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Abstract In hedonic valuation studies the policy-relevant environmental quality attribute of
interest is often costly to measure, especially under pronounced spatial and temporal vari-
ability. However, in many cases this attribute affects home prices and consumer preferences
solely through its impact on a readily observable, spatially delineated, and time-invariant
feature of the physical landscape. We label such a feature a “translating amenity.” We show
that under certain conditions changes in the marginal effect of such amenities on home values
over time can be used to draw inference on the implicit price of the unobserved environmental
quality of interest. We illustrate this approach in the context of a repeat-sales model and the
recently intensified outbreak of the Mountain Pine Beetle in the Colorado Front Range.
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1 Introduction

The primary aim in many hedonic valuation studies is to estimate the marginal effect of an
environmental quality attribute, say g, on observed home prices. As discussed in numerous
sources (e.g. Palmquist 1991; Freeman 2003; Palmquist 2005) under standard assumptions
governing the housing market under consideration, this marginal effect can be interpreted as
“implicit price” or “marginal willingness-to-pay (WTP)” by the home owner for a incremental
change in ¢.

The focus on g usually arises from policy considerations targeting its regulation or changes
in its ambient levels. Prominent examples include Total Maximum Daily Loads (TMDLs) for
specific pollutants and water bodies (e.g. US Environmental Protection Agency 2014a,d),
imposed standards for air pollution (e.g. US Environmental Protection Agency 2014b,c),
or noise abatement rules for airports and traffic arteries (e.g. Federal Highway Administra-
tion 2014). However, in many practical hedonic applications it can be difficult or costly to
measure property-specific levels of g. Most existing studies have circumvented this issue
by assigning homes to “nearest measuring points” or “common quality zones” for the envi-
ronmental attribute of interest (e.g. Palmquist 1982; Leggett and Bockstael 2000; Kim et al.
2003; Neill et al. 2007; Anselin and Lozano-Gracia 2008; Pope 2008; Boyle et al. 2010).
While these aggregate exposure models generally produce plausible results they do pose
the risk of measurement error if this implicit assumption of homogeneous quality for (often
large) clusters of homes is violated for a substantial share of individual properties in the
sample. Naturally, such measurement problems are aggravated in multi-period applications
if ¢ changes in magnitude over time, and if there are temporal holes in its measurement in
addition to lacking spatial specificity.

In this study we consider a low-cost alternative to the valuation of ¢ in a hedonic framework
that has been implicitly used in a small set of existing contributions, but never theoretically
motivated or formalized. It is based on the concept of Translating Amenities (TAs), which we
define to be time-invariant features of the landscape that are property-specific, straightforward
to measure using modern GIS tools, and intrinsically linked to the environmental attribute
of primary interest. For example, Cho et al. (2011) use the Euclidean distance to the nearest
impaired portion of a river to measure the impact of water pollution from a pulp and paper
mill on home values. In this case, the policy-relevant variable from the perspective of a
regulating agency is the unobserved water quality, and the TA is the river segment itself. A
similar approach is taken by Kovacs et al. (2011), who use home-specific distances to live
oak woodland (the TA), as well as binary indicators for the presence or absence of such
woodlands within different perimeters of a given residence to estimate the effect of sudden
oak death infestations (the policy-relevant environmental quality) on local housing markets.

There does not yet exist a structural motivation for the use of such TAs to capture home-
owners’ preferences for unobserved (or scientifically un-measured) environmental quality.
This paper aims to fill this gap. We provide a theoretical outline of the Translating Amenity
Method (TAM), and draw parallels to the concept of weak complementarity in recreation
demand studies. Specifically, we illustrate that for the TAM to yield valid estimates of under-
lying environmental quality effects, the following two critical assumptions must hold: (i)
The TA matters to residents (i.e. enters utility functions and hedonic price surfaces), and (ii)
constitutes the sole link between the policy-relevant amenity ¢ and consumer preferences
for housing. In other words, in absence of the TA, the effect of ¢ on property values is zero.
We show that under these assumptions and within the framework of a Repeat Sales Model
(RSM) the marginal effect of the TA on differenced home prices can be directly related to
the implicit price of ¢ for standard specifications of the hedonic price function.
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We apply the method to an ongoing environmental resource change of epic proportions:
The massive and widespread infestation of forestlands by the Mountain Pine Beetle (MPB)
in large parts of the US and Canadian west. Focusing on two counties in the Colorado
Front Range, we show that the MPB impact can be estimated using host trees as translating
commodity, following the implicit strategy of Kovacs et al. (2011). We find that accumulated
losses in home values amount to hundreds of millions of dollars for properties in the host
tree zone. This has significant impacts on property taxes, and thus the fiscal viability of local
communities.

The remainder of this paper is structured as follows: in the next section we outline the
theoretical underpinnings of the TAM. This is followed by an econometric exposition on
incorporating the TAM in an RSM. Section 4 discusses the data and presents estimation
results. Section 5 concludes.

2 Conceptual Framework

As is conventionally assumed, a local resident derives utility from the purchase of a single
property and a numeraire commodity z. As in Phaneuf et al. (2008) we further stipulate that
home and neighborhood features x, as well as a policy-relevant environmental amenity ¢
enter utility via a housing function H (.). In our case, g enters the housing function, and
thus utility, via a translating function f (.) that combines ¢ with a translating amenity /. The
consumer’s optimization problem in period # can then be stated as follows:

T%U(H(X,f(h,qﬂ)),z;y) sit. y=P(f(h,q;0),x:8)+z, (nH

where y and @ are vectors of preference parameters, y is household income, P is the price
of a given residence, and § is a vector of parameters for the reduced-form price function
P (.) that governs a specific housing market.! Specifically, y collects preference parameters
related to housing attributes x, while @ captures preferences related to environmental quality
¢ and translating amenity /.

The first order conditions then lead to the well-known equality of currency-valued marginal
benefits of ¢, and ¢’s marginal contribution to home price:

U () oU() 0H() 9f()

9 9H() af() aq _ 0P ()3f () 9P () @)
U0 U0 = =
&2 T af () 9q dq
For the TAM to be valid, we need
aU (.
(ﬂm _ 0) —0 3)
dq

That is, if there are no TA’s in the vicinity of a given home (2 = 0), environmental quality ¢
has no further effect on utility. This holds if ¢ enters utility only via the translating function

1 To be clear, Phaneuf et al. (2008) specify utility as U = U (x (¢), h (a, q) , z, €), where A (.) is the housing
function, a is a vector of housing attributes, and € denotes unobserved heterogeneity. The term x (g) refers to
local recreational opportunities, which are not relevant in our case. Our notation also differs in that we label
the housing function as H (.), and the housing attributes as x. We also include preference parameters (y and
), which are not explicitly captured in their specification. In contrast, unobserved heterogeneity does not play
a major role in our context, so their error term € is absent from our model. However, both models include
environmental quality ¢ and the numeraire commodity z.
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f (), and if, in addition,
0f 0,q.60)
aq N
If condition (3) is violated, the TA will not capture the full implicit price of g, as will be clear
from the following exposition. Condition (4) requires for ¢ and % to interact in the translating
function such that in absence of the translating good /, the environmental amenity g vanishes
from f (.), and thus from both the utility function and the price surface. This requirement
is akin to the “weak complementarity” condition in recreation demand studies, where the
effect of the environmental amenity ¢ on utility disappears when demand for a linked market
good (trips or visits to a recreation site) drops to zero. As discussed in von Haefen (2007),
numerous empirical approaches are possible to implement this condition.

By analogy, there are several ways to specify f (.) to assure that ¢ becomes ineffective in
absence of h. Meaningful specifications likely depend on the individual context. We will thus
cast the further development of our model within the framework of our empirical application.
In our case, g denotes some measurement of Mountain Pine Beetle (MPB) density (e.g. beetles
per tree section) within a specific perimeter of a private residence. It is the policy variable
of interest in the sense that potential mitigating actions would be targeted directly towards a
reduction of the beetle population.

The MPB needs host trees to survive (ponderosa, white, lodgepole, and other pines).
The health—and thus look—of host trees, in turn, is likely to affect homeowners’ utility
and property values. We thus let our translating commodity be /, the number of host trees
(or, alternatively, the combined biomass of host trees) within the same perimeter of a given
residence. We then specify the translating function f (.) as

f(h.q,0)=01x(g)h+0(1 —a(g)h, 0=a(g) =1, (&)

where « (.) is a damage function that converts MPB density into the proportion of diseased
trees (or biomass). Thus, « (¢) h captures the number of diseased trees within the specified
perimeter, and (1 — « (¢)) h indicates the number of healthy trees.? The terms 0 and 6, are the
corresponding preferences for, respectively, sick and healthy trees, which are assumed com-
mon to all homeowners. Other than satisfying the linkage constraint in (4), this specification
of f (.) allows for asymmetric preferences based on tree health—for example, homeowners
likely cherish healthy trees (or are, at worst, indifferent), but dislike diseased trees (or are,
at best, indifferent). We believe that the distinction between homeowners’ preferences for
undisturbed and impacted portions of & is important as it corresponds well to many realis-
tic applications. For example, a noise-generating nearby highway may nonetheless provide
quick access to work and shopping, and a polluted lake or stream may still allow for some
boating or fishing. Thus, the specification of the translating function in (5) is quite general.?
The implicit price of ¢ is then given as

0P () _dP()f() _dP()
dgq of () dq af ()

0 “

01 —60) o' (@)h =B (g h 6)

2 If the relevant policy intervention directly targets trees instead of beetles, for example via the removal of
diseased pines, « (¢) simplifies to «. In that case ¢ would be the number or biomass of dead trees, and host
trees at large would still be the TA.

3 This is why £ is not a proxy variable in a formal econometric sense, as it can still influence home values
independently of the unobserved quality variable ¢g. As discussed e.g. in Wooldridge (2012), p. 67, a genuine
proxy variable must be redundant in the underlying structural relationship if the unobserved variable for which
it fills in were actually included in the model. We specifically abstract from such a case by allowing trees to
affect home values even in absence of MPB damage.
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Thus, the reduced-form parameter 8 (¢) = (“; () (01 — 62) &’ (q) captures the combined
effect of tree preferences and MPB damage. It can be directly interpreted as the per-tree (or
unit of biomass) implicit price of g. The key question now becomes under which conditions
we can relate the coefficient on 4 in an empirical price function to B (q), and thus to the
implicit price of the unobserved environmental quality. This constitutes the methodological
crux of the TAM. Taking the derivative of P (.) with respect to /4 yields
AP () 9P ()
— (01— 0 0 7
o af()(l 2 (g) + 62 (N
Thus, in a basic cross-sectional data set of home sales we can only identify g (¢) from (7) if
o’ (q) = a (g) and if, in addition 6, = 0. The first condition places strong restrictions on the
damage function, and the second—the absence of any appreciation effects for 7—is unlikely
to hold in most settings, as discussed above.

This dilemma can be overcome if we interpret the implicit price of g as a (small) change
in its level over time, and if we cast our analysis in a Repeat Sales (RS) framework. Thus,
we leta’ () ~ a (q;) — a (g:—1), for two sales of the same property observed at times ¢ and
t—1.

This changes (6) to:

oP() 9P ()If() ~ aP ()
dq af () 9q af ()
Now consider an RS model where instead of the derivative of price with respect to g we

focus on price differences over time due to a change in ¢g. For example, for the widely used
exponential specification of the price function we have, at time ¢,

P(f(h,q:0),x;8) =exp{f ()}exp(x;d)
=exp{Oia(q)h+ 601 —a(q))h}exp (x;8) )
4

(01— 02) (a(gr) —a(g-1))h =B (@)h  (8)

The differential between logged sales prices at times ¢ and r — 1 can then be written as

In(P) —In(Pi_1) = (01 — 62) [ (q:) — e« (g;—1) | h + 62k — a2
=1 —0) [ (qg) —a(g-D)]h~1A/P)B(g)h,  (10)

where the last term in the second line follows from %P( ) — P for this model. Thus, for small

changes of g over time the coefficient of / in a standard differenced hedonic price function
directly approximates the implicit price of ¢ per unit of 4, expressed as usual in terms of a
proportional change in price.

Naturally, for larger changes in g between the two time periods this interpretation of
“marginal welfare effect” becomes tenuous. However, the coefficient on /4 can still be unam-
biguously interpreted as the capitalization effect of ¢ on home prices. This holds because
the pure “appreciation effect” 621 cancels out in the differenced price function, as shown
explicitly in (10).

The importance of an RS approach to assure a utility-theoretic foundation for TAs raises
concerns as to their interpretation in cross-sectional applications. This may explain the mixed
signals in Kovacs et al’s (2011) cross-sectional version of their model for the presence of oak

4 We assume for now that all other components in the price function difference out.

5 For the less common linear price function with additive attributes we have djz(()) = 1, and would thus

obtain P, — P,_| = (0] — 62) [ (q:) —a (qr—1)] h =~ B (q) h. That is, the coefficient on 4 would directly
approximate the implicit price of g.
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woods within different perimeters and log-distances of a given residence. The coefficients for
these terms likely capture both the amenity value of healthy oaks and the detrimental effect of
diseased trees. Thus, they cannot be interpreted as the marginal WTP of the typical resident
to curb the spread of southern oak death. Similarly, the estimated coefficients on distance to
impaired river segments, which all lack statistical significance, in Cho et al. (2011) likely
muddle the pollution effect from the paper mill with potentially beneficial attributes of even a
polluted waterway, such as cooling effects during summer. Conversely, Kovacs et al’s (2011)
RS version of their hedonic model produces substantially more significant and intuitively
sound results than their cross-sectional specification, with the effect of nearby oak woods
turning increasingly more negative over time.

In practical hedonic modeling both & and g will likely be property-specific. The latter
implies a unique marginal effect of 8; = B (¢;) for residence i. The identification of these
heterogeneous effects requires a panel of differenced home sales for each individual property.
If this is not available ¢; needs to be assumed constant for clusters of homes. Thus, a certain
degree of aggregation may still be required to render the TAM operational. While this erodes
the TAM’s potential advantage over the aggregate exposure approach discussed above to some
degree, the aggregation over homes with a stipulated common ¢ can likely be accomplished
at a much more refined level than the broad “noise zones” or “pollution contours” generally
employed in the former strand of literature, since only a few observations are required to
identify B (g;) for a given level of ¢;. In our application we normalize & to one, de facto
separating the sample into homes with (h; = 1) and without (h; = 0) host trees within a
specific perimeter. This reduces §; to a single marginal effect (specific to a given perimeter)
that can be interpreted as the MPB effect for the typical property near host trees.

3 Econometric Model

Let the logged sales price of home i, located in market area s, at time ¢ be given as

InPis; = ag + g (Xis, 8is5) + h:f )+ W,/t'/, + €ist with
€isy~n(0,0%), i=1...N, t=1...T, s=1...5. (11)

The intercept term «y, captures both the area-specific housing market price trend, and any
other area and time-varying unobservables that affect sales price. As discussed in Dastrup
et al. (2012) in the context of solar panel installations, allowing for area-specific market
appreciation is important when geography-specific price patterns may be correlated with
local dynamics of environmental conditions.

In our case, a legitimate concern is that the MBP infestation rate observed for our time
frame correlates with rapidly rising fuel prices. The latter will increase daily transportation
and climate control costs for the typical household asymmetrically across neighborhoods,
depending on local climate, commuting patterns, and local commercial infrastructure. Specif-
ically, more remote areas at higher elevations and with longer daily commutes to employment
centers will be relatively more affected by rising fuel costs than homes in lower elevations and
near urban centers. These increased fuel costs are likely capitalized into home values, leading
to more pronounced losses in home values in these remote locations over time. However, the
exact same neighborhoods are also more likely located in the MPB host tree zone. Thus, the
MPB effect on home values would be confounded with the effect of rising fuel costs if we
forced the same market price trend over the entire region. This is clearly confirmed by our
estimation results.

@ Springer



Mountain Pine Beetles and Host Trees in the Colorado Front Range 619

Function g (.) in Eq. (11) combines time-invariant home and neighborhood characteristics
X;s with preference parameters §;;. Conveniently, the exact form and contents of g (.) need
not be known, as this term will drop out of the estimable equation after differencing. This is
the main advantage of the repeat sales model over a traditional hedonic approach, as discussed
in numerous existing contributions (e.g. Palmquist 1982; Mendelsohn et al. 1992; Carbone
et al. 2006).°

The remaining two observed characteristics, h; and w;; are associated with time-varying
environmental conditions, and thus need to be explicitly included in our model. As discussed
above, h; is a metric for host trees near a given residence. Specifically, since the MPB effect
may vary over distance from the actual lot, we let h; be a vector of host tree indicators
associated with different perimeters surrounding a given property. The corresponding vector
f (.) contains a set of translating functions as defined in (5), one for each perimeter.

Analogously, vector w;; includes a set of 0/1 terms indicating if a wildfire occurred within
discrete distance zones of the home, and within a discrete set of years preceding the sales date.
Controlling for such fire effects is important as wildfire occurrences are, not surprisingly,
spatially correlated with the presence of MPB host trees, and—at least to some extent—
temporally correlated with the MPB infestation trajectory. Similar to the case of spatially
and temporally varying energy costs, this could lead to erroneous estimates of the MPB
effect if left ignored. Note that the corresponding coefficient vector, ¥, is modeled as time-
and space invariant. This requires the assumption that the impact of nearby wildfires on sales
prices, after controlling for distance and time lag, remains constant throughout the entire
region and time window. This appears reasonable in our case as the “post-fire” look of a
scorched landscape should be similar over time and space.

Our period-specific model is completed with the inclusion of a standard idiosyncratic,
normally distributed error term, as shown in (11). Now suppose a given property sells at
two points in time, ¢’ and 1°, with ¢’ denoting the more recent sale. Specifying (11) for both
periods and differencing yields our Repeat Sales Model (RSM), which can be compactly
written as

Pix,t’

is,t0

) =InPyy —InP; 0
S T T

= > &+ + D (agxd)+h D (B, xd)
=1 =2 =2

S
+ (w;l/ - W;tU) v+ Z (asai,(ﬂ,t")) + Cis, (1,19) (12)
s=1

where d; is a tri-valued indicator equal to 1 if 7 = ¢/, -1 if t = 19, and 0 otherwise, and
e (.) is the differenced error term with mean zero and variance of 202.7 For identification
purposes, the first time period in the empirical series, i.e. = 1, is chosen as a baseline with
implicit price index of 1. This allows for 7 — 1 time-specific appreciation coefficients for
each area s, as well as T — 1 time-specific coefficient vectors 8, for the host tree variable h;.

6 Naturally, the assumption of time-invariance of both characteristics and preferences is crucial for this advan-
tage to be properly exploited. Since the time periods for our analysis are relatively short (9—12 years) we do not
expect pronounced shifts in underlying preferences in our data. In addition, we control for changes in home
structures by eliminating properties with documented home improvements from our sample, as discussed in
the empirical section.

7 For further details and motivation for this tri-valued indicator approach see, for example, Palmquist (1982)
and Case et al. (2006).
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As discussed in the preceding section the elements of 8, can be directly interpreted as the
perimeter-specific effect of MPB damage on home values.

Our empirical model is completed by adding three additional components: (i) time-
invariant area indicators &g, (ii) time-invariant host-tree effects hf;, and (iii) area-specific
age-related depreciation effects dsa; (1 ,0y.

As discussed in Goetzmann and Spiegel (1995) and Case et al. (2006) the time-invariant
area indicators & capture any nontemporal components of house price appreciation, e.g.
via last-minute refurbishing or minor physical improvements prior to a sale. As illustrated
in Mendelsohn et al. (1992) these terms can be structurally motivated by adding the “sth
time-of-sale” to Eq. (11), such that the difference produces a simple unitary index.

Similarly, the time-invariant host tree effects capture the differential nontemporal price
effect between homes in the host tree zone and homes without host trees. For example, it is
possible that homes “in the woods” exert more pre-sale cleanup efforts than homes in open
environments. Alternatively, and perhaps more intuitively from an econometric perspective,
¢ can be interpreted as the average differential price effect between homes with host trees
and homes without in the baseline time period. The inclusion of this effect turns out to be of
critical importance in our empirical application.’

Finally, the age-depreciation effect is designed to capture additional home-specific price
changes based solely on structural deterioration due to the amount of time that has passed
between a pair of temporally adjacent sales. It is a well known “nuisance” in RSMs that
age-depreciation cannot enter the model linearly due perfect collinearity with the temporal
indicators d; (e.g. Palmquist 1980; Chau et al. 2005; Francke 2010). We follow Francke
(2010) in spirit and let age depreciation be nonlinearly related to a home’s age at the current

and preceding sale, i.e.
Ay —Ap
aj 0y =1In ( Ao ) (13)
where A denotes age in years since construction. This allows for the interpretation of the
corresponding coefficient §; as the percentage effect on price change of a one percent change
in time passed between sales relative to baseline age.

The model in (12) is fit for estimation with one additional econometric adjustment. If a
property sells T times during our research period, it will contribute T — 1 observations to
the repeat sales data. As discussed in Palmquist (1982) and Case et al. (2006), if T > 2
this introduces a non-zero, but known error correlation for such properties. This can be
accommodated in straightforward fashion via Generalized Least Squares (GLS) procedures.

4 Empirical Application
4.1 Rationale for a Translating Commodity—Approach

The Mountain Pine Beetle (MPB, dentroctonus ponderosae) is a forest pest native to North
America. In recent years, its population growth has taken landscape-level proportions.
According to scientists, this is likely related to milder winter climates, but may also be
facilitated by the monoculture stands of pines of homogeneous age that have resulted from
decades of selective forestry (Carroll et al. 2004; Bentz et al. 2010; Sims et al. 2010). In recent
years between 6 and 10 million acres of forest have been lost annually to MPB infestation

8 Conceptually, both & and ¢ can be interpreted as elements of the reduced form parameter vector § in our
theoretical model [Eq. (1)].
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in the western United States alone (Man 2012). These figures are essentially at par with the
annual, country-wide damage inflicted by wildfires.® In the Colorado Front Range, infesta-
tions were spotty and beyond the Wildland—Urban-Interface (WUI) until the mid-2000s, but
have grown exponentially and penetrated into the WUI in the last 5-7 years.

An infected pine tree dies within a few weeks. Its needles turn red within a year, and
gray within three to four years. Ideally, MPB density would be measured as beetles per tree
section or spacial unit. However, such detailed metrics are not available on the regional scale
needed for our analysis. This makes a shift of focus to the translating commodity “host trees”
attractive.

If the percentage of damaged trees or biomass, i.e. the term « (¢) in our structural model
were known, we could in theory estimate separate implicit prices for injured and healthy
trees. This would be similar in spirit to Holmes et al. (2006) and Holmes et al. (2010), who,
using satellite image differencing techniques, assign each image pixel of their study area
to one of five damage classes of hemlock trees afflicted by the Hemlock Woolly Adelgid
(HWA). They then derive the percentage of area occupied by a given damage class within
a specific perimeter of an individual residence, and estimate the marginal effect on home
values of a 1 % increase for each damage class in a cross-sectional hedonic regression model.

Such refined satellite image processing was not available and/or feasible for our entire
research area and time frame. An alternative measure of beetle damage based on the US Forest
Service’s annual Areal Detection Surveys (ADSs) proved too imprecise to yield meaningful
results.'? We thus settle for a feasible alternative strategy based on host tree data alone without
explicit distinction between healthy and infested trees. As described above, this information
suffices to identify MPB impacts on home values, if an RS approach is taken for estimation.
We assign a binary indicator to each property and perimeter, based on the presence (“1”) or
absence (“0”) of MPB host trees. We then estimate separate coefficients for this indicator for
each year of our research period. The change over time of these coefficients can then be used
to derive annual marginal losses of home values due to the progressing infestation.

This approach is conceptually equivalent to that taken by Kovacs et al. (2011) in the
context of Sudden Oak Death (phytophtora ramorum). They assign properties to different
categories based on their distance to the nearest stand of host trees (live oak woodlands), and
use these indicators in a variety of hedonic regression models, including an RS specification.

9 In 2006, 2007, and 2012, the three worst wildfire seasons in history, wildfires consumed over 9 million acres
in the US (National Interagency Fire Center 2012).

10 A full-fledged damage analysis via satellite imagery and visual damage coding by a remote sensing expert
for all included properties in our data would have been infeasible given resource constraints and our relatively
large sample size. In addition, high-quality satellite images covering our entire research area are only available
for a select few years of our research period, which would hamper a seamless analysis of the MPB damage
trajectory over time. The ADS, in turn, uses fly-overs and hand-drawn polygons to identify infested areas.
Each polygon, in turn, receives an estimate for the total number of infested trees within its boundary. Price
et al. (2010) use these polygons for their study of MPB damage and property values in neighboring Grant
County to compute the expected number of diseased trees within different perimeters of each residence. Using
a cross-sectional regression model with spatial lags they estimate the marginal implicit price per tree for each
perimeter. They also report that the accuracy of this polygon-based damage information ranges between 61
and 79 %, based on a 2005 FS assessment. However, MPB damage was more confined and localized in the
mid-90s to mid-2010s (the time span of their analysis), generally allowing for tighter, stand-specific polygons.
This accuracy has suffered in recent years, as polygons had to be drawn at ever larger scales to keep pace
with the dramatic acceleration and expansion of the infestation. For our time frame, which reaches to 2011,
a polygon-based estimation approach did not produce reliable results. Too many homes are included within
the same large-scale polygon, and thus receive identical damage metrics in the last four to five years of our
research period. In addition, a comparison with satellite images for sub-areas and years for which they are
available revealed a high degree of imprecision between polygon boundaries and actual damage. The results
of the polygon-based version of our model are available upon request.
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However, in contrast to our application, they do not allow for area-specific basic price trends,
age-related depreciation, or error correlation for properties with multiple repeat sales. We
found all three components to have a significant influence on estimation results for our data.

4.2 Data
4.2.1 Home Sales Data

The data on home sales were purchased from DataQuick, a private vendor which consolidates
real estate data from county assessor’s offices around the country. Our set comprises all single-
family homes that were assessed in 2011, constituting de facto the entire single-family housing
stock for each county. This yields a starting point of 90,993 properties for Larimer County and
81,835 residences for Boulder County. For Larimer, data with documented sale transactions
are available starting in 1998. For Boulder, the starting year is 2002.

From this initial set we eliminate homes without an observed sale, and all secondary
residences. We also drop any transactions that were flagged as not being at arm’s-length, or
that correspond to homes with documented major improvements between sales, or homes
that sold twice within the same calendar year (“flip-sales™). This yields a retained sample
of 40,981 homes for Larimer and 24,846 residences for Boulder, for a combined number
of 141,106 observed sales transactions. This sample further reduces to 29,543 observations
(21,684 for Larimer, 7,859 for Boulder) on sales that can be paired with one or more preceding
sale for the same property. This corresponds to a total of 23,151 homes (16,427 for Larimer,
6,724 for Boulder) in our final RSM sample.ll

Each retained residence was geo-coded using state-of-the-art precision software.'? For
reasons discussed in the preceding section, we further assign each home to one of seven
“markets”, based on geographic considerations and expected differences in general home
price trajectories. Specifically, we divide Larimer into five markets (henceforth referred to as
areas one through five), while Boulder is split into two markets (henceforth labeled as areas
six and seven).

Figure 1 provides an overview of the research area. It depicts the seven sub-markets
(“areas”) and the location of included properties. Darkened dots indicate properties that
have host trees withing a perimeter of 0.1 kilometers (km). Areas one (“North Larimer
Mountains™), four (“South Larimer Mountains’) and six (“Boulder Mountains”) are located
in the foothills and higher elevations of the Colorado Rockies, whereas the remaining areas
occupy primarily the plains bordering the Front Range. Specifically, area three (“Central
Ft. Collins”) encompasses central Fort Collins, while area two includes its suburbs to the
north (“North Ft. Collins”). Area five (“South Ft. Collins”) comprises Ft. Collins’ southern
expansions, plus the city of Loveland with its satellite communities Berthoud and Johnstown.
Area seven (“Boulder City”) in Boulder County includes the city of Boulder near its western
boundary, the city of Longmont in its north-eastern corner, and the communities of Superior,
Louisville, and Lafayette near its south-eastern perimeter.

N comparison of the repeat-sales sample with the general sample (including single-transaction residences)
based on basic home features did not reveal any systematic differences between the two groups. We thus
conclude that repeat-sales properties do not constitute a systematically different segment of the housing
market.

12 Specifically, we used release 2 of the ESRI StreetMap Premium/NAVTEQ USA software package to geo-
code each property. A majority of geocodes provided by this package (greater than 88 % for both counties)
are based on exact property centroids, as opposed to uniformly assigned street segments.
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Fig. 1 Overview of research area

Table 1 Property counts by area and host tree zone

Area HT zone HT zone
None 0.1km 1 km All None 0.1 km 1 km All
Larimer Boulder
1 2 169 257 259 - — - -
2 2,571 2 32 2,603 - — - -
3 12,987 3 49 13,036 - - - -
4 6 317 452 458 - — - -
5 5,299 5 29 5,328 - - - -
6 - - - - 150 209 378 528
7 - - - — 7,197 4 134 7,331
All 20,865 496 819 21,684 7,347 213 512 7,859

HT = host trees; 1 km zone nests 0.1 km zone

The mountainous areas one, four, and six comprise primarily smaller settlements along
the main highway routes. The sole exception is the town of Estes Park, located near the
center of area four in Larimer County. Estes Park is widely considered the “eastern gateway
to Rocky Mountains National Park”. It offers a mixed housing stock for permanent residents,
interspersed with vacation homes, rental cabins, and other tourism-driven infrastructure.

Table 1 shows the number of observations in our data set for each area, differentiated by
the presence or absence of host trees within two perimeters: 0.1 and 1km, where the wider
perimeter nests the smaller one. As is evident from both Fig. 1 and Table 1, our identification
of the MPB effect via host trees, which is ultimately based on the 0.1 km delineation, will
primarily flow from the mountainous areas one, four, and six. However, the remaining areas

@ Springer



624 J. Cohen et al.

Table 2 Property counts by year and host tree zone

Year HT zone HT zone

None 0.1 km 1 km all None 0.1 km 1 km All

Larimer Boulder
1999 207 8 11 218 - - - -
2000 545 19 30 575 — - — —
2001 873 17 33 906 - - — -
2002 1,176 25 49 1,225 - - — —
2003 1,431 37 63 1,494 57 1 5 62
2004 1,797 38 72 1,869 283 8 21 304
2005 2,096 54 86 2,182 608 21 40 648
2006 2,102 68 104 2,206 882 21 58 940
2007 2,518 66 105 2,623 1,208 35 75 1,283
2008 2,160 45 72 2,232 1,156 19 70 1,226
2009 2,095 37 64 2,159 1,070 28 64 1,134
2010 2,134 47 70 2,204 1,120 41 87 1,207
2011 1,731 35 60 1,791 963 39 92 1,055
All 20,865 496 819 21,684 7,347 213 512 7,859

HT = host trees; 1 km zone nests 0.1 km zone

still provide important information for the identification of fire effects, which are assumed
to be homogeneous across the region.

Table 2 lists the number of observations by year across the entire region and by host tree
proximity. Naturally, annual counts increase for the first few years in our series as more and
more properties enter the data. After this initial “recruitment” period, sale counts stabilize
at approximately 2,000-2,500 per year in Larimer, and 1,000-1,200 per year for Boulder.
In both counties, sale counts peak in 2007—the onset of the recession. After that, sales
gradually drop to under 1,800 (Larimer) and under 1,000 (Boulder) by 2011, the last year
of our research period. Sales with host trees (HTs) in the immediate (0.1 km) and general
(1 km) vicinity generally follow this pattern for both counties.

Annual statistics on sales price (in 2011 dollars, units of 000s) are given in Table 3. As is
evident from the table, homes in Boulder County generally sold for approximately 45-60 %
more than properties in Larimer. For the latter county, the average observed price generally
increases until 2006, after which it generally declines during the recession years. By 2011, the
average sales price is comparable to the “pre-bubble” level of 2000. For Boulder, our series
starts with a clear peak in 2003, which is followed by a rapid and rather pronounced decline,
dropping to approximately 80 % of 2003 values in the last three years of our time window.
Tables 10 and 11 in “Appendix 1” provide annual price statistics for each sub-market.

As can be seen from Table 4, the difference in home values between the two counties
is at least partially related to differences in basic home features. Specifically, residences in
Boulder are generally larger and have more bedrooms and bathrooms than those in Larimer,
although this difference is negligible for areas seven (cities of Boulder, Longmont) versus
three (central Fort Collins). In contrast, properties in mountainous Boulder (area six) clearly
dominate their counterparts in mountainous Larimer (areas four and six) on all three accounts.
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Table 3 Price statistics by year (2011 dollars)

Year Larimer ($000s) Boulder ($000s)
Mean SD Min Max Mean SD Min Max

1999 239 86 80 695 - - - -
2000 254 107 59 1,094 - - - -
2001 270 94 76 889 — — — —
2002 274 105 58 1,453 — - - -
2003 284 111 31 1,281 465 230 193 1,464
2004 277 107 90 1,172 428 262 119 2,797
2005 280 112 39 1,333 431 245 126 3,278
2006 286 127 74 1,400 425 255 106 2,296
2007 270 124 38 1,642 407 276 82 3,078
2008 258 127 64 1,664 377 236 73 2,293
2009 251 109 72 1,155 365 217 82 3,045
2010 260 119 57 1,298 380 231 69 2,189
2011 252 109 67 920 393 266 75 2,600

SD standard deviation; min (max) minimum (maximum)

4.2.2 Host Tree and Fire Data

GIS data on the spatial distribution of host trees were compiled by the FS’s Forest Inventory
and Analysis Program and the Remote Sensing Applications Center. They are available to
the public via the Forest Service’s Geodata Clearinghouse (USDA Forest Service 2012a).
The data layers are based on 2002-2003 Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite images of 28 forest type groups across the contiguous US, plus nearly
100 other geospatial layers. These data are published at a pixel size of 250 m. Each pixel,
in turn, carries an assessed probability of 66 % of correctly identifying forest communities
(Ruefenacht et al. 2008). From this dataset we extracted the locations of pine species that are
known to be hosts for MPB.!3

As discussed above, the FS’s areal survey data on MPB damage proved too coarse for
direct incorporation in our RS model. However, it can still provide meaningful information
on aggregate damage and its progression over time. Table 5 shows tree mortality statistics
over time, aggregated over all 0.1 and 1 km perimeters, respectively, surrounding all homes in
our data that are located near HTs. For example, the typical home in either county’s HT zone
had virtually no infested tree within 0.1 km and at most a handful of impacted trees within
1 km up until 2007. In stark contrast, damage counts exhibit explosive behavior for the last

13 Specifically, our GIS layer includes the following groups of pine species: White/Red/Jack, Lodgepole,
Longleat/Slash, Loblolly/Shortleaf, Pinyon/Juniper, Ponderosa, and Western White. Of these, the relevant
species for Colorado are Lodgepole, Ponderosa, and Limber (a member of the Western White group). All of
them are equally susceptible to an MPB attack (personal communication with Dr. Barbara Bentz, research
entomologist at the US Forest Service. Logan, Utah). Since our host tree indicator /; is also indiscriminant
over these species, the accuracy rating for correctly identifying any host tree community likely exceeds that
for specific pine types.
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Table 4 Home features by area

Feature Larimer ($000s) Boulder ($000s)
Mean SD Min Max Mean SD Min Max
Area 1 Area 6
Bathrms. 1.64 0.79 0 4 2.92 1.19 1 7
Bedrms. 2.64 0.87 0 5 3.28 0.94 1 6
Sqft (000) 1.53 0.57 0.32 3.87 1.95 0.80 0.48 5.74
Area 2 Area 7
Bathrms. 1.90 0.80 1 10 2.79 1.04 0 9
Bedrms. 3.19 0.77 1 6 3.44 0.91 0 7
Sqft (000) 1.56 0.59 0.53 6.44 1.77 0.76 0.55 8.32
Area 3
Bathrms. 2.30 0.83 1 8
Bedrms. 3.44 0.87 0 9
Sqft (000) 1.79 0.59 0.45 5.38
Area 4
Bathrms. 1.97 0.89 0 7
Bedrms. 2.95 0.94 1 7
Sqft (000) 1.59 0.62 0.48 5.45
Area 5
Bathrms. 2.02 0.79 1 6
Bedrms. 3.22 0.87 0 7
Sqft (000) 1.61 0.55 0.43 4.69
All All
Bathrms. 2.17 0.84 0 10 2.80 1.05 0 9
Bedrms. 3.33 0.87 0 9 3.43 091 0 7
Sqft (000) 1.71 0.59 0.32 6.44 1.78 0.77 0.48 8.32

SD standard deviation; min (max) minimum (maximum)
bathrms bathrooms, bedrms. bedrooms, sqft square footage

four years of our series, amounting to close to 20 trees within 0.1 km and over 2,000 trees
within 1 km for Larimer County. This accelerating pattern is the same for Boulder, though
absolute damage counts remain somewhat lower than in Larimer.

A visual interpretation of this trend is given in Fig. 2, which depicts our included re-sale
properties (clusters of gray dots), and the FS’s ADS polygons for 1997, 2000, 2007, and
2011. As is evident from the figure, MPB damage was spotty with island-like concentrations
in 1997 and 2000. By 2007, the infestation had already progressed to cover most of the
mountain chain along the eastern border of both counties, albeit with limited overlap with
the WUI. This changes dramatically by 2011, which depicts ample and widespread overlap
of MPB activity with human-built environments.

Our data set is completed by adding annual wildfire information using FS Moni-
toring Trends in Burn Severity (MTBS) and Wildland Fire Decision System Support
(WFDSS) shape files (Eidenshink et al. 2007; USDA Forest Service 2012b,c). As shown
in Stetler et al. (2010) fires up to seven years prior to a home sale and up to 10 km from a
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Table 5 Tree mortality by year Year Larimer (n = 620) Boulder (n = 440)

Mean SD Max Mean SD Max

Within 0.1 km

1997 0.03 0.44 8 0.00 0.02 0
1998 0.02 0.20 3 0.07 0.55 8
1999 0.01 0.08 2 0.05 0.27 3
2000 0.03 0.40 7 0.01 0.22 5
2001 0.05 0.52 8 0.04 0.47 6
2002 0.03 0.31 5 0.00 0.03 1
2003 0.01 0.07 1 0.01 0.20 4
2004 0.01 0.07 1 0.00 0.05 1
2005 0.01 0.14 2 0.00 0.04 1
2006 0.00 0.04 1 0.00 0.00 0
2007 0.00 0.05 1 0.03 0.24 4
2008 0.26 3.87 66 0.52 4.27 51
2009 0.99 5.10 78 1.11 5.89 39
2010 5.53 14.06 78 1.92 7.50 76
2011 17.01 47.17 388 4.64 19.27 194
Within 1 km

1997 1.54 8.22 98 0.27 0.93 10
1998 2.55 13.87 182 4.85 16.06 122
1999 2.98 16.03 144 5.18 16.87 129
2000 2.21 9.88 100 1.46 5.55 61
2001 2.00 6.00 42 1.89 5.35 49
2002 1.28 5.94 67 0.29 1.43 25
2003 1.49 4.61 76 0.82 3.14 35
2004 0.35 1.24 10 0.23 0.78 5
2005 1.12 2.82 20 0.65 4.00 74
2006 0.21 0.93 10 0.68 6.02 94
2007 5.05 44.99 773 7.86 75.16 1,437

2008 40.08  224.23 2,076 81.71 447.41 4,460
2009  197.22  561.79 3,679 161.14 500.04 3,896
2010  710.39 1,028.99 6,068  242.46 509.76 3,092

n = allhomes located w/in Tkm o411 5 19985 427870 33,912 527.51 1.18621 7.070

from host trees

given location can have a significant effect on sale price. Based on these figures we create
buffers of 1, 5, and 10 km around each residence in our data, with corresponding binary
indicators for fire damage within one, three, and five years of a given sales date.'*

14 We matched home sales with fire damage based on the assumption that the fire season begins on May
1 of each year. Thus, a home that sold before May in a given calendar year is paired with fire events for
the preceding calendar year for the 1-year binary indicator. The remaining indicators for temporally further
removed fire occurrences are adjusted in analogous fashion.
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Legend

Properties in Sample

- Detected MPB Damage via ADS

Fig. 2 MPB expansion 1997-2011. ADS Aerial Detection Survey

4.3 Estimation Results

Preliminary regression runs and hypothesis tests revealed that MPB damage via host trees
affects home prices only within the 0.1 km buffer. We thus discard all model components
associated with the 1 km perimeter. This changes vector h; in (12) to a simple 0/1 scalar for the
presence of HTs within the 0.1 km perimeter. Similarly, wildfire effects proved insignificant
for all combinations of distance and lag-time except for the 5 km/5 year pair.!> Accordingly,

15 The diminished effect of fires within 1 km from a home compared to the 5 km buffer is likely related to the
small sample size (less then 1 % of observations) for this distance category. The absence of a stronger effect
may also be linked to burn visibility. Stetler et al. (2010) find that fires at any distance from a residence (even
0-5 km) have limited effect on sales prices if the burned area is not visible for a given property. In our case,
it is possible that nearby burns are less visible than burns in the 1-5 km range, depending on the morphology
of the local landscape. In addition, home owners may perceive a lower future fire risk to their property if
close-by fuel has been consumed by a recent fire, which could counter-act the direct amenity effect of nearby
burns. This risk-reducing effect may be absent or even reversed for burns in the 1-5 km range. Third, there
may be a counter-balancing positive amenity effect related to better views that open up in the short run for
close-to-home burns (see Hansen and Naughton 2013). Similarly, the insignificant effect of burns within 5
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Table 6 Estimation results for

HT and fire effects Larimer Boulder
Est. (SE) Est. (SE)
1998 (Larimer baseline) 0.062  0.019%%%* — -
1999 —0.067  0.040* — -
2000 —0.074  0.037%** — -
2001 —0.024 0.044 - -
2002 (Boulder baseline) —0.079  0.042%* —0.127  0.029%%*%*
2003 —0.086  0.040%** 0.082  0.058
2004 —0.108  0.045%* 0.036  0.056
2005 —0.144  0.045%** 0.015 0.057
2006 —0.133  0.048%*** 0.027 0.063
2007 —0.173  0.052%** 0.086  0.067
2008 —0.140  0.059%** —0.011  0.075
2009 —0.213  0.063%*** 0.047 0.079
2010 —0.253  0.061%** 0.049 0.078
Est. estimate, (SE) standard error 2011 —0313  0.066%** —0.006 0.086
?5’ gj )2 1(;:)* ;;V‘eglmﬁcam 0% gie syear, 5km 0017 0013 —0.042  0.011%%

we only retain this single indicator in our final specification. This implies that the vector
difference w;» — w;,0 in (12) reduces to a single indicator, taking the value of —1 if a fire
occurred within 5km and 5 years preceding time ¢°, but not time ¢, a value of 0 if such a
fire occurred preceding neither or both points in time, and a value of 1 if such an event took
place preceding time ¢’ only.

We estimate separate GLS models for Larimer and Boulder. Estimation results for HT
and fire effects are given in Table 6. Results for area-specific intercepts, time trends, and
age-depreciation effects are provided in Tables 12 and 13 in “Appendix 2”. These appendix
tables essentially confirm the basic sample statistics on price development discussed above:
In Larimer, prices increase vis-a-vis the baseline year of 1998 until 2005 or 2006 by up
to 30-35 %, then decline for the remainder of our research period, almost back to baseline
levels for some areas. In Boulder, prices decline immediately compared to the 2002 base
year, reaching a low of 12-15 % below baseline by 2011. Age-related depreciation amounts
to between 0.5 and 2% per percentage change in time elapsed between sales, i.e. ' — ¢°
in our model notation, relative to time 1°.!% These results are largely as expected given the
recent economic downturn and collapse of the housing market for wide parts of the western
US. While they are interesting in their own right, they serve here primarily the purpose of
providing a sound and consistent baseline against which MPB effects are to be measured.

Footnote 15 continued
km, but closer in time (within 1 or 3 years of sale) are likely due to small sample size (less than 0.5 % of
observations).

16 Area s (southern Fort Collins, Loveland) produces a counterintuitive positive effect for age-related depre-
ciation. We attribute this to the many new constructions that occurred in that area during our time span. This
can produce a large value for g;, (17.10) €ven for pairs of sales that are closely positioned in time, with little to

no age-related depreciation. A large enough share of such properties in the data can then produce a positive
estimate for the depreciation coefficient &s.
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We thus turn our attention to the main results in Table 6, which depicts county-specific
coefficient estimates for the HT baseline effect ¢, the year-specific HT effects f;, and the
pre-sale wildfire effect ¥, as modeled in Eq. (12). As is evident from the table, in Larimer
properties within 0.1 km from host trees fetched a premium over other homes in the baseline
year of 1998. However, starting in 1999 this difference reverts and increases in magnitude
and significance up to the end of our time horizon. In other words, homes within near-
proximity of HTs sold at a progressively increasing discount compared to other residences.
By our translating commodity principle, we attribute this relative loss to MPB damage. In
stark contrast, as shown in the last three columns of Table 6, the MPB effect appears to
have been largely capitalized into home values in Boulder by the baseline year of 2002,
as indicated by the significant and negative coefficient estimate for ¢. Relative HT effects
remain insignificant for subsequent years. Fire effects, which are captured in the last row of
the table, are insignificant for Larimer, but have a significant negative effect on sales prices
in Boulder.!”

4.4 Predicted Price Trajectories

There are three price trajectories of interest for our application. First, we establish the baseline
price trend by estimating the relative difference in sales price for any year compared to the base
year, focusing exclusively on properties outside the 0.1 km HT perimeter. Econometrically,
this effect is given as

P — P Py
Piy Piy

= E [exp (& + oy + ¥ (wir — wit) + 8sai 1) + €is, 1)) | — 1
= exp (& + a5t + ¥ (wir — wi1) + 85ai 11 +02) -1 (14)

where E is the expectation operator and the addition of 0.5 times the differenced-error
variance 2 o2 follows from the relationship between the normal distribution of e; (/1)
and the log-normal distribution of exp (eis,(t,l)) (see e.g. Evans et al. 2000). This term is
negligibly small for both the Boulder and Larimer application. In implementing (14) we
follow Case et al. (2006) and set the area-specific, non-temporal component of house price
appreciation &; to zero, as it is not related to any temporal price trajectory. We do the same
for the wildfire indicators w;; — w;; as we want our baseline price index to be untainted by
fire effects. Finally, to abstract from any specific age bracket for a given home, and given the
close-to-zero estimate of the age depreciation effect for all areas, we also exclude depreciation
effects a; (;,1) from the computation of m 1;. This leaves us withm1; = exp (ocs, + 02) —1.

Next, we compute the same year-versus-baseline effect for homes with nearby host trees,

i.e.
m2, = E [’7’1% - 1} - E[—”|hi - 1] —1
Piy Pi

= exp (& + g + ¢+ B + ¥ (wir — wit) + 8ai, 1) +02) -1 (15)

Implementing the same adjustments as above with the addition of setting the time-invariant
host tree effect ¢ to zero produces m2, = exp (g + f; +02) — 1.

17 Specifically, a home that experienced a recent fire within 5km between sales appreciated, on average, by
(exp(—0.042) — 1) = 4.1 % less than an otherwise comparable property without a recent fire history.
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The third marginal construct is of central interest to this study. It estimates the relative
price differential within a given sales year between homes outside and inside the HT zone.
This effect, multiplied by 100, can be interpreted as the percentage differential in home
values due to MPB damage. In this case, time-invariant area effects, as well as fire effects,
age depreciation, and the error terms naturally cancel out and we obtain

m3 — E|:(Pit|hi =1) — (Pi|h =0)} . [M] »
' Pit|hi =0 Pilhi =0
= exp (¢ + ) — 1. 16)

We compute all three price indices for the mountainous areas with host trees in our sample,
i.e. areas one and four in Larimer, and area six in Boulder. Area-specific results can be derived
for m1 and m?2 due to the area-specific generic time effects «;,;. In contrast, a single set of
marginal effects that holds across all areas with HT homes within a given county is produced
for m3. We obtain standard errors for all predictions using the simulation approach described
in Krinsky and Robb (1986).

Table 7 shows these three price effects for Larimer County. There are subtle but important
differences in the general price trends m 1, across the two areas. In area one, prices for MPB-
unaffected homes increased by up to 34.5 % compared to baseline, reaching a peak in 2005.
Thereafter, prices generally decreased every year, to approximately 28 % above baseline level
in 2010. This bubble-like price trajectory is more pronounced in area four, which includes
the gateway community of Estes Park mentioned earlier. Specifically, prices peaked in 2006
at 45 % above baseline, and dropped back to 29 % above baseline by 2011. All price effects
(with the exception of that for year 2011 and area 1) are highly significant. The differences
in general price trajectories between the two areas stresses the importance of allowing for
area-specific price trends. Forcing a common path would amount to a serious specification
error that would also lead to biased coefficient estimates for the HT (and thus MPB) effects. 8

Marginal effects for HT homes vis-a-vis the base year (m2;) are shown in columns 7-11
in Table 7. Price trends for these properties are similar for the first half of our time series, with
increases over the base year of 20-21 % (area 1) and close to 27 % (area 4) by the mid-2010s.
However, after peaking, prices drop more dramatically than for no-HT homes, reaching levels
at or below baseline by 2011. This is a first indication of a gradually intensified MPB effect.

This effect is more directly visible from marginal construct m3;, given in the last block
of rows in Table 7. Up until 2005, MPB effects, while carrying a negative sign, remain
insignificant. Thereafter, however, damage effects turn significant and increase in severity,
up to a MPB induced value loss of 22.2 % in the last year of our series. This pattern is perfectly
consistent with the timing and intensification of the MPB expansion as depicted in Fig. 2.

Analogous results for Boulder county’s area six are given in Table 8. There, prices for
both no-HT and HT homes (first set of rows in Table 8) remained relatively stable compared
to the baseline year of 2002, with the exception of a significant price drop of 11-12% in
2011. Within-year MPB effects m3;, given in the lower part of table, are negative throughout,
but spotty in terms of significance. However, the last year shows a significant price drop of
12.5 % for HT homes compared to MPB-unaffected properties.

In summary, our estimation approach via a translating commodity (HT) and a repeat-sales
model turned out to be well suited to detect MPB-related value losses, and to map them clearly

18 Estimates from such “erroneously pooled” models are available upon request.
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Table 7 MPB effects Larimer

no HT/no HT(1998) HT/HT(1998)

Est. (SE) Low Up Est. (SE) Low Up
Area 1
1999 0.072 (0.045) —0.012 0.164 0.003 (0.036)  —0.065 0.075
2000 0.171 (0.047) 0.084 0.266%#%* 0.087 (0.039) 0.013 0.168%**
2001 0.129 (0.053) 0.031 0.237%#%* 0.102 (0.041) 0.024 0.187%*
2002 0.306 (0.059) 0.195 0.427%#%* 0.207 (0.047) 0.119 0.303%%*
2003 0.313 (0.059) 0.203 0.433%#% 0.205 (0.047) 0.117 0.300%**
2004 0.343 (0.069) 0.215 0.484 %% 0.205 (0.048) 0.114 0.304 %%
2005 0.345 (0.066) 0.221 0.480%*%* 0.164 (0.046) 0.077 0.259%*%*
2006 0.257 (0.067) 0.132 0.396%%#%* 0.100 (0.048) 0.009 0.198%**
2007 0.234 (0.071) 0.101 0.380%%#%* 0.038 (0.050)  —0.055 0.139
2008 0.294 (0.082) 0.143 0.464%#% 0.125 (0.055) 0.022 0.239%*
2009 0.213 (0.084) 0.060 0.389%#* —0.019 (0.055) —0.121 0.093
2010 0.281 (0.090) 0.117 0.469%%#%* —0.005 (0.057)  —0.110 0.111
2011 0.142 (0.086) —-0.014 0.322 —0.165 (0.052) —0.261 —0.057%**
Area 4
1999 0.076 (0.039) 0.003 0.155* 0.006 (0.027)  —0.046 0.061
2000 0.195 (0.039) 0.121 0.275%%#% 0.110 (0.028) 0.056 0.167%%*
2001 0.213 (0.049) 0.121 0.313%#%* 0.184 (0.035) 0.117 0.256%%#%*
2002 0.279 (0.051) 0.184 0.382%#%%* 0.182 (0.035) 0.115 0.252%#%#%*
2003 0.329 (0.048) 0.239 0.426%%*%* 0.219 (0.036) 0.150 0.293***
2004 0.368 (0.058) 0.260 0.486%%#%* 0.228 (0.038) 0.156 0.305%#%*
2005 0.419 (0.060) 0.306 0.543%#%%* 0.229 (0.040) 0.153 0.309%%#%*
2006 0.450 (0.067) 0.325 0.590%** 0.269 (0.043) 0.187 0.356%**
2007 0.422 (0.074) 0.285 0.574%%%* 0.196 (0.044) 0.112 0.286%%#%*
2008 0.335 (0.078) 0.190 0.497+%#%* 0.161 (0.048) 0.071 0.258%*#%*
2009 0.293 (0.082) 0.142 0.464%%#%* 0.045 (0.047)  —0.044 0.142
2010 0.413 (0.084) 0.258 0.588%##%* 0.097 (0.052) 0.000 0.202*
2011 0.290 (0.082) 0.140 0.460%%#%* —0.057 (0.045) —0.142 0.035

HT/no HT

Est. (SE) Low Up
All
1999  —0.004 (0.043) —0.085 0.083
2000  —0.012 (0.036) —0.080 0.062
2001 0.039 (0.043) —0.043 0.127
2002  —0.017 (0.039) —0.089 0.063
2003 —0.024 (0.035) —0.091 0.048
2004  —0.045 (0.037) —0.114 0.030
2005 —0.078 (0.034) —0.142 —0.010%*
2006  —0.069 (0.036) —0.137 0.003*
2007 —0.105 (0.037) —0.175 —0.030%**
2008 —0.075 (0.044) —0.158 0.017*
2009  —0.140 (0.044) —-0.221 —0.049%**
2010 —0.174 (0.041) —0.250 —0.091%**
2011 —0.222 (0.043) —0.302 —0.135%**

Est. estimate, (SE) standard error; *, (**), (***) significant at 10 %, (5 %), (1 %) level
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Table 8 MPB effects Boulder

Area 6

no HT/no HT(2002) HT/HT(2002)

Est. (SE) Low Up Est. (SE) Low Up
2003 —0.034 (0.036) —0.102 0.041 0.049 (0.048) —0.042 0.148
2004 0.013 (0.038) —0.057 0.090 0.050 (0.045) —0.035 0.143
2005 0.057 (0.041) —0.020 0.141 0.073 (0.048) —0.016 0.171
2006 0.069 (0.045) —0.017 0.161 0.098 (0.055) —0.005 0.212*
2007 0.038 (0.047) —0.051 0.135 0.131 (0.060) 0.019 0.255%*
2008 0.001 (0.051) —0.094 0.105 —0.009 (0.060) —-0.119 0.115
2009 —0.039 (0.056) —0.143 0.077 0.007 (0.060) —0.104 0.133
2010 —0.055 (0.053) —0.153 0.053 —0.008 (0.062) —0.122 0.122
2011 —-0.113 (0.052) —0.211 —0.005%* —-0.119 (0.061) —0.231 0.010*

HT/no HT

Est. (SE) Low Up

2003 —0.044 (0.060) —0.154 0.081
2004 —0.087 (0.051) —0.182 0.019
2005 —0.106 (0.047) —0.194 —0.009**
2006 —0.095 (0.051) —0.189 0.010
2007 —0.040 (0.054) —0.140 0.071
2008 —0.128 (0.055) —0.230 —0.015%*
2009 —0.077 (0.060) —0.187 0.048
2010 —0.075 (0.058) —0.181 0.045
2011 —0.125 (0.059) —0.234 —0.001%*

Est. estimate, (SE) standard error
* (), (#**) significant at 10 %, (5 %), (1 %) level

over time. By 2011, MPB-induced losses took substantial proportions. We will translate these
percentage differentials into dollar losses per home and for the region as a whole below.!”

4.5 Robustness Check: Spokane

To guard against the possibility that our estimated trend of increasing relative losses for
HT homes simply reflects changing preferences of home buyers over the years, we repeat
our analysis for a “control area” with similar population size and abundant host trees, but
no documented MPB damage. Specifically, we estimate our model in (12) for the city of
Spokane, Washington. Assuming home owner’s preferences with respect to “trees” and
woody surroundings in Spokane are at least somewhat similar to those for our Front Range
communities, price trends in Spokane for no-HT homes and HT homes should move in
equal or at least parallel fashion in absence of increasing “tree aversion.” In other words, a

19 As is the case with most hedonic studies, our model cannot distinguish between actually experienced
and expected MPB effects on home prices. Our estimated price trajectories and loss estimates include both
components. However, since our time series of home sales starts well before the explosive expansion of the
MPB, we are confident that our estimates captures the full MPB effect, that is actual plus expected.
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homogeneous price trajectory for no-HT and HT properties in Spokane would rule out a
general and widespread shift in preference away from trees and towards open land in the
mountainous west. This, in turn, would lend additional credibility to our interpretation of
no-HT/HT price differentials in Colorado as attributable to MPB damage.

The Spokane data comprises 23,841 observations for 18,428 homes with repeat sales
between 1997 and 2011. We estimate the Spokane RSM using the exact same variables as for
our main analysis. We allow for separate price trends for three different markets, but continue
to specify a common annual series of HT effects. Estimation results for the latter are given
in Appendix Table 14.2° As is evident from the table, starting with the base year of 1997, HT
effects are—at worst—close to zero and insignificant. In fact, homes with nearby host trees
actually fetch a highly significant price premium of 2-3 % for several years in our series.

Clearly, there is no indication of a price discount for HT homes, let alone one that is
progressively increasing over time. The Spokane counter-study thus provides strong support
for our interpretation of value losses in the Colorado Front Range as MPB-induced.

4.6 Loss Predictions and Policy Implications

To translate the percentage losses discussed above into 2011 currency for HT homes in areas
one, four, and six, we proceed in three conceptual steps. First, we compute the year-specific
counterfactual price that each home would have received in absence of MPB damage, using
P;
1 =+ m3l ’
where P;; is the observed price, and m3; is defined in (16). Second, we translate this “HT
purged” value into the price the same home would have sold for in the final year 7 (2011 in
our case) via

Py = (17)

Pir=Pi(1+507), (18)

where kg ;7 = exp (le,T — o5 + 02) — 1, and the «-terms are the area and year-specific
generic price effects as given in (12). For Boulder, where estimated wildfire effects are
significant, we also control for forest fires that may have occurred (or subsided) between any
year ¢ and 2011 by adding (or subtracting) the wildfire coefficient ¥ in the exponent of ks ; 7.
These first two steps yield the predicted sales price in 2011 for all HT-homes in our sample,
purged of any MPB-induced value losses. In step three, we then simply apply the MPB-
induced percentage losses for 2011, as reported in Tables 7 and 8, i.e. —22.2 % for Larimer
and —12.5 % for Boulder. We implement these three steps for every HT property in our repeat-
sales data, as well as for all remaining single-sale homes located in the HT zone that are not
included in our principal analysis. Importantly, throughout all three steps we carry forward
the standard errors for all coefficients involved to generate accurate uncertainty bounds for
our final predictions. The details for these derivations are given in “Appendix 2”.

Predicted losses per home and aggregate losses for various sub-sets of our data are given
in Table 9. The first row of the table shows the number of properties that are located within
0.1 km from host trees for each county and the entire region. Within each county, the first
column refers to all such homes, including single-sale properties. The second column refers
to all HT homes that were actually included in our RSM (i.e. those with multiple sales during
our research period). On a per-home basis, MPB induced losses amount to $70,000 for the
broader sample in Larimer, and $61,000 for Boulder. However, while the lower confidence
bound for Larimer is still a sizable $41,000, the lower bound for Boulder is near-zero.

20 The full set of results for Spokane are available upon request.
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Table 9 Predicted losses for homes with host trees within 0.1 km

Larimer* Boulder** Both

All homes RS homes Allhomes RS homes Allhomes RS homes

# homes 1,147 366 817 196 1,964 562
Loss per home ($000s)
Estimate 76 70 61 56 - -
Lower 41 38 0 0 - -
Upper 115 104 127 115 — -
Total loss, all homes ($000s)
Estimate 87,277 25,439 49,637 10,911 136,913 36,350
Lower 47,374 13,913 407 91 47,781 14,004
Upper 131,614 38,115 103,434 22,491 235,048 60,605

Lower (upper) = lower (upper) bound for a 95 % confidence interval
* Includes home with most recent sale in or after 1998
** Includes homes with most recent sale in or after 2002

The wider confidence bounds for predicted losses for Boulder are directly related to the lack
of significant for most year-specific marginal HT effects, as shown in Table 8.

Aggregating over the entire sample of HT homes produces a total estimated value loss
of close to $90 million for Larimer with a lower bound of close to $50 million, and an
upper bound of over $130 million. For Boulder, the approximate point estimate, lower, and
upper bound amount to $50 million, $400,000, and $100 million, respectively. Given that
our cleaning steps during data preparation reduced sample sizes by 40—50 % compared to the
total housing stock of single-family residences in each county, these estimates are probably
best interpreted as conservative lower bounds for county-wide figures.

From a fiscal policy perspective, these losses can be directly translated into foregone
property taxes. Focusing on Larimer, for which our loss estimates exhibit a relatively high
degree of precision, we can convert reductions in home values into a decrease in collected
taxes by multiplying the estimates in Table 9 by a factor of 0.6 %, the typical district-level
tax rate in 2011 for communities in the HT zone such as Estes Park.?! Focusing again on
all HT homes, this yields an estimated per-home loss in annual property taxes compared to
the amount that would have been collected in absence of the MPB infestation of $454 (with
bounds of $247 and $685), and an aggregate annual reduction in tax collections of $521,000
(with bounds of $283,000 and $786,000). Given that the MPB damage is irreversible and will
likely continue to worsen over future years, these annual shortfalls have to be considered as
perpetual lower bounds for losses in property tax income. This will strain municipal budgets
of heavily-impacted communities such as Estes Park in area 4 for the foreseeable future.

The implications of our results for forest policy are less clear-cut. There are no known
large-scale interventions that could slow down or halt the infestation. On an individual basis,
trees can be protected by applying insecticides, but this approach is infeasible on a landscape-
level scale and in remote, difficult-to-access areas. Our results may serve to foreshadow

21 This rate is composed of a county-wide conversion factor of 0.0796 that translates assessed market value
into “tax-assessed value”’(Larimer County Treasurer 2013a) We found the assessed market value to be generally
very close to observed sales prices for homes sold in 2011 in our data. Thus, implicitly departing from our
predicted sales prices for 2011 before assessing these tax rates appears justified. A district-specific “mill levy”
is then applied to this taxable amount. In 2011, mill levies for Estes Park varied between 7 and 8 % for most
tax districts (Larimer County Assessor 2013b). We use a mill levy of 7.5 % for our calculations.
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expected economic losses in to-date unaffected areas, should they be reached by the spreading
infestation. This, in turn, may provide input into a possible re-formulation of forest policy to
avoid vast expanses of similar-aged pine forests in the future. That appears to be one avenue
within the realm of human control.

5 Conclusion

We introduce a simple and low-cost approach to the estimation of real estate capitalization
rates of difficult-to-measure environmental changes over time via a translating amenity (TA).
The ideal TA is invariant over time, and enters both the utility function of home owners and
the hedonic price surface of local property markets. It is readily observed by property owners,
and straightforward to measure by the analyst via modern GIS tools. Most importantly, it
constitutes the sole link between owners’ preferences and the environmental amenity of inter-
est. This is akin to the weak complementarity relationship between site quality and visitation
trips in recreation demand analyses. We show that the the TA can be utility-theoretically
motivated as being directly related to the implicit price of the unobserved quality when used
in a repeat sales (RS) context.

In our application the TA is provided via host trees near a given residence, which, in turn,
are impacted by the Mountain Pine Beetle, the primary environmental commodity of interest.
Using a state-of-the-art repeat sales model we illustrate how temporal changes in the effect of
host trees on home values can be interpreted as the capitalization effect of a progressing MPB
infestation. Controlling for sub-area specific real estate price trajectories, wildfire events, and
age-related depreciation, we estimate this effect to amount to tens of millions of dollars for
the two counties we studied. This has perpetual implications for collected property taxes in
heavily infested communities.

We envision this translating amenity approach to be useful in a variety of other property
valuation contexts when the policy-relevant environmental quality of interest is measured
with large spatial and/or temporal gaps or when such measurements simply do not exist.
First, given the continued expansion of the MPB epidemic, there will likely be a need for
future hedonic studies to assess its impact on real estate markets. Naturally, the TA is also
suitable for any other applications involving different forest pests and diseased trees. Second,
the TA method will likely find future applicability in the hedonic valuation of water quality.
As has been pointed out numerous times by scientists continued climate change will affect
water temperature and quality, and thus the well-being of hydrological ecosystems for bodies
of surface water around the world (Murdoch et al. 2000; Daufresne and Boét 2007; Whitehead
etal. 2009). In many cases where water quality may affect nearby home values it will likely be
infeasible to collect updated, neighborhood-specific hydrological samples. The TA method
may be an attractive solution in such applications, especially in dense and lively housing
markets.

Appendix 1

See Tables 10, 11, 12, 13 and 14.
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Table 10 Price statistics by area,
Larimer (2011 dollars, units of
000s)

Year Mean SD  Min Max Mean SD Min Max

Area 1 Area 2
1999 154 78 99 209 251 108 146 527
2000 216 98 59 403 226 88 122 609
2001 299 86 210 429 250 132 121 850
2002 213 91 58 385 277 114 163 844
2003 220 81 31 357 295 175 98 1,281
2004 243 95 134 582 249 92 101 743
2005 252 135 39 684 258 122 93 1,333
2006 253 88 129 461 259 139 78 1,344
2007 227 105 38 518 244 132 82 1,598
2008 260 96 124 525 246 157 83 1,664
2009 220 64 113 362 220 101 72 945
2010 242 81 122 458 236 125 70 1,133
2011 187 58 91 338 238 127 67 841
Area 3 Area 4
1999 242 83 116 695 304 135 212 628
2000 260 102 93 838 346 129 206 654
2001 273 85 133 889 373 152 143 838
2002 283 110 101 1,453 307 118 138 588
2003 290 106 128 1,098 356 118 190 659
2004 288 106 105 1,073 359 154 168 762
2005 292 112 109 1,113 362 143 138 742
2006 296 121 74 1,400 380 152 139 860
2007 287 126 46 1,642 346 153 106 851
2008 270 124 64 1,432 359 185 87 1009
2009 270 109 83 1,155 311 110 91 533
2010 278 119 67 1,298 334 161 124 820
2011 267 104 91 803 323 152 134 780
Area 5
1999 218 72 80 402
2000 242 117 105 1,094
2001 257 91 76 603
2002 254 84 134 581
2003 262 89 134 761
2004 259 107 9 1,172
2005 255 96 80 805
2006 262 125 98 1,288
2007 239 101 82 891
2008 229 102 81 853
2009 223 104 71 982
2010 224 102 57 979

SD standard deviation; min (max)
2011 217 97 78 920

minimum (maximum)
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Table 11 Price statistics by area,

. Year Area6 Area 7
Boulder (2011 dollars, units of
000s) Mean SD  Min Max Mean SD Min Max
2003 862 420 489 1,464 438 189 193 1,061
2004 621 241 274 1,284 415 259 119 2,797
2005 622 264 216 1,419 416 237 126 3,278
2006 730 361 224 2,019 404 232 106 2,296
2007 750 493 162 3,051 384 238 82 3,078
2008 764 354 146 2,007 356 208 73 2,293
2009 616 302 144 1,524 348 200 82 3,045
SD standard deviation; min (max) 2010 591 273 157 1,329 364 219 69 2,189
minimum (maximum) 2011 627 436 108 2,500 370 231 75 2,600
Table 12 Additional estimation results, Larimer
Est. (SE) Est. (SE) Est. (SE)
Area 1 Area 2 Area 3
Intercept —0.088 (0.025) % —0.041 (0.005)%# —0.008 (0.003) s
1999 0.070 (0.042)* 0.065 (0.013)*** 0.047 (0.005) %3
2000 0.158 (0.040)%** 0.128 (0.013)%=* 0.113 (0.005)%**
2001 0.122 (0.047)%* 0.193 (0.012)%** 0.180 (0.005)%*
2002 0.267 (0.045)%* 0.236 (0.012)%#* 0.213 (0.005)%*
2003 0.273 (0.045) % 0.255 (0.013)%#* 0.213 (0.005) %
2004 0.295 (0.051)%** 0.248 (0.013)%#* 0.217 (0.005) %
2005 0.296 (0.049)%3* 0.253 (0.013)%#* 0.212 (0.005) %
2006 0.229 (0.054 )% 0.237 (0.014)%#* 0.198 (0.006) %
2007 0.210 (0.057) % 0.166 (0.014)%#* 0.156 (0.006) %
2008 0.258 (0.063)%* 0.124 (0.016)%** 0.089 (0.007)%*
2009 0.193 (0.069)%* 0.115 (0.016)%** 0.103 (0.007)%:*
2010 0.248 (0.070)%* 0.116 (0.017)% 0.093 (0.007)%:*
2011 0.133 (0.075)* 0.073 (0.018)%#* 0.077 (0.008)%:
Age depr. 0.000 (0.007) —0.023 (0.001 )= —0.005 (0.001 )%
Area 4 Area 5
Intercept —0.072 (0.024) % 0.008 (0.004)%#*
1999 0.073 (0.036)** 0.058 (0.007)%#*
2000 0.179 (0.033) % 0.120 (0.007)%#*
2001 0.193 (0.040) % 0.178 (0.008)*#*
2002 0.246 (0.039) % 0.207 (0.008)***
2003 0.285 (0.036)%** 0.196 (0.008)%3*
2004 0.313 (0.042) %33 0.192 (0.008)%3*
2005 0.350 (0.042)%:* 0.173 (0.008)%*
2006 0.372 (0.047 )% 0.151 (0.009)%#*
2007 0.352 (0.052)%: 0.079 (0.010)%#*
2008 0.289 (0.059)*#* —0.013 (0.011)
2009 0.257 (0.063)*** —0.009 (0.011)
2010 0.345 (0.059)%#:* —0.025 (0.011)**
2011 0.254 (0.063)%** —0.062 (0.012)%**
Age depr. —0.005 (0.005) 0.003 (0.001 )***

Est. estimate, (SE) standard error, Age. depr age-related depreciation
*(FF), (***) significant at 10 %, (5 %), (1 %) level
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Table 13 Additional estimation

results, Boulder Area 6 Area
Est. (SE) Est. (SE)
Intercept 0.046 (0.026)* —0.017 (0.005)##%
2003 —0.034 (0.038) —0.028 (0.007 )%
2004 0.013 (0.037) —0.020 (0.007)##%
2005 0.056 (0.039) —0.002 (0.007)
2006 0.067 (0.042) —0.011 (0.008)
2007 0.037 (0.046) —0.056 (0.009)##%
2008 0.001 (0.051) —0.111 (0.010)*#
Est. estimate, (SE) standard error, ~ 2009 —0.039 (0.058) —0.105 (0.010)***
g\ge. depr age-related 2010 —0.057 (0.056) —0.116 (0.01 1)
*ff(’ﬁgfa{;ﬁ’;) significant at 10, 2011 —0.120 (0.059)%*  —0.146 (0.012)#
(5%), (1%) level Age depr. —0.004 (0.005) —0.005 (0.001 )%
s
Baseline —0.001 0.003
1998 —0.008 0.009
1999 0.005 0.009
2000 0.015 0.009*
2001 0.013 0.009
2002 0.019 0.009%*
2003 0.019 0.009%
2004 0.028 0.009%
2005 0.035 0.009%
2006 0.031 0.010% %
2007 0.015 0.011
2008 0.019 0.012
ot et . dard 2009 0.007 0.012
xbz*is)“gi‘ff) ii gb;)i e los. 2010 ~0.004 0.013
(5%), (1%) level 2011 0.015 0.014

Appendix 2: Details for Loss Predictions

In step one we seek the counterfactual price of a home near host trees in absence of any MPB
effects, for each year of our series. From Eq. (16) we have

[Pizlhi =1

Pl = O] =14+m3; =exp(C+By) 19)

For a given home in the HT zone with observed price P;; we then obtain

B = E[Pyhi =0 = 1t — i (20)
T T L e m3, T exp (¢ + By
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Next, we compute the pure price differential between the final time period T and year ¢ in
absence of any MPB disturbance. Following the derivation in (14) we obtain

Py — P Pir
Kst.T :E[’T”|hi :0] :E[P’ |h; :0} -1

it it

= E [exp (& + oyt — a5 + ¥ (Fir — Fip) + 85ai7.0) + €is,r.n) | — 1
= exp (& + ayr — ay + ¥ (Fir — Fi) + 8sai, (. +07) — 1 1)

Ignoring the time-invariant spatial index, as well as fire and depreciation effects leaves
Ks1.T = exp (ost — o + 02) — 1. The counterfactual price of affected home i in absence
of any MPB impacts and projected to the final year T’ can then be computed as

Pir = Py (1 4+ k517)
. I +xs0,1
i 1 + m3t

= Pyexp (o7 — st — ¢ — B +0%) = Pupssr (22)

We implement these predictive steps via simulation along the lines proposed by Krinsky
and Robb (1986) as follows: We take 100,000 draws of each contributing coefficient in
the last line of (22) from their respective finite sample distribution, taking account of all
involved covariances. For each draw we then compute ps ;7 as given in the last line of (22)
and capture the mean, 2.5th, and 97.5th percentile of the resulting empirical distribution. We
repeat this procedure for every ¢ # T. We then multiply observed price P;; by the appropriate
year-specific mean conversion factor [term py ;7 in the last line of (22)] as well as by the
confidence bounds for all HT homes in our data. This produces an estimate and confidence
bounds for the predicted “MPB purged” sales price Pj7 in 2011.

In a final step, we then apply the point estimate of MPB loss in 2011 (see Tables 7, 8) to
each predicted mean price, the lower bound of the MPB loss estimate to each upper bound for
predicted price, and the upper bound of MPB loss estimate to each lower bound for predicted
price to derive a point estimate and confidence bounds for predicted MPB losses, in 2011
dollars, for each property.
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