou la structure des
combustibles a fine échelle détermine I’intensité du feu et les effets résultants du feu. Nous décrivons ici une étude impliquant
I’utilisation des modeles en 3 dimensions a haute résolution. Nous créons des couches de combustible utilisant des modeles
individuels de I’herbe, de la litiere et des pommes de pin congus a partir de mesures sur le terrain. Ces modeles de combustible sont
distribués dans toute la couche de combustible pour reproduire la distribution des combustibles dans I’imagerie au nadir rectifiée
prise pour chaque parcelle. Les couches de combustible simulées sont converties en tableaux de voxels et la biomasse est estimée
a partir de la surface calculée entre les sommets du maillage pour chaque voxel. Nous comparons la profondeur et la biomasse de
combustible sur le terrain avec des estimations simulées pour démontrer les similarités et les différences. Les distributions de la
biomasse entre les couches de combustible simulées et les données de balayage laser terrestre étaient bien corrélées en utilisant
des parametres de forme de Weibull (r = 0,86). Nos résultats indiquent que ’intégration des données de terrain, simulées et
provenant du balayage laser terrestre permettra d’améliorer la caractérisation de la masse, du type et des distributions spatiales
de combustible qui sont des intrants importants pour les modeles de comportement du feu basés sur la physique.

INTRODUCTION 2001). Spatial fuels data have historically been used in fuels

The ability to spatially describe wildland fuels across an array ~ planning, fire behavior and effects modeling, and hazard assess-
of scales is critical for decision making in operational wildfire ~ment. With recent advances in fire behavior modeling, the need
and prescribed fire management (Mutch et al. 1993; Keane et al. ~ for these types of data has expanded to include higher-resolution
3D characteristics. New complex fluid dynamics models provide
opportunities to examine the fine spatial scale (< 1 m) of fire
behavior, which potentially drives larger-scale fire behavior and
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P Y might spatially organize ecosystems (Hiers et al. 2009). These
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models rely on appropriately dimensioned fuels data, which are
not readily available from conventional sampling techniques.
The basis for fuels measurements has been to provide a gen-
eralized fuels description, while considering that collecting all
physical attributes of a fuel bed is usually intractable (Keane
et al. 2001). In 2001, the Core Fire Science Caucus, a self-
directed group of fire scientists, elucidated the need for a new
context within which to describe fuels that coupled with ad-
vances in fire behavior and smoke modeling (Sandberg et al.
2003; Hardy et al. 2008). Fuel measurement methods were de-
veloped to support coarse-grained fire behavior or fire effects
modeling that do not encompass the full range of heterogene-
ity or spatial nonuniformity in fuels found within and across
landscapes (Hardy et al. 2008). Similar limitations are noted
in the realm of ecology, where conventional methods of inven-
tory are designed to classify abundance of dominant vegetation
rather than individual organisms using most common species
characterization (Thompson 2004).

Fire is a dynamic process, influenced by discontinuities and
variabilities that are not fully captured in traditional fuels mea-
surements. Commonly used direct measurements of fuels are
taken from planar transects or point intercept coupled with dry-
weighed biomass samples (Brown 1974; Brown 1981). These
direct sample protocols are labor intensive and limited in scale
and they are not efficient at estimating fine fuels such as grasses
(Loudermilk et al. 2009). Estimation of bulk density of shrubs
and grasses requires unrealistic assumptions that inherently
oversimplify the fuel elements (Van Wagner 1968). Yet, fine-
scale patterns of surface fuels are complex and relate to spa-
tial measurements of fire intensity in low-intensity fire regimes
(Loudermilk et al. 2012; Loudermilk et al. 2014). Fine-scale
fire effects have also been commonly described in frequently
burned pine conifer forests, where variability of fire intensity de-
pends on the matrix and orientation of flammable grasses, forbs,
shrubs, and pine needles (Thaxton and Platt 2006, Mitchell et al.
2009). New fire behavior models combined with new fuels mea-
surement techniques are now providing opportunities to better
understand patterns of fuels and the effects of fine-scale fire
behavior, and the research community is active in rethinking
approaches to fuels inventory and developing alternative meth-
ods (Hiers et al. 2009).

A relatively new approach to characterize fuels is by appli-
cation of active remote sensing in the form of Light Detection
and Ranging (LiDAR), which potentially characterizes fuelbeds
continuously by collecting height and reflectance properties of
fuel objects (Seielstad and Queen 2003; Hudak et al. 2016).
LiDAR remote sensing is limited in its ability to directly match
biophysical parameters with similar field measurements
(Popescu et al. 2002; Hopkinson et al. 2005; Riafio et al. 2007;
Streuker and Glenn 2006; Glenn et al. 2010). Platforms such as
terrestrial laser scanners (TLS) collect enormous quantities of
point data (mm to cm point spacing) for small areas (1 m—1 ha),
but are victim to issues of sampling variability. TLS point den-
sity degrades over distance, and data collection must be executed

from multiple angles in order to reduce the effects of occlusion
as energy is intercepted by taller and larger objects that shadow
the other parts of the scan (Hosoi and Omasa 2006; Rowell et al.
2015). Moreover, studies are generally limited to extraction of
biometrics of individual identifiable objects within larger fu-
elbeds, for example, for shrubs in open arctic environments
(Vierling et al. 2013; Greaves et al. 2015) and sagebrush steppe
(Olsoy et al. 2014). Attempts at characterizing mixed fuelbeds
(e.g., nearly all fuelbeds at fine grain) with TLS have shown the
difficulties in unmixing objects or types within laser point clouds
to characterize mass and heights per fuel type (Loudermilk
et al. 2009; Rowell and Seielstad 2012; Rowell et al. 2015).

To address limitations of TLS, one approach uses parametric
plant models to simulate biomass distributions. A small number
of studies are utilizing 3D models of trees and plants to produce
object-based simulations of ecosystems for use in a variety of
applications, such as simulations to assess spectral properties
of plants (Disney et al. 2009; Cawse-Nicholson et al. 2013;
Woodgate et al. 2015) and modeling of airborne LiDAR data
for individual tree inspection in forested environments (Disney
et al. 2010; Disney et al. 2011). A related method for indi-
vidual plant modeling is the application of the Lindenmayer
system (L-systems) fractal modeling for virtual construction
of xeric shrubs for use in leaf-scale fire behavior simulations
(Prince 2014, Prince et al. 2014). L-systems used in Prince et al.
(2014) grow fractal plant features using assigned angles of ro-
tation representative of the specific plant morphology. Prince
et al. (2014) showed that bulk densities similar to those re-
ported in the literature could be obtained from geometrically
correct plant models of chamise, manzanita, and Utah juniper.
In similar work, Parsons et al. (2011) used probability func-
tions to distribute biomass throughout individual tree canopies
as a collection of simple shapes (cylinders and frustrums), us-
ing a pipe model approach. This approach has yielded highly
detailed tree models that are applied in the FUEL3D model for
improved understanding of fire dynamics within forest stands.
FUEL3D uses allometric estimates of biomass based on in-
puts from the Forest Vegetation Simulator! that are distributed
throughout individual trees as partitions of bole, branch, and
needles. All of these studies focus on modeling the individual
tree and shrub canopies. As of this study, there has been no
similar examination of understory vegetation and surface fu-
els focused on construction of 3D assemblages of mixed fuel
elements.

Here, we present methods for constructing spatially explicit,
highly resolved, and realistic fuelbeds using tools developed
for 3D animation and modeling. Each fuel element/type (e.g.,
shrub, grass, needle, etc.) is discretized in the fuelbed, allowing
for direct accounting of metrics such as height, volume, cover,
surface area, density, and mass. We then examine the fuelbeds

IFVS, United States Forest Service, http://www.fs.fed.us/fmsc/fvs/
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through comparison with in situ nadir imagery and field mea-
surements and explore the utility of these models as tools to
better understand spatial variability in fuel properties and to im-
prove remote sensing of fuelbeds and fine-grained fire modeling.
Finally, we compare simulated fuelbed height distributions with
TLS-derived height distributions to assess correspondence of
the 2 methods as a preamble to future incorporation of LIDAR
ray-tracing for simulating TLS.

Our research centers on a main objective of developing re-
alistic and quantifiable simulated surface fuelbeds in longleaf
pine ecosystems. We approached this objective in 3 phases:
(i) we generated fuel simulations from parametric plant mod-
els using high resolution nadir photo imagery and detailed
height measurements and parameterized them with biomass es-
timates for discrete fuel elements; (i) we transposed the mod-
els to an independent validation site and compared biomass
estimates to actual dry weights; and (iii)) we derived and
contrasted height distributions from the simulations and TLS
data.

METHODS

Study Area

Two field campaigns were conducted to acquire data at Eglin
Air Force Base (AFB), Florida, in October 2012 and February
2014. Eglin AFB (30° 32’ 12/7N, 86° 43" 44/ W) is located in the
panhandle of northwestern Florida, in the United States, which
was originally a unit of the former Choctawhatchee National
Forest; Eglin is an important resource in the management of
longleaf pine ecosystems, with 180,000 ha of longleaf pine
sandhills and flatwoods.

Field Observations

The October 2012 data were collected as part of the Pre-
scribed Fire Combustion and Atmospheric Dynamics Research
Experiment (RxCadre) funded by the Joint Fire Sciences Pro-
gram (11-2-1-11). Fuels data were collected at 23 0.5 m? plots
around small replicate prescribed fire sampling blocks (20 m
x 20 m) nested within a larger burn unit. These small repli-
cate blocks are referred to as highly instrumented plots (HIPs).
Height metrics for each plot were collected (maximum and mean
height for grass, forbs, shrubs, and litter). Each plot was clipped
of all vegetation, sorted by fuel type, and samples were oven
dried at 70 °C for 48 hours and then weighed (Ottmar et al.
2016).

The February 2014 data were collected as part of a Depart-
ment of Defense Strategic Environmental Research and Devel-
opment Program (SERDP) funded project (#RC-2243). Vegeta-
tion and fuel characteristics were gathered in 99 plots located
in longleaf pine sandhills of Eglin AFB. Plots measured 1 m
x 3 m in size and were gridded into cells measuring 10 cm by
10 cm, so that each of the 9 plots contained 300 cells. For each

cell, point intercept measurements of plant species and fuelbed
height were collected. Fuel measurements included fuel and lit-
ter depths (cm), and presence or absence of fuels. As part of a
separate experiment (O’Brien et al., in review), longleaf cones
were randomly distributed at densities of O per m?, 5 per m?, or
10 per m?.

Workflow Description
Workflow is divided into 3 phases (Figure 1).

Phase 1: model development and parameterization,
Phase 2: replication and validation of simulations, and
Phase 3: TLS and simulation comparison.

Phase 1 outlines the development of plant models and con-
struction of fuelbeds via interpretation of nadir and oblique pho-
tography and subsequent application of generalized fuel mass
allocations. Phase 1 outlines the development of these methods
and application of generalized fuel mass allocations (see sur-
face area and fuel mass). Phase 2 describes the replication of
the technique at an independent site along with comparisons
of simulated and measured biomass and height. Phase 3 exam-
ines the derivation and comparison of TLS-based and simulated
height distributions.

Fuelbed Simulations

Simulated fuelbeds (Figure 2) were generated through a se-
ries of steps starting with the Onyx Garden Suite,? a parametric
plant modeling system that allows users to adjust physical pa-
rameters of individual plant elements to create 3D plant mod-
els. This model generator was used to produce individual plant
elements representative of types observed in our field plots.
Fuel elements for each plant model were selected based on pri-
mary life-form measurements collected in the field campaign,
including models of tall grass (senesced), moderate stature
grass (senesced), low grass (senesced), tall shrubs, low shrubs
(senesced), low shrubs (evergreen), longleaf pine litter, decid-
uous oak litter, other deciduous litter, and longleaf pine cones.
Height dimensions of the models were parameterized based on
average heights coincident with identifiable plants located in
nadir photographs collected at each plot. The horizontal ex-
tent of plant elements and objects in the litter were determined
from measurements in rectified plot photos in a Cartesian co-
ordinate space, using the southwest corner of the plot as the
origin.

Fuelbeds were constructed as assemblages of plants, litter,
and cones using the freeware Blender 2.74.3 Blender is typi-
cally used as a platform to produce scenes and objects for 3D

2Onyx Computing Inc. 1992-2008, http://www.onyxtree.com

3www.blender.org
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Work Flow

Phase 1: Model Development/Parameterization

Develop Plant and
Litter Models

)

Models

Develop Biomass

Voxelization per unit

Build Simulations
Sitel

volume:
Surface Area
Occupied Space
Biomass

{ Extract Height

Metrics

Initial Biomass and
Height Validation

)

Phase 2: Replication and Validation of Simulation

\ 4

Build Simulations
Site 2

[ Field Data Site 2

Voxelization per unit
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Occupied Space
Biomass

W

Biomass Validation ]

Phase 3: TLS and Simulation Comparison

\ 4

[ Weibull Distribution

* Distribution Comparison J

Model

TLS Fuel Height ]

[ TLS Data Processing »[

FIG. 1. The diagram depicts the 3 phases of work conducted to (Phase 1) produce fuel simulations, (Phase 2) replicate and validate
biomass at an independent site, and (Phase 3) compare simulated and TLS height distributions.

renderings for use in graphic design and tree-dimensional an-
imation applications. Onyx-based plant and litter objects were
imported into the Blender environment as wavefront open for-
mat file input (.obj). Identifiable objects such as tall grass, iso-
lated moderate stature grass, shrubs, and cones, were positioned
by their Cartesian coordinates as measured in the rectified high-
resolution nadir plot photography in the ArcGIS environment.*
Each fuel element contains an anchor point representing the
center of the object on the ground plane. This point was the
location used to place each element. Distributions of other fuel
elements such as clusters of deciduous litter, long-leaf litter, and
congruous clumps of grass were placed within bounded areas as

4Environmental Research Systems Institute, Redlands, California, USA

defined by presence/absence of each fuel type specified by the
field-collected point intercept data. Groupings of fuel elements
were refined based on visual comparison with plot photography,
because the point intercept data omits areas of data between
sample points. The final scenes were exported to an x,y,z text
format representing the fuel bed with all elements included (e.g.,
herbaceous plants and grasses, needles, oak leaves, litter, and
cones). Each x,y,z point represents a vertex from a mesh object
of a fuel element and is attributed with a specific fuel type (e.g.,
grass, needle, cone, etc.)

The SERDP data were used to develop and parametrize the
models in Phase 1 as the spatial resolution of the nadir photo im-
agery and density of measured fuelbed heights were more highly
resolved than in the data collected from the RxCadre experiment.
The simulation techniques developed from the SERDP project
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FIG. 2. A comparison of synthetic fuelbeds for (2A) plot 1 with
(2B) the nadir plot photo and (2C) plot 7 synthetic fuelbed with
(2D) the nadir plot photo. This comparison demonstrates that
placement of objects is coincident between photo and the syn-
thetic fuelbed, and the objects used to populate that simulation
behave like real plants, with some generalization.

were replicated for the RxCadre data. However, because these
data were less intensively sampled for fuelbed height metrics
(Figure 3), oblique imagery was used to place fuel elements in
the simulation.

Voxelization

A voxelized approach was taken to reduce the dimensionality
of the data and to exploit analysis techniques that rely on cell-
based arrays. Each fuelbed was voxelized, using the approach
outlined in Hosoi and Omasa (2006). Voxels, 3D pixels that
allow for volumetric representation of discontinuous surfaces by
using a regularly spaced 3D grid, were developed (Stoker 2009).
A 3D search cube was applied to the x,y,z files to summarize the
number of fuel vertices found within each 1 cm?. A benefit of
voxel analysis is the ability to depict areas of missing and present
data in geometric space. In the domain of fuelbed geometry,
voxelization allows for the ability to examine connectivity in

FIG. 3. A comparison of synthetic fuelbeds generated for the
RxCadre plots representing (3A) longleaf pine litter and forb
fuel matrix and (3B) mixed longleaf pine and turkey oak lit-
ter with a grass and forb overstory fuelbed. These depictions
represent examples of how fuels vary in distribution type and
arrangement within the site at Eglin AFB, Florida, USA.

3 dimensions, which is paramount to understanding where fuel
elements exist and how they are distributed in space. The 1 cm?
voxel resolution was selected based on 2 criteria:

(i) Within the shrub grassland matrix 1cm? voxel cells allow
for characterization of both clusters of grass clumps (grass
blades are typically < 1 cm in width) and larger shrub
components (e.g., leaves and branches > 1 cm in width).

(ii) This grain size preserves gaps between clusters of fuel el-
ements. Larger grains (e.g., > decimeter) begin to fill gaps
and generalize the fuelbed in ways that limit further analy-
sis.

Filled Volume
Previous work using TLS of grass-shrub fuelbeds has shown
that plant material concentrates in the lower part of the fuelbed in
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the form of densely clustered leaves and stems of grass bunches
and plant litter, and the upper part of the fuelbeds typically con-
tain more dispersed stems and grass inflorescence (Rowell and
Seielstad 2012; Rowell et al. 2015). Total occupied volume of
each 1-m? subplot was calculated by summing the total number
of occupied voxel cells present.

Surface Area and Fuel Mass

To realize the full value of modeled fuelbeds for examin-
ing fuels variability, it was necessary to relate the vertices that
define each fuel element to specific fuel properties. Vertices
density was determined to be a poor representation of plant ma-
terial, because some plants that have large amounts of biomass
were represented by a relatively small numbers of vertices in the
plant models. To overcome this, we calculated fuel surface area
for each fuel type, using the MESH_SURFACEAREA routine
in IDL? for each 1 cm?® voxel cell in. The meshing algorithm
used incorporates mesh normals to connect vertices, allowing
calculation of the surface area for each resulting polygon. To-
tal surface areas per 1-m? subplot are reported in Table 3. We
then used the surface area calculations to weight mass per oc-
cupied volume in our simulated fuelbeds on a voxel-by-voxel
basis. Additional information concerning fuel mass and fuel
volume are needed to impute bulk density, particle density, and
packing ratio. For fuel mass, we examined the literature to find
general data describing fine-grained biomass properties of rep-
resentative grasses, longleaf pine litter and cones, and turkey
oak leaves (Table 1). We used the shrub biomass properties for
the forb biomass estimation because we were unable to find
appropriate biomass estimates for this fuel type. Then, we cal-
culated an average mass of each fuel (derived from the literature
using values described in Brockway and Outcalt 2000; Fonda
and Varner 2004; Fonda 2001; and Kane et al. 2008) per mm?2.
For example, for grass we took the average mass-per-unit area
reported in the literature for the species little bluestem and used
associated cover and height to generate a plant volume. From
these dimensions we calculated a mass per area (mm?) for each
plant/litter model. For cones, we use average mass of a longleaf
pine cone divided by average volume of cones in our dataset.
These average density estimates were used to distribute biomass
within each element in the simulated fuelbeds in the following
way. The purpose of this admittedly indirect method of biomass
estimation was to account for the high variability in vertex den-
sity within fuel elements that is not obviously related to density
of biomass. The weighting assumes that surface area calculated
from our meshes is directly related to mass.

Calculating Height Metrics

Height metrics were extracted from the simulated fuelbeds on
a 10-cm grid within each plot by applying a 10-cm equal-spaced
point array and sampling a 10-cm? area around each centroid.

SExelis VIS, Boulder, Colorado, USA

Height metrics were compared only within the SERDP data; the
RxCadre data were collected as plot averages and were not spa-
tially explicit. Fuel depth from the simulated fuelbed represents
all heights found in the area opposed to the point intercept data
collected in the field, which documents only intercepted heights
at a point. Although we could have used the same approach
and considered only those objects from the modeled fuelbed
that fell on top of the field-measured points, it is extremely un-
likely that field measurements would precisely coincide with
features of our plant models, and we instead chose to include
any point found within the search area so we could express
height variability per fuel cell. By applying the point network
from our point intercept data to the simulated fuelbeds, we also
developed a suite of height metrics, including maximum, 99th
percentile, mean, inflection height, standard deviation, median
height, standard deviation height, kurtosis, and skewness. All
heights within a 100-cm? area around each field sample point
were used to calculate these metrics from the artificial fuelbeds
at a grain of 10cm. These metrics were ultimately compared to
coincident field-observed heights.

Terrestrial Laser Scanning Collection and Processing
Laser scans were collected pre- and postfire using an Optech
ILRIS™ 3¢D-HD laser scanner at a 10kHz sampling frequency.
Data were collected for the L2 forested burn blocks (RxCadre),
which contained 2 years of fuel accumulation and plant growth
since the previous prescribed fire. The TLS instrument was po-
sitioned at the 4 corners of the HIPs plot, positioned an average
distance of 7 m from the edge of the plot on a telescoping tri-
pod set at a height of 2.74 m. The laser was pointed downward
with an average inclination of —30° and a focal range of 20 m,
resulting in an average scan density of 8.4 mm. Reflective posts
were placed on the southeast corner of every 0.25-m? sample
plot around each HIPS plot, resulting in 12 tie points per HIPs.
TLSs were aligned using the Polyworks® software suite and
further point cloud spatial refinements were completed using
CloudCompare,’ an open source point alignment software pack-
age. Individual scans were merged together into a single dataset
and projected on a UTM coordinate system through coincident
GPS data collected for all HIPs corner points. A more in-depth
processing explanation can be found in Rowell et al. (2015).
Point clouds were subset into individual sample plots (n = 23)
by locating the reflective post on each corner and defining a clip
polygon feature in ArcGIS. A fuel height model (FHM) was
generated by subtracting the geoid height from a local mini-
mum height, producing normalized height above ground. TLS
point clouds were imported into R® for statistical analysis.

6Innovmetric, Quebec, Canada
"CloudCompare 2014; www.cloudcompare.org

8www.r-project.org
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TABLE 1
List of the studies used to produce the portioned biomass allocation used to predict the biomass for each voxel for little blue stem,

turkey oak litter, longleaf pine litter, and longleaf cones. Biomass partitions are reduced to biomass for grams per mm-.

2

Grasses
Reference Reference Cover  Height Biomass
Fuel Type Study Study site Treatment  Biomass Units (%) (cm) (grams/mmz)
Aristidia Brockway Marion Herbicide 15.5 Grams 57.8 * 0.00155
stricta et al. 1998 County, FL per m?
Michx.
Cones
Reference  Reference Cover  Length Biomass
Fuel Type Study Study site Treatment  Biomass Units (%) (cm) (grams/mm?>)
Pinus Fonda and Ocala, FL — 59.1 Grams — " 0.000591
palustris Varner 2004 per cone
Longleaf Pine Litter
Reference Reference Cover  Height Biomass
Fuel Type Study Study site Treatment  Biomass Units (%) (cm) (grams/mmz)
Pinus Fonda 2001 Ocala, FL. 2x2 14.21 Grams 100 5 0.002321
palustris Factorial per m?
design
Turkey Oak Litter
Reference Reference Cover  Height Biomass
Fuel Type Study Study site Treatment  Biomass Units (%) (cm) (grams/mm?)
Quercus Kane et al. Jones Lab ex- 15 Grams 100 6.2 0.000197
Laevis 2008 Ecological periment per
Center 35 cm?

*30 cm from the other studies was substituted for the height as there were no published heights associated with the Derner et al. 2012 or Brockway

and Outcalt 2000 studies.

""No dimensions of the cones are reported in Fonda and Varner 2004, so dimensions were measured from the nadir plot photos.

Statistical Analysis

Analyses are presented in the 3 phases described previously;
Phase 1: parameterization and development of simulated fu-
elbeds and biomass estimations using high resolution nadir im-
agery and field-based height data (» = 100 data points per plot)
for the SERDP site. Height comparison is conducted using the
Pearson correlation. Phase 2: replication of model development
and biomass estimation for the RxCadre site and comparison
with in situ measurements of biomass. Comparisons are con-
ducted using Pearson correlation, ANOVA, and RMSE. Phase
3: fuelbed height distributions comparison between TLS-based
and simulation-based, using Weibull distribution functions to
analyze shape («) and scale () parameters using the fitdistr-
plus package (Delignette-Muller and Dutang 2015) in R. The
Weibull function is fit to the TLS and simulated fuel height

model using the maximum likelihood estimate method. We also
used a regression-based equivalence test (Robinson et al. 2005)
in the equivalence package in R (Robinson 2016) to test the in-
tercept equality between 2 measurements. The region of equality
was determined to be +25 % of the mean for the intercept and
slope. Rejection of the null hypothesis is where the interval of
equivalence contains the 95 % confidence interval, maintaining
that there is no dissimilarity.

RESULTS

Phase 1: Parametrization and Simulation Development in
the SERDP Plots

The simulated fuelbeds closely resembled the plot pho-
tos in appearance and geometry (Figure 2) and share char-
acteristics with field measurements in terms of fuel depth
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TABLE 2
Simulated fuelbed heights correlate well with measured fuel
depth, with most variability resulting from grass blades in the
simulation crossing in the 10 cm? grid cell. Residual standard
errors (RSE) were greatest in Plot 3, which had a lattice of
reproductive grass stems that were bent across

the plot
Confidence Interval
Plot Correlation df p-value (95 %) RSE
1 0.94 298 < 0.001 0.92-0.95 5.76
2 0.81 298 < 0.001 0.81-0.87 8.98
3 0.84 298 < 0.001 0.80-0.87 14.36
4 0.75 298 < 0.001 0.69-0.79 4.88
5 0.86 298 < 0.001 0.82-0.88 3.70
6 0.96 298 < 0.001 0.94-0.96 2.21
7 0.88 298 < 0.001 0.85-0.90 5.76

and cover. In this study, fuel depth and cover are the only
directly comparable metrics between the field-measured and
the simulated fuelbed data, because3 no other field data were
collected.

Height Metrics

Comparisons of field and simulated fuel depth (Table 2) were
well correlated with correlation coefficients ranging from 0.75
t0 0.96. The tightest correspondence occurred in plot 6 (r = 0.96,
p-value < 0.001). Plots with high densities of overhanging grass
stems proved most variable when compared against the point
intercept data with correlation coefficients ranging from 0.81 to
0.88. In all cases, the tallest measurements from the field and
simulated fuel heights related well, with less correspondence
in the lower reaches of the fuel beds. Plots with generally low
stature fuels and isolated taller grass fuels performed best. The
largest residual standard error occurred in plot 3, where a lattice
of overhanging grass stems crisscrossed the plot. The field point
intercept data often miss these sparse objects, whereas careful
attention was given to adding them in generation of the simulated
fuelbeds.

Biomass Estimation

Estimates of per-subplot biomass fell within expected ranges
reported in the literature (Table 3) for grass, needles, cones, and
deciduous litter, with 3 exceptions. Ranges for grass biomass
were from 43.43 grams/m® to 664.22 grams/m?, needle lit-
ter ranged from 0.23 grams/m? to 35.23 grams/m?, and cone
biomass ranged from 117.96 grams/m? to 509.95 grams/m?>.
Plots 3, 4, and 5 exhibited grass biomass estimates that ex-
ceeded expected norms. Occupied volume on these plots varied
from consistent with other plots having similar fuel loads to
nearly twice the average volume of all plots. Surface area for

14

Height {cm)

30 40
Biomass (g)

FIG. 4. Mean biomass for 1 cm height bins for all plots in Phase

1 are shown (solid line) bounded by standard deviation (dashed

line). The bulk of biomass is allocated at the lowest strata of the
fuelbed.

these same plots appears to be the primary driver of the larger
biomass estimate because these plots average 150 % more sur-
face area to volume than plots that fell within expected biomass
ranges. Volume and surface area per plot for each fuel type
are reported in Table 3. Estimates of longleaf pine needle litter
biomass performed within published ranges. These fuel layers
potentially produce the most realistic estimates of mass because
the strata is limited in depth (between 2 cm-5 cm) and has
very clear physical boundaries, whereas the grass fuels require
more interpretation with regard to height and dispersion across
the fuelbed. Bulk densities derived from the biomass and occu-
pied volume averaged from 0.012 grams/cm? for grass to 0.077
grams/ cm? for cones. Longleaf pine litter had an average bulk
density of 0.0007 cm?.

Analysis of height distributions of biomass in the simulated
fuelbeds shows that nearly 70 % of grass biomass is located
below 5.5 cm height, which is where the height biomass curves
inflect upward (Figure 4). This inflection height corresponds
with the transition from grass bunch to the sparser stems and
inflorescence. Additionally, about 40 % of the grass biomass
occurs within 2 cm of the ground, occupying the litter layer
more so than the aerial fuels within each fuel bed. All longleaf
pine litter and deciduous oak litter biomass fell below the grass
biomass inflection height described. Cone litter generally bi-
sected the grass inflection height with fuel depth ranging from
Scmto 8 cm.
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FIG. 5. An equivalence plot of the simulated litter and oven-dried litter biomass for each plot in the RxCadre validation.

Phase 2: Validation and Comparison in the RxCadre Plots
Biomass Validation

Biomass was estimated for the 3 dominant fuel types (needle
litter, oak leaf litter, and perennial grasses) across the HIPs plots.
The litter biomass estimates were combined into a single-litter
value, because the weighed biomass is described in a single-litter
term. Simulated litter biomass correlated well with oven-dried
litter biomass (r = 0.86, p < 0.05, RMSE = 15.8 g, Figure 5).
Means were equivalent and ANOVA detailed no significant dif-
ference between mean simulated and actual litter biomass values
(F = 1.05, p < 0.93, df = 16, confidence level = 0.95). Litter
averaged 80 % (o0 = 21 %) of the total biomass for all clip
plots combined from the weighed biomass data. Grass biomass
represented a range of 2 % to 17 % of total biomass for 8 clip
plots and simulated biomass again correlated well with oven-
dried biomass; additionally, means were also equivalent (r =
0.98, p < 0.05, RMSE = 1.6g). Simulated forb biomass per-
formed least well, though means were equivalent (r = 0.75,
p < 0.05) revealing substantial variability in estimates when the
species bracken fern models are present. There is difficulty in
assessing if the error with these models is associated with the
model or the field data classifications of emergent and nonemer-
gent vegetation. In many of the plot photographs collected for

the experiment, bracken ferns are desiccated and in some cases
have perched litter on top. Therefore, these ferns may also be
partitioned to the litter fuel class.

Phase 3: Weibull Distribution Comparison between
Simulations and TLS

Weibull shape parameters («) for the TLS-based point clouds
and simulations compared well (r = 0.86, p < 0.05, Figure 6)
with equivalent means indicating that the Weibull slopes are
similar in both datasets. Weibull « parameters for the simula-
tion data indicated a weak relationship with plots that are litter
dominated (r = 0.65, p < 0.05), suggesting that low height
objects in the litter bed influence the Weibull slope value. The
scale parameters (8) performed poorly (r = 0.21, p < 0.5,
Figure 7). The equivalence test demonstrated that the means
were dissimilar. Clearly there are disparities in data density be-
tween the TLS and simulation data, with the simulation data
density heavily weighted toward the litter bed ranging in height
from 0 cm-5 cm. Several plots (n = 9) were partially obscured
by adjacent or overhanging vegetation, reducing the ability of
the laser pulses to penetrate and accurately sample the litter
layer of the plots (Figure 8).
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FIG. 6. An equivalence plot between the Weibull « parameter derived from the TLS and simulation height distributions.

DISCUSSION

This study provides a new approach for examining surface
fuel variability at very fine scales (sub-m). Simulated fuelbeds
produce a high degree of visual realism (Figure 2) and share
height and biomass attributes with field measurements. These
fuel models and their metrics can be used to design fuelbeds that
are consistent in measurement of structure and biomass. This
consistency in fuel attributes is currently missing from inputs
needed for physics-based fire behavior models.

We view these fuelbed simulations as a bridge between field
and remotely sensed data. Field sampling results in aggrega-
tion over large areas to infer average fuel loading (Ottmar et al.
2016). As discussed previously, traditional inventory methods
simplify the fuelbed at the cost of characterizing the full range
of variability that exists. Furthermore, an attempt to describe
surface fuel mass, using airborne LiDAR, was inadequate in the
same study area (Hudak et al. 2016). This may be attributable
to the fine-scale heterogeneity of fuels associated with longleaf
pine ecosystems, where there is a need to identify and spatially
describe fuel distributions in regard to fuel type and fuel struc-
ture (Loudermilk et al. 2012; O’Brien et al. 2016).

We have demonstrated that these simulations are highly cor-
related to field-measured height and dry weight biomass. But

more importantly, these metrics can be allocated to specific fuel
types, where other attempts using LiDAR have only looked at
predicting overall fuel mass (Hudak et al. 2016) or predicting
fuel models (Seielstad and Queen 2003). O’Brien et al. (2016)
suggest the allocation to fuel type is a better predictor of subse-
quent fire radiative energy then fuel mass alone. Active remote
sensing platforms, such as TLS, collect rich data, but assess-
ing the individual fuel elements with differing properties within
complex fuelbeds is difficult and has yet to be executed satis-
factorily (Rowell and Seielstad 2012). In frequent low-intensity
fire regimes, this specific allocation of fuel mass as a function of
type and structure has the potential to quantify variability in fire
radiative energy that contributes directly to fire effects (O’Brien
et al. 2008; O’Brien et al. 2016).

The key difficulty with mapping surface fuels using TLS is
uncertainty with regard to how the vertical distribution of the
point cloud relates to complex matrices of fuels in the low-
est strata of the fuelbed where the most influential fuels (e.g.,
pine litter, pinecones) are found. The simulation approach we
describe in this study performs best for characterizing these
particular fuel types. Previously, Coops et al. (2007) inter-
preted Weibull distributions of airborne LiDAR and related the
Weibull & and B parameters to characterize distributions of



12 CANADIAN JOURNAL OF REMOTE SENSING/JOURNAL CANADIEN DE TELEDETECTION

Weibull Simulated p parameter

I I
0.1 0.2

I I
0.2 0.4

Weibull LiDAR B parameter

FIG. 7. An equivalence plot between the Weibull 8 parameter derived from the TLS and simulation height distributions.

biomass within forested canopies in British Columbia, Canada.
This study found correlations between Weibull parameters of
LiDAR canopy height models and field-measured height dis-
tributions, suggesting that airborne LiDAR data can be used
to derive standard forest inventory information. For our re-
search, it is clear that the amount of information we can glean
from the surface fuels characterization of TLS-based height
distributions is pivotal in characterizing fuel metrics. Within
the RxCadre plots, TLS data underrepresent the bulk of fuels
occurring at the lowest heights of the fuelbed. This requires
inference from vertical distributions of the upper reaches of
the fuelbed to predict what the configuration of the lowest
height strata of grass and litter are. The Weibull o parameters
for both the TLS and simulated data suggest that we are de-
scribing the density of points and simulated objects distributed
vertically.

The simulated Weibull distributions are based on the object
vertices used to estimate surface area of the objects that are, in
turn, used to predict biomass. From this, we infer that biomass is
allocated similarly. Remington et al. (1992) demonstrated that
the use of the 3-parameter Weibull characterizes grass biomass
distributions based on grazing treatments in Colorado, USA.
Our findings are similar to this study in that litter-dominated

plots are heavily weighted to lower heights with the highest
concentrations of biomass.

Another important note is the effect of occlusion that results
from laser pulses being intercepted by matter in the foreground
or hanging over the plot of interest. Our analysis demonstrated
that where this effect occurs, the ground surface sampling at-
tenuates in regard to the actual number of objects present. Sim-
ulated fuelbeds capture these elements, and differences in the
Weibull curves suggest that variability in TLS sampling might
have a negative effect on predicting and distributing biomass in
these systems. To overcome issues of occlusion, others have em-
ployed detailed and multiangle TLS acquisition to produce high-
resolution scans that maximize laser pulse penetration into veg-
etation (Hosoi and Omasa 2009). Previous studies have demon-
strated that for identifiable individual shrubs in large-area scans,
TLS data can be used to estimate biomass across size gradients
(Loudermilk et al. 2009; Olsoy et al. 2014; Greaves et al. 2015).
The ability to discriminate specific intermixed fuel types and
arrangements at the lowest reaches of the fuelbed is, therefore,
difficult when utilizing TLS data.

We demonstrate that the simulated fuelbed approach pro-
duces meaningful estimates of leaf litter, grass, and forb biomass
that are interspersed across the fuel matrix (Figure 8). These
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FIG. 8. Weibull distributions for 5 example plots used in the RxCadre experiment demonstrate similarities between simulations

and TLS-based height profiles.

findings suggest that our simulations provide an enhanced range
of variability by tying precise height and fuel load metrics with
field-collected biomass. An advantage to this modeling tech-
nique is the absence of a priori knowledge of biomass to attribute
across the fuelbed. Similarly, Parsons et al. (2011) attributes
biomass to fractal tree models, using biomass estimates derived
by the Forest Vegetation Simulator, where allometrically de-
rived biomass is allocated across the tree-per-voxel unit as a
function of branch and needle fuel type. Vertical and horizontal
distributions of fuelbeds are critical in the realm of understand-
ing the role of fuels in fire behavior and postcombustion fire
effects. Our fuelbeds depicted higher concentrations of biomass
(Figure 3) near the bottom of the fuelbed (<4 cm) in grass fuels
and showed a higher degree of variability in the lower reaches
of the fuelbed than higher up. Similarly, the ratio of occupied
versus unoccupied space in the fuelbed changes with height,
with more open space in the upper reaches of the fuelbed and
less available biomass. We are also able to describe the horizon-
tal distribution of fuels and decompose this distribution by fuel

type in a way that is not currently possible with field methods
or remote sensing. An advantage to using this method is that
estimates of biomass and bulk density are not prone to the same
types of error that airborne or terrestrial LiDAR experience.
The description of fine-scale fuelbed biomass and partition is
important because fuels differentially combust based on changes
in relative humidity and ambient temperature. Varner et al.
(2015) demonstrates the differences in combustion, specifically
that longleaf pine needle litter has an intense, brief, and high-
consumption burn period that makes this fuel type a primary
carrier of fire in southeastern forests. Inversely, turkey oak litter
has a long flaming and a protracted smoldering period. Being
able to distinguish between important fuel types and respective
mass is important for understanding factors that influence heat
flux and postcombustion fire effects (O’Brien et al. in review).
Andersen et al. (2004) describe small deviations from assump-
tions of uniform distributions of fuels that propagate significant
effects of canopy bulk density in forested ecosystems. The abil-
ity to describe these fuels in terms of available biomass, volume,
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and surface area by fuel type and across large areas is an exciting
prospect for advancing wildland fire science.

Future Work

We pose that limited field data does not need to inhibit finer-
grain characterization of these fuelbeds. In fact, a combination
of general height characteristics, photography, and fuel load
might suffice to produce accurate simulated estimates of a va-
riety of fuel arrangements encountered in a landscape. LIDAR
data might act as a framework to distribute these simulated esti-
mates of fuels through probability models or distribution analy-
sis (Figure 6). However, characterizing large fuel beds (> 1 ha)
using TLS is a difficult proposition. We suggest using Weibull
relationships to link field data with TLS or airborne LiDAR ver-
tical distributions with simulated fuelbeds as a way to populate
a landscape. Specifically, integration of these data is crucial for
creating consistent fuels data for validation of next-generation
fire behavior models, such as the Wildland Fire Dynamic Sim-
ulator (WFDS; Mell et al. 2009) and FIRETEC/higrad (Linn
et al. 2002). Although the resolutions of the simulated fuelbeds
are computationally too expensive for integration into these fire
behavior models, we suggest utilizing the TLS-based height dis-
tributions as a mechanism to extrapolate the amount and type
of mass detailed in the simulations aggregated to coarser grain
sizes. This technique could prove to be the most effective way
to bridge the differences between field- and LiDAR-based mea-
surements.

From the perspective of LiDAR remote sensing, having a
dataset parameterized to represent realistic 3D distributions of
fuels and biomass will serve as a backdrop for simulating laser
point clouds via ray tracing. Disney et al. (2009) showed results
that indicated the importance of LiDAR instrument settings
and energy/matter interactions within simulated tree canopy
structure, using the same parametric plant models as those in
OnyxTree. This same study found that the ability to represent
canopy architecture and elements discretely facilitated better
understanding of how laser pulses penetrate tree crowns, with
implications for predicting Leaf Area Index and related metrics
(Disney etal. 2010). Palace et al. (2015) modeled canopy vegeta-
tion profiles and forest structure for comparison with similar air-
borne LiDAR metrics through simulated forest models in Costa
Rican tropical forests. This study found that simulations that use
established allometries to produce simulated forests found that
canopy height is not a significant predictor of biomass, but mod-
eling forest profiles that estimate plant area fractions improved
LiDAR-derived estimates of forest biomass.

The ability to produce realistic simulated laser point clouds
is a significant proving mechanism for understanding how TLSs
characterize fine fuels. Previous attempts to describe these fuels
have been difficult due to occlusion and point sampling vari-
ability using TLS data collected obliquely from a boom lift
(Rowell et al. 2015). Further work needs to be conducted to
determine how well biomass estimated from the simulated fu-
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FIG. 9. Biomass distributions for a (A) mixed grass, (B) forb,
and (C) litter plot demonstrating the vertical distribution of
biomass per fuel type.

elbed performs, specifically integrating more intensely sampled
fuelbeds. Automation of fuelbed construction is also imperative
to reducing variability and subjectivity. We also foresee benefits
for the integration of these findings with other high-resolution
simulation techniques, such as FUEL3D (Parsons 2006), with
which we may begin to combine surface and canopy fuels for
improved inputs used for physics-based fire behavior models.

CONCLUSIONS

In this article, we presented results that demonstrate 3D fu-
elbed simulations can explain much of the variability of biomass
allocation and height distributions that are difficult to estimate
using TLS data. Although the approach to building these simu-
lations needs improvement in terms of automation and further
validation, there is significant promise for using these methods
to populate spatial datasets for use in complex-fluid-dynamics-
based fire behavior models. Assumptions of plant structure,
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biomass partition, and height estimation need to be refined to
include a broader diversity of species found in the southeastern
United States and similarly structured ecosystems worldwide.
We intend to further investigate the integration of these surface
fuelbed simulations with other canopy fuel modeling techniques
(e.g., FUEL3D) and the ability to leverage remotely sensed data
to extrapolate landscape-scale fuelbed models.
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