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The inclusion of quadratic mean diameter (QMD) and relative spacing index (RSI) substantially improved the pre-
dictive capacity of height–diameter at breast height (d.b.h.) and crown ratio models (CR), respectively. Data were
obtained from 208 permanent plots established in western Arkansas and eastern Oklahoma during 1985–1987
and remeasured for the sixth time (2012–2014). Existing height–d.b.h. and CR estimation models for naturally oc-
curring shortleaf pine forests (Pinus echinata Mill.) were updated and modified for improved performance. Addition-
ally, eight height–d.b.h. relationship models that use only d.b.h. (fundamental local models) were modified using
covariates. The model performance was evaluated using fit statistics [root mean square error (RMSE), Fit index and
Akaike information criteria (AIC)]. The results showed that the best model form which was an extended non-linear
model with autoregressive firstorderAR (1) structure and power variancefunction performed better than extended
mixed-effects models and predicted wellas an ordinary leastsquares non-linear model. The autocorrelation within
individual trees was larger for the height–d.b.h. relationship than for CR estimation. The addition of QMD to mean
dominant height (HD) greatly improved height–d.b.h. relationship with a reduction of 8 per cent in RMSE, compared
with the use of basal area per hectare. Similarly, multiplying a fundamental local model by using QMD raised to a
parametric power reduced RMSE by 16 per cent, improved Fit index by 12 per cent and decreased the AICvalue by 7
per cent. D.b.h., HD and RSI best explained the crown ratio relationship with an improved Fit index by 6.7 per cent
compared with alternative non-linear models without RSI. The logistic model for CR also provided prediction accur-
acy similar to that of a commonly used non-linear model. A non-linear model with an application of remedial mea-
sures to enhance adherence to modelling assumptions can provide better parameter estimates than mixed-
effects modelling approach.

Keywords: mixed-effects model, autocorrelation, height–d.b.h. relationship, crown ratio, quadratic mean diameter, relative spacing
index

Introduction
Two fundamental mensurational quantities in forest inventory, i.e.
height and diameter, are frequently used to characterize forest
productivity in forest growth and yield models. Diameter measure-
ment at breast height (d.b.h.) is less costly and requires less effort
than the total height measurement. Therefore, height–d.b.h. rela-
tionship models have been used in the growth and yield models to
predict ‘missing’ tree heights (Lynch and Murphy, 1995), to predict
the future tree heights (Lynch and Murphy,1995; Lynch et al., 1999)
and also to impute height to estimate volume production (Garber
et al., 2009). The height–d.b.h. relationship is non-linear from
the biological perspective with a curve that is asymptotic to a
maximum possible total height at upper ranges of diameter.
Therefore, various models that were non-linear with respect to
parameters have been proposed to model the height–d.b.h.

relationship of different tree species. The height–d.b.h. has some-
times been modelled using only the d.b.h. as a single independent
variable (Meyer, 1940; Richards, 1959; Burkhart and Strub, 1974;
Stage, 1975; Bates and Watts, 1980; Wykoff et al., 1982; Ratkowsky
and Giles, 1990; Schmidt et al., 2011; VanderSchaaf, 2014; Sharma
and Breidenbach, 2015). Here, we term this type of model as ‘fun-
damental local model’ because these models are: primarily devel-
oped at local or at a regional level, specific to a tree species and site,
developed when stand-level covariate or competition index is diffi-
cult or inconvenient to obtain, and can be easily extended to in-
corporate additional covariates.

Height–d.b.h. relationships are also modelled using plot or
stand-level covariates to demonstrate the influence of stand
density or effect of competition (Lynch et al., 1999; Sharma and
Parton, 2007; Temesgen et al., 2007, 2008; Budhathoki et al.,
2008; Arcangeli et al., 2014; Temesgen et al., 2014; Sharma and
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Breidenbach, 2015). Therefore, fundamental local models are
expected to have large error variance (Huang et al., 1992; Fang
and Bailey, 1998; Sharma and Breidenbach, 2015) compared with
the models that use additional covariates to d.b.h. such as stand
structures (dominant height) (Lappi, 1997; Lynch et al., 1999;
Sharma and Breidenbach, 2015), relative dimensions at the stand
level [ratio of trees per hectare to basal area per hectare (BAH)]
(Sharma and Parton, 2007), competition index [basal area in
larger trees (BAL)] (Temesgen et al., 2007) and stand density (BAH)
(Sharma and Yin Zang, 2004; Budhathoki et al., 2008).

Individual tree height (Hi) and d.b.h. (Di) can be used as inde-
pendent variables with other plot or stand-level attributes to
model another important tree characteristic, the ‘crown ratio’
(CR) of an individual tree which is the ratio of live crown length to
the total height. The crown ratio is an important measure of tree
vigour that reflects competition experienced by an individual tree
because stand density over the period reduces the crown length
(Smith et al., 1992; Hynynen, 1995; Temesgen et al., 2005). The dis-
tance between trees determines the crown shape and size, which is
related to the crown length, total height and diameter increment
attained by an individual tree (Smith et al., 1992; Monserud and
Sterba, 1996). In many growth and yield models, CR is used for
improved prediction of forest attributes. For example, height incre-
ment (Daniels and Burkhart, 1975), basal area increment (Wykoff,
1990; Monserud and Sterba, 1996; Leites et al., 2009), taper and
volume of individual trees (Valenti and Cao, 1986; Jiang et al.,
2007; Jiang and Liu, 2011) and survival of an individual tree
(Saud et al., 2016). It is also useful in estimating crown biomass
for energy production (Tahvanainen and Forss, 2006). The crown
ratio has been modelled using either a variety of non-linear func-
tions (Holdaway, 1986; Dyer and Burkhart, 1987; Lynch et al.,
1999) or the logistic function (Hasenauer and Monserud, 1996;
Temesgen et al., 2005) which is also a non-linear function. Both
approaches utilize model forms that restrict crown ratio predic-
tions to the feasible range of 0–1.

However, the height–d.b.h. relationship can vary over time due
to differences in stand age, productivity and competition (Lappi,
1997; Peng et al., 2001; Sharma and Parton, 2007; Budhathoki
et al., 2008) and also differences in a geographical region
(Calama and Montero, 2004; Arcangeli et al., 2014). This also
applies in the case of CR modelling. Such variation could be
reduced by using distance-independent variables as covariates.
Relative dimensions (ratios) are distance-independent indices,
which measure the hierarchical position of the subject tree within
plot, e.g. ratio of Di to max d.b.h.; ratio of quadratic mean diameter
(QMD) to d.b.h. (RAQD), BAL and crown competition factor in larger
trees (CCFL). These dimensionless ratios when used as covariates
help to assure better prediction and tend to make the fundamental
relationships among tree components more stable (Burkhart and
Tomé, 2012, p. 202). Ducey (2009) and Zhao et al. (2012) demon-
strated that the relative spacing index (RSI) accounted for the
effects of space between individual trees on crown ratio more ef-
fectively than other covariates. Interestingly, in addition to RSI,
Ducey (2009) also suggested the inverse of RAQD as an important
variable in height prediction and CR estimation. Temesgen et al.
(2005, 2007, 2008, 2014) suggested that distance-independent
variables including BAL and CCFL also improve fits for tree
height–d.b.h. and crown relationships.

Height–d.b.h. relationship and CR models are often developed
using mensurational records of permanent plots from repeated

measurements. The tree attributes such as height, d.b.h. and
crown length measured at different time intervals are auto-
correlated and also exhibit heterogeneous errors either at a tree or
stand level. As a result, the use of non-linear ordinary least square
(OLS) estimation is often not reliable, because an assumption of
random samples and independent observations is violated and the
presence of autocorrelation does not conform to the assumptions
of OLS. Therefore, mixed-effects modelling as an alternative to OLS
for repeated measurements and grouped data has been widely
used in forestry growth and yield models (Lappi, 1991; Lynch et al.,
2005, 2012; Budhathoki et al., 2008; Temesgen et al., 2014). This ap-
proachhelpstoaddressapossiblesourceof subject-specificvariation
that the OLS approach does not consider because the fixed-effect
parameters represent population average responses, while random
effects parameters represent response specific to each sampling
unit (Lappi, 1991; Lynch et al., 2005). One advantage of the
mixed-effects model is that random effects can be calibrated for
an unsampled location (new data that were not part of the original
estimation data) to improve the predictive accuracy for the resulting
calibrated mixed-effects model (Lappi, 1991; Peng et al., 2001; Lynch
et al., 2005, 2012; Sharma and Parton, 2007; VanderSchaaf, 2014).

Mixed-effects models or hierarchical mixed-effects models
easily account for spatial autocorrelation by using a plot-specific
or group-specific random effects, but not so for temporal autocor-
relation within observations. However, shorter study time period
(lag) has been a limiting factor in the analysis of longitudinal
data in growth modelling that sometimes does not allow us to
specify appropriate autocorrelation structures. Patterns of hetero-
geneous errors can often be associated with the covariates
(Pinheiro and Bates, 2000). Many investigators have used graphical
methods to investigate the assumption of constant error variance
for the d.b.h.–height relationship model (Fang and Bailey, 1998;
Peng et al., 2001; Sharma and Parton, 2007; Budhathoki et al.,
2008). But perhaps few have done a formal statistical test on this
issue for non-linear model forms (Temesgen et al., 2007; Lynch
et al., 2012). Others have used weighted regression or logarithmic
transformations that tend to stabilize variance (Huang et al., 1992;
Fang and Bailey, 1998; Temesgen et al., 2007, 2014).

Shortleaf pine (Pinus echinata Mill.) forests contain standing
volume in the southern US second only to loblolly pine (Pinus
taeda L.) among the four southern pines (Lawson, 1990).
However, relatively few quantitative studies of the height–d.b.h.
relationship, CR or other aspects of growth and yield of natural
stands of shortleaf pine have been published compared with
other southern pines in the US (Budhathoki et al., 2008). Graney
and Burkhart (1973) provided a polymorphic system of site index
curves to estimate dominant stand height for shortleaf pine
using non-linear ordinary least square (OLS) method. The relation-
ship between height–d.b.h. for naturally occurring even-aged
stands of shortleaf pine was fitted using seemingly unrelated re-
gression by Lynch and Murphy (1995), non-linear OLS by Lynch
et al. (1999) and mixed-effects estimation by Budhathoki et al.
(2008). The studies of Lynch et al. (1999) for height–d.b.h. relation-
ship and CR estimation and of Budhathoki et al. (2008) for height–
d.b.h. relationship used only the first two and three measurements,
respectively, of the Oklahoma State University (OSU) and USDA
Forest Service Southern Research Station (USFS) naturallyoccurring
shortleaf pine growth study.

Although, Budhathoki et al. (2008) updated height–d.b.h. rela-
tionship by adding BAH as an independent variable and by fitting a
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mixed-effects model, they did not fit a crown ratio model. But now
six measurements of shortleaf plot data spanning a 25-year period
are available that allow us to update existing models and incorpor-
ate the most recent developments in modelling the height–d.b.h.
and crown relationships. This also provides an opportunity to test
other model forms and independent covariates that may provide
improved fits to the data from other studies as well. Therefore,
the current study aims to update and improve the existing height
prediction and CR estimation models suitable for practical applica-
tion by resolving the issues of autocorrelation and heteroscedasti-
city of errors in repeated measurements. The specific aims are: to
modify and improve the model performance by introducing plot
or stand-level covariates and to evaluate the performance of dif-
ferent sets of OLS non-linear models, mixed-effects models and
their extended forms while correcting for autocorrelation and sta-
bilizing heterogeneity of errors. In addition to this, we will evaluate
available fundamental local models for the height–d.b.h. predic-
tion that do not use dominant height and modify them with plot
or stand-level covariates to minimize the prediction error. More-
over, also we will test homoscedasticity assumptions independ-
ently for each model. It is expected that the best model for both
the height prediction and the crown ratio estimation will be
useful for estimating volume, biomass and other tree attributes
of the natural stand of shortleaf pine.

Materials and methods

Data
In 1985–1987, the Department of Forestry (now part of the Department of
Natural Resource Ecology and Management) at Oklahoma State University
(OSU) and the US Forest Service (USFS) at Monticello, Arkansas, collabora-
tively established growth and yield plots in even-aged natural shortleaf
pine stands. The plots were established as permanent plots in the Ozark
and Ouachita National Forests in western Arkansas and southeastern Okla-
homa. Prior to the establishment of this study in 1985, the major sources of
data for shortleaf growth and yield were from fully stocked plots or unman-
aged shortleafpine stands (Lynch et al., 1999). Theseplotswere designed to
represent a range of ages, basal area levels and site qualities, which were
designated as design variables so that plots were thinned to specific
residual densities at their establishment (for a detailed description, see
Lynch et al., 1999).

The measurement plots were circular with a radius of 17.4 m (57.2 feet)
and area of 0.0809 ha (0.2 acres). The measurement plots were surrounded
by a buffer strip 10 m (33 feet) wide that received the same silvicultural
treatments as plots at establishment. At plot establishment, woody under-
story vegetation stems with d.b.h. .2.54 cm in were controlled using herbi-
cide. Based on the definitions given by Avery and Burkhart (2002, p. 163),
individual tree crowns were classified as dominant, codominant, intermedi-
ate or suppressed trees. The average height of dominants and codominant
was used as the dominant height in this study and was also used to deter-
mine site index for each plot. The ring counts of increment cores for the
dominants and codominant were averaged to obtain plot age (PAG).

The total sample consisted of 208 plots. These plots have been remea-
sured in every 4–6 years, with the latest (sixth) measurement made during
the period from 2012 to2014. Ateachmeasurement,Di of all trees fromplot
were measured, but Hi in metres and crown length (height to base of live
crown) in metres were recorded for selected subsample trees from each
plot to represent the range of tree diameters and crown classes of domin-
ant, codominant and intermediate trees on the plot. At least two trees per
2.5 cm d.b.h. class were selected where available. At plot establishment, a
procedure was followed which attempted to achieve an approximately

even distribution of height measurement trees within diameter classes
and to spread the measurements approximately evenly on the plot. This
was based on an initial d.b.h. tally. The initial goal was to have at least
two and no more than five trees per d.b.h. class. The numbers of height sub-
sample trees within plots were increased subsequent to the first measure-
ment in order to continue a good representation of samples within plot
d.b.h. classes (e.g. if due to growth or mortality, there were no longer two
trees per d.b.h. class). Once selected, all height measurement trees were
remeasured in later remeasurements unless the tree died before the sixth
measurement.

Ice-damaged trees occurred on a total of 101 plots in the year 2001, just
before the fourth measurement (for a detail information see Stevenson
et al., 2016). It was expected that the plots with significant numbers of ice-
damaged trees could influence the growth characteristics of individual
trees on these plots. Therefore, in the model development process, plots
with more than 30 percent of ice-damaged trees were excluded. Any individ-
ual trees having ice damage was also removed from the model development
process. Trees having forks or other significant defects were excluded from
the model development dataset. Many plots were re-thinned to their original
basal area levels just after the third measurement, while some plots were left
unthinned. An average thinned (removed) basal area was 6.94 m2 ha21 with
a range of 0.69–19.36 m2 ha21. A variable that exhibits simple thinning
effect ‘THINHA’¼ (Thinned basal area per hectare/(years since thinning)
was formulated assuming that thinning effect decreases over the time.
The mean and standard deviation (SD) of all variables fromthe first measure-
ment to the last (sixth) measurement are shown in Table 1. The data con-
sisted of total 14 028 observations, and the summary statistics of the
variables used in modelling height prediction and crown ratio estimation
are presented in Table 2. The Hi ranged from 3.048 to 38.100 m with a
mean of 20.433 m and SD of 6.222 m and CR ranged from 0.055 to 0.80
with a mean of 0.373 and SD of 0.094 (Table 2). The data used for modelling
height–d.b.h. relationship and CR estimation are shown in Figure 1a,b.

Height prediction model with dominant height

To predict individual tree height, Lynch and Murphy (1995) developed a
compatible height prediction model which was used in the shortleaf pine
growth prediction system described in Lynch et al. (1999). Equation (1)
was used to predict an individual shortleaf pine tree height. Budhathoki
et al. (2008) accounted for competition effects of other trees on individual
tree growth by including the variable BAH [equation (2)].

(Hi − c) = b0(HD − c)b1 exp(b2Di
b3 ) (1)

(Hi − c) = b0(HD − c)b1 exp(b2Di
b3 + b4BAH) (2)

where HD is the average plot dominant and codominant height, c the breast
height (1.371 m) at which d.b.h. is measured and b0, b1, b2, b3 and b4 are
parameters to be estimated.

The existing models need to be tested for thinning effect since post-
thinning measurements are now available. The simple effect of thinning
‘THINHA’ on height prediction model [equation (1)] was found not signifi-
cant in the model. Therefore, we tested inclusion of covariates that re-
present stand density which might reflect competition levels as well as
tree relative position in the stand. Both covariates, QMD and RAQD, provided
a substantial improvement in the fit statistics and showed identical per-
formance, but we preferred QMD in equation (3) to avoid correlated covari-
ates in the model, which will be discussed below. Avariable that is a function
of an inverse of QMD, the ratio of the number of trees per hectare (TPH) to
BAH (TPH/BAH), was alsoused bySharma and Parton (2007) in the extended
model of the Chapman–Richards function for boreal tree species in Ontario,
Canada. The model used by Sharma and Parton (2007) was also modified
by using QMD variable, instead TPH/BAH in equation (4) for testing on our
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shortleaf pine dataset.

(Hi − c) = b0(HD − c)b1 exp(b2Di
b3 QMD) (3)

(Hi − c) = b0(HD)b1 (1 − exp−b2QMDb3 Di )b4 (4)

After testing several models using OLS, equation (3) was selected for fitting
with the mixed-effects model approach because it provided root mean
square error (RMSE) extremely close to the smallest RMSE from equation
(4), but contains only four parameters, making it somewhat simpler in
form than equation (4). All parameters were tested for possible inclusion
of plot-level random effects assuming the same plot effect holds for all
remeasurements of the same plot. Plot level random effects associated
with b0 (asymptotic height), b1 (slope) and b2 (curvature) were significant.
However, due to sizeable differences in the Akaike information criteria
(AIC) values, the random effect associated with the b3, the parameter
multiplicative to exponent of Di in equation (3), was selected for use in

the final model. This resulted in the mixed-effects model [equation (5)]

(Hij − c) = b0(HDj − c)b1 exp{b2Dij
(b3+uj)QMDj} + 1ij (5)

Table 1 Descriptive statistics (mean with SD in parentheses) of stand level and tree variables recorded for six measurement times of naturally
occurring even-aged shortleaf pine stand

Variables Measurements

1st (n¼ 2682) 2nd (n¼ 3017) 3rd (n¼ 3215) 4th (n¼ 1750) 5th (n¼ 1677) 6th (n¼ 1687)

CR 0.373 (0.094) 0.365 (0.096) 0.372 (0.096) 0.376 (0.089) 0.374 (0.092) 0.364 (0.084)
D (cm) 28.991 (10.974) 26.426 (10.388) 28.333 (10.5) 31.195 (10.003) 33.276 (10.33) 35.021 (10.68)
H (m) 19.864 (6.222) 18.684 (6.34) 19.894 (6.087) 20.777 (5.396) 21.698 (5.215) 22.877 (5.221)
HD (m) 20.433 (5.596) 19.364 (5.704) 20.625 (5.356) 21.17 (4.83) 22.131 (4.56) 23.293 (4.477)
PAG (years) 62.465 (22.114) 56.585 (20.207) 61.537 (20.258) 66.486 (20.742) 72.251 (20.737) 77.828 (20.756)
BAH (m2 ha21) 24.191 (8.653) 23.135 (7.566) 26.156 (8.352) 23.609 (8.693) 26.027 (9.147) 28.063 (9.565)
QMD (cm) 28.997 (9.594) 26.442 (8.942) 28.468 (8.816) 31.118 (8.644) 33.256 (8.861) 35.036 (9.107)
RSI 0.276 (0.101) 0.269 (0.092) 0.256 (0.091) 0.293 (0.112) 0.284 (0.109) 0.274 (0.107)
RAQD 1.063 (0.323) 1.073 (0.347) 1.078 (0.359) 1.043 (0.269) 1.044 (0.268) 1.045 (0.269)
BAHG (m2 ha21) years21 0.458 (0.274) 0.491 (0.296) 0.505 (0.303) 0.409 (0.241) 0.41 (0.23) 0.404 (0.214)

n, total number of observations; CR, crown ratio; D, diameter at breast height (cm); H, individual tree height; HD, average plot dominant and co-dominant
height (m); PAG, plot age (years); BAH, stand basal area per hectare (m2 ha21); QMD, quadratic mean diameter (m); RSI, relative spacing index; RAQD, ratio
of QMD to D; and BHAG, ratio of BAH to PAG.

Table 2 Summary statistics of the variables used to model height
prediction and crown estimation of the naturally occurring even-aged
shortleaf pine stand (n¼ 14 028)

Variables Mean SD Minimum Maximum

CR 0.373 0.094 0.055 0.800
D (cm) 28.991 10.974 2.794 67.564
H (m) 19.864 6.222 3.048 38.100
HD (m) 20.433 5.596 6.706 36.019
PAG (years) 62.465 22.114 18.000 119.000
BAH (m2 ha21) 24.191 8.653 2.035 48.684
QMD (cm) 28.997 9.594 7.887 58.258
RSI 0.276 0.101 0.126 0.841
RAQD 1.063 0.323 0.386 7.012
BAHG (m2 ha21) years21 0.458 0.274 0.025 1.338

Figure 1 Scatter plot of whole data showing the distribution of height (a)
and the crown ratio (b) of shortleaf pine along the diameter range.
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where Hij is total height of tree i in plot j; i the attribute of an individual tree; j
the attribute of the plot; b0, b1, b2 and b3 are fixed effects parameters; uj the
random effect associated with parameter b3 and specific to plot j and 1ij

within-plot error (random error for tree i in plot j).
Since each tree from the same plot was repeatedly measured six times,

it is possible that autocorrelation within individual observations and non-
constant error variance exists. Therefore, to resolve the issues of heterosce-
dasticity and autocorrelation, we modelled a power variance function and
first order autoregressive AR (1) structure, and a combination of both in the
best non-linearandmixed-effects models (Pinheiro and Bates, 2000, p. 391;
Cryerand Chan, 2008, p. 66). AR (1) structurewasselected becausethe data
have relatively fewer lags (5) and AR (1) requires the estimation of only one
parameter. The best selected non-linear models [equation (3)] and
mixed-effects model [equation (5)] were referred to as ‘base model’
forms. Hereafter, the extended model formswith additional power variance
function and AR (1) were termed as ‘extended non-linear models’ (ENMs)
and ‘extended mixed-effects models’ (EMEMs). The assumption of autocor-
relation within an individual tree was considered for ENMs, but this assump-
tion was not compatible while modelling mixed-effects models. It may be
due to the differences in a hierarchy of the group at which the errors are cor-
related, and random effects are associated. So, we assumed autocorrel-
ation within plot for mixed-effects models. The resulted ENMs are as:

Model 3 + power variance function (6)

var(1ij) = s2|yij|2d

error variance (1ij) was modelled with one covariate. y ij is the covariate andd

the power parameter. HD was selected as covariate for modelling heteroge-
nouses errors because of smaller AIC value and large likelihood ratio (LR)
statistics.

Model 3 + AR (1) (7)

AR (1) models the correlated errors (1it) as:

1it = f11it−1 + vit and vit � iid N(0,s2
v)

where i is the individual tree and t the measurement (lag) and f the
autocorrelation between lags. The correlation ‘r’ between residuals of an
observation pair declines exponentially with the number of periods (t)
apart, i.e. r¼ft

.

Model 3 + power variance function + AR (1) (8)

The resulted EMEMs are as:

Model 5 + power variance function (9)

Model 5 + AR (1) (10)

Mode 5 + power variance function + AR (1) (11)

Height prediction model without dominant height
A variety of height prediction models with only the single independent vari-
able ‘d.b.h.’ are commonly used in practice when dominant height is not
readily available [in Table 3, equations (12–19)]. These eight equations
[equations (20–27)] were fitted to predict the shortleaf pine tree height
and tested for modification by including QMD, which is typically available
from forest inventory data. Other stand-level variables including TPH, BAH
and RAQD were also tested. We found the inclusion of QMD into these modi-
fied ‘local’ models [equations (20–27)] substantially improved model per-
formance. But, these models were neither tested as a mixed-effects model
nor as extended models.

The individual tree crown ratio model used by Lynch et al. (1999) for
shortleaf pine was also modified and tested. This crown ratio function
was developed by Dyer and Burkhart (1987) for planted loblolly pine tree
data and also used by Hynynen (1995) for Scots pine stands. The base equa-
tion (28) used to predict the current individual tree shortleaf pine crown
ratio together with an alternative equation (29) is shown as:

CRi = 1 − exp − b0 + b1

PAG

( )
Di

Hi

( )b2
[ ]

(28)

CRi = 1 − exp − b0 + b1

Hi

( )
Di

HD

( )b2
[ ]

(29)

where CRi is the crown ratio of tree i; b0, b1 and b2 are parameters to be
estimated; and other variables are as defined above.

The effect of thinning was not included in crown ratio estimation models
because although the effect was found significant in equation (28), but it
did not markedly reduce the mean square error. Equation (28) was modified
to equation (29) by replacing PAG with HD. Both equations were further
modified to equations (30 and 31) by adding BAH. Equation (30) was
then modified by using RSI in equation (32). RSI was calculated as
¼

��������������
10000/TPH

√( )
/HD.

CRi = 1 − exp − b0 + b1

PAG
+ BAHb2

( )
Di

Hi

( )b3
[ ]

(30)

Table 3 Fundamental local models for height prediction with d.b.h. only, and with modified height prediction model with QMD

Equation Common height model Equation Modified model Source

12 Hi2 c¼ b0(1 2 e2(b1Di)) 20 Hi2 c¼ b0(1 2 e2(b1Di))QMDb2 Meyer (1940)
13 Hi2 c¼ b0(1 2 e2b1Di)b2 21 Hi2 c¼ b0(1 2 e2b1Di)b2QMDb3 Richards (1959)
14 Hi2 c¼ b0eb1/Di 22 Hi2 c¼ b0eb1/DiQMDb2 Burkhart and Strub (1974)
15 Hi2 c¼ b0Di

b1 23 Hi2 c¼ b0Di
b1QMDb2 Stage (1975)

16 Hi2 c¼ b0Di(b1 + Di) 24 Hi2 c¼ b0Di(b1 + Di)QMDb2 Bates and Watts (1980)
17 Hi2 c¼ eb0 + (b1/(Di + 1)) 25 Hi2 c¼ eb0 + (b1/(Di + 1))QMDb2 Wykoff et al. (1982)
18 Hi2 c¼ b0eb1/(Di + b2) 26 Hi2 c¼ b0eb1/(Di + b2)QMDb3 Ratkowsky and Giles (1990)
19 Hi2 c¼ (Di/(b1 + b2 Di))

b3 27 Hi2 c¼ (Di/(b1 + b2Di))
b3 QMDb4 Schmidt et al. (2011), Sharma and Breidenbach (2015)
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CRi = 1 − exp − b0 + b1

Hi

( )
BAHb2 + Di

HD

( )b3
[ ]

(31)

CRi = 1 − exp − b0 + b1

Hi

( )
RSIb2 + Di

HD

( )b3
[ ]

(32)

The logistic function approach to crown ratio estimation was also tested.
The following model [equation (33)] proved to be a good alternative to
the exponential model approach given above.

CRi = 1 + exp − b0 + b1Hi + b2
Di

HD
+ b3BAH

( )( )[ ]−1

(33)

The mixed-effects approach was also used to fit crown ratio estimation
models. Based on performance, equations (31 and 32) were modelled
with the mixed-effects approach. It was found that the random effect asso-
ciated with the parameter b0 for both models as shown below performed
better than the other alternatives:

CRij = 1 − exp − (b0 + mj) +
b1

Hi

( )
BAHb2

j + Di

HDj

( )b3
⎡
⎣

⎤
⎦+ 1ij (34)

CRij = 1 − exp − (b0 + mj) +
b1

Hi

( )
RSIb2

j + Di

HDj

( )b3
⎡
⎣

⎤
⎦+ 1ij (35)

where CRij is the crown ratio of tree i in plot j.
The crown ratio estimation model with better fit index and AIC values:

equation (26) non-linear model; and equation (35) mixed-effects model
were selected as base models for modelling heterogeneous errors and
autocorrelation structures. The resulted ENMs are: equations (36–38);
and EMEMs models are: equations (39–41).

Model 6 + power variance function (36)

Individual d.b.h. was found a better performing covariate than alternative
in reducing AIC value for modelling heterogenous errors.

Model 26 + AR (1) (37)

Mode 26 + power variance function + AR (1) (38)

Model 35 + power variance function (39)

Model 35 + AR (1) (40)

Mode 35 + power variance function + AR (1) (41)

Statistical analysis
All non-linear models, mixed-effects models and extended form of models
were fitted in R (R Development Core Team, 2012) using the ‘nls’, ‘nlme’ and
‘gnls’ functions, respectively (Pinheiro et al., 2014). Models were compared
using the Fit index, RMSE and AIC. Likelihood ratio (LR) statistics was also
used to compare the ENMs with the base non-linear model [equation (3)]
and, EMEMs with base mixed-effects model [equation (5)]. The Fit index
for non-linear models was calculated based on equation (42) and RMSE
was calculated based on equation (43). Fit indices and RMSEs for mixed
models and the extended models were calculated based on the actual

height or crown ratio predictions using only parameter estimates of the
fixed covariates while setting random effects equal to zero.

Fit index = 1 −
∑

(yi − ŷi)
2∑

(yi − �y)2
(42)

RMSE =

���������������∑n
i (yi − ŷi)

2

n − p

√
(43)

where yi is the observed value for ith observation, ŷi the predicted value by a
model, �yi the mean observed value and p the number of parameters esti-
mated by a model. For ease in comparison, Fit index was interpreted as
the percentage (multiplied by 100).

The Goldfeld–Quandt test was used to test an assumption of homosce-
dasticity of the error variance for both height prediction and crown ratio es-
timation model (Judge et al., 1988, pp. 371–372). The dataset was divided
into three parts ordered from the smallest to the largest value of the inde-
pendent variable (d.b.h.), and the middle (1/3rd) of the data were excluded.
The Goldfeld–Quandt test compares the ratio of the residual sum of
squares of the model from the upper range (3/8ths of total data) observa-
tions to the model from lower range (3/8ths of total data) observation.
Standardized residual plots were plotted against the fitted (predicted)
values, and against d.b.h. values. The standardized residuals were also
plotted against the mid-range of the design variables (plot basal area,
site index and plot age), but they are not shown. Standardized residual
plots of all height prediction models were similar to each other, and the
same was the case for CR models. Therefore, only standardized residual
plots from the base model and the best model for both height prediction
and crown ratio estimation are presented.

Results
The patterns of height and crown changes over the time for each
measurement can be observed in Figure 2. Some of the changes
could be due to thinning from below after the third measurement
and removal of many trees due to ice storm damage at the fourth
(Figure 2a). Due to the study design, large trees in older age classes
were present even at the first measurement since the study included
a balanced range of age classes at that time. During later measure-
ments, trees in theyoungerage classes grew in height, resulting in an
increase in the mean height for the study as a whole (Table 2). The
mean crown ratio appears to be relatively constant over time, and
possibly average increases in total height are balanced by the
crown recession over time as might be expected (Figure 2b and
Table 2).

Height prediction model with dominant height

Table 4 displays the fit statistics (RMSE, AICand Fit Index) of height–
d.b.h. relationship models: non-linear model [equations (1–4)],
mixed-effects model [equation (5)], ENMs [equations (6–8)]
and EMEMs [equations (9–11)]. The parameter estimates of all
models were significantly different from zero, but estimates of
the selected models are shown in Table 5. The fit statistics of equa-
tions (3 and 4) were similar and better than the alternative models
[equations (1 and 2)]. However, the AIC value of equation (4) was
slightly smaller. The smaller AIC value might be associated with
the likelihood estimation function that involves the number of
parameters in a model, i.e. equation (3) has four parameters;
and equation (4) has five parameters. The inclusion of QMD as
stand-level covariate in the equation (3) showed the reduction in
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RMSE by 8 per cent compared with a model without QMD [equation
(1)] and also compared with a model with BAH as the covariate
[equation (2)] (Table 5). This suggested that the selection and the
position of the stand-level covariate also affect the performance
of a model (Table 4). Further, the mixed-effects model [equation
(5)] showed similar Fit index (95.84) and RMSE (1.27) to equation
(3) when the random component was assumed to be zero and
only the fixed effects were used to make height predictions
(Table 4). The SD ŝ(mj) = 1.19319 of the random component asso-
ciated with the parameter b2 was significant (P-value ,0.0001)
with the confidence interval of [1.208723, 1.80569]. The AIC value
of equation (5) was lower than of equation (3), but this includes
random effectsparameters inequation (5) that areusuallynot avail-
able for prediction unless calibration can obtain them.

The LR statistics suggested the ENMs and EMEMs were signifi-
cantly different from their base model form [equations (3) and
(5), respectively] (Table 4). The ENMs and EMEMs provided similar
RMSE and Fit indices, but equation (8) provided smaller AIC value

and large significant LR statistics (Table 4). This suggested that
modelling both variance function and autocorrelation structures
in a non-linear model performed better than just modelling
variance function [equation (6)] and other EMEMs (Table 4). In
EMEMs, the similar AIC value and LR statistics indicated that
EMEM equation (9) could be a better alternative model to equation
(11) for height prediction, but ignoring autocorrelation could lead
to an underestimate of standard errors if account is made only
for heteroscedasticity.

Both extended model forms (ENMs and EMEMs) showed that
relatively small power parameter estimates were needed to stabil-
ize the issue of heteroscedasticity [equations (6, 8, 9 and 11)] and
large autocorrelations within individual tree heights were observed
[equations (7 and 8)], but moderate autocorrelation was observed
between the tree heights within plot [equations (10 and 11)]
(Table 4). The parameter estimates of equations (5, 8 and 11)
were very similar (Table 5). Interestingly, the EMEM [equation
(11)] showed the greater reduction in the SD of the random

Figure 2 Three-dimensional scatter plot of each measurement: the distribution of height (a) and the crown ratio (b) of shortleaf pine along the diameter
range. X-axis: d.b.h., y-axis: total height, crown ratio and z-axis: measurement time.
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effect associated with plot than the mixed-effects model [equa-
tion (5)] (Table 5).

The Goldfeld–Quandt test did not indicate violations of the as-
sumption of homoscedasticity of error variance for any of equations
(1–4). For example, Goldfeld–Quandt variance ratio was 0.80 for
equation (3) which was less than tabulated F(5257, 5257)¼ 2.04 at
a¼ 0.05 level. The standardized residuals did not show any system-
atic pattern to indicate aviolation of an assumption of homogeneity
of variance. So, the standardized residuals of the better performing
models: non-linear model [equation (3)], mixed-effects model
[equation (5)] and the ENM [equation (8)] are shown in Figure 3.
The residual distribution pattern was slightly different between non-
linear models and mixed-effects models. The non-linear model
showed some dip near the lower fitted values (Figure 3a), while
mixed-effects model showed a more compact distribution of stan-
dardized residuals (Figure 3b). The residual distribution of all ENMs
was similar to that shown in Figure 3c for equation (8). Although
extended models had better AIC values, residual distribution pat-
terns were not different from their base models [equations (3 and
5)]. The standardized residuals plotted against d.b.h. (Figure 3d–f)
also showed similar patterns and trends as discussed for fitted
values. Mixed-effects models showed variation at the lower diam-
eter range compared with the non-linear models and ENMs. The

standardized residuals plotted against the range of design variables
of shortleaf pine growth study also showed that the median resi-
duals were almost centred to zero with a minimum bias, but these
graphs are not shown.

Height prediction models without dominant height

The parameter estimates of the fundamental local height predic-
tion models with d.b.h. as the only independent variable were sig-
nificant (P-value ,0.0001) (Table 6). The fit indices and RMSE for
fundamental local models [equations (12–19)] were very similar,
but equations (14, 15 and 17) did not perform as well as alternative
models (Table 6). An average Fit index and RMSE was 73.85 and
3.18 m, respectively, for the fundamental local models. Fit statis-
tics improved significantly across modified local models when a
height prediction model function was multiplied by QMD raised
to a power [equations (20–27)] (Table 6). The stand-level covariate
QMD with a parameter in the power position increased values of fit
indices and decreased RMSE substantially for both two parameters
and three parameters d.b.h.–height prediction model functions.
On average, model RMSE was decreased by 17.31 per cent (i.e.
0.55 m) and the Fit index was increased by 11 per cent (i.e. 8.24).
The greatest reduction in RMSE (0.64 m) was observed in equation
(22) that corresponds to base equation (14), and the lowest reduc-
tion in RMSE (0.48 m) was observed in equation (23) that corre-
sponds to base equation (15). The AIC value of each modified
local models was reduced by an average of 7.34 per cent (i.e.
5304) compared with the same equation form without QMD. Sub-
stantial reductions in AIC value and RMSE for these equation indi-
cate that QMD as independent variable plays an important role in
minimizing model error compared with models that use the only
d.b.h. as the independent variable. For the fundamental local
models [equations (12–19)] and modified local models with
QMD [equations (20–27)], the Goldfeld–Quandt test failed to
reject homogeneity of variance at a¼ 0.05 of significance
because all estimated variance ratios were less than F¼ 2.04.

Crown ratio estimation

The crown ratio estimation model with average dominant height
[equation (29)] instead plot age [equation (22)] had better fit statis-
tics and a better AIC value (Table 7) than other alternatives. Similar
improvements in the model performance resulted from adding
stand basal area when equation (28) was modified to equation
(30), and equation (29) modified to equation (31) (Table 7). Crown
ratio estimation models with PAG and BAH [equation (30)] did not

Table 4 Fit statistics [RMSE, Fit index (per cent) and AIC], power
parameter (d), and autocorrelation (w) and likelihood ratio statistics (LR)
of the different forms of non-linear height–d.b.h. relationship

Models RMSE Fit index (%) AIC d w LR

Equation (1) 1.38 95.11 48 776
Equation (2) 1.37 95.16 48 624
Equation (3) 1.27 95.85 46 453
Equation (4) 1.26 95.92 46 230
Equation (5) 1.27 95.84 45 157
Equation (6) 1.27 95.85 46 203 0.323 251.9
Equation (7) 1.27 95.85 40 305 0.803 9912.6
Equation (8) 1.27 95.84 36 067 0.398 0.810 10389.9
Equation (9) 1.27 95.83 44 790 0.383 369.2
Equation (10) 1.27 95.83 45 140 0.037 19.1
Equation (11) 1.27 95.83 44 771 0.3836 0.039 390.5

OLS non-linear [equations (1–4)], mixed-effects model [equation (5)],
extended non-linear models (ENM) [equations (6–8)] and EMEMs
[equations (9–11)].

Table 5 Parameter estimates and standard error in the parentheses of the selected height prediction models

Parameters Equation (1) Equation (3) Equation (5) Equation (8) Equation (11)

b0 2.00052 (0.02780) 1.37232 (0.01111) 1.41103 (0.01583) 1.42302 (0.01659) 1.39325 (0.01473)
b1 0.82570 (0.00346) 0.94119 (0.00271) 0.93335 (0.00369) 0.93107 (0.00398) 0.93888 (0.00355)
b2 29.34600 (0.41130) 21.58186 (0.06269) 21.36397 (0.05693) 21.38491 (0.07173) 21.25512 (0.04758)
b3 21.16510 (0.02090) 21.69434 (0.01684) 21.64451 (0.01739) 21.64367 (0.02327) 21.61206 (0.01638)
b4 1.41103 (0.01583) 1.42302 (0.01659) 1.39325 (0.01473)
ŝ(mj) 1.19456 0.38801
ŝ(1ij) 0.03067 0.40902 0.03061

OLS non-linear [equations (1–3)], mixed-effects model [equation (5)], ENM [equation (8)] and EMEM [equation (11)].
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improve model performance as much as the inclusion of HD [equa-
tion(29)].Thecrownratioestimationmodel that included RSI [equa-
tion (32)] had better fit statistics and AIC value than all other
alternative models. Fitting the logistic function to this dataset sug-
gested that equation (33) can be used as an alternative crown
ratio estimation model because it had similar fit statistics and a
similar AIC value compared with other slightly better alternative
models. The parameter estimates of the crown ratio estimation
models were significant (P-value ,0.0001), but only estimates of
the selected models are shown (Table 8).

The mixed-effects model for crown ratio estimation [equation
(35)] with RSI had a slightly better Fit index and RMSE than the
model with BAH [equation (34)], although it had a similar AIC
value (Table 7). However, the fit statistics (RMSE and Fit indices)
of mixed-effects models setting random effects to zero were not

smaller than those of the OLS non-linear models [equations (31
and 32)] (Table 7). The SD of the error (ŝ(1ij)) of equation (35)
was slightly smaller (0.01658) with a 95 per cent confidence inter-
val of [0.01478, 0.01859] than of equation (34), but estimate of the
SD of the random component (ŝ(mj))of equation (35) was identical
with equation (34).

The ENMs [equations (36–38)] and EMEMs [equation (39–41)]
showed reduced AICvalues compared with the base models: equa-
tions (32 and 35), respectively. The large differences in the LR sta-
tistics and smaller AIC values indicated that ENMs performed
better than EMEMs (Table 7). Both ENMs and EMEMs provided nega-
tive power parameter estimate (Table 7). However, the ENM with a
variance function [equation (36)] showed Fit index better than
others, and close to the non-linear base model [equation (32)]
but not with a greatly reduced AIC value (Table 7).

Figure 3 Scatter plot of standardized residuals vs fitted values (left panel) and vs d.b.h. (right panel) for the total height prediction models: (a) OLS
non-linear [equation (3)], (b) mixed-effects model [equation (5)] and (c) ENM with AR (1) and power variance function [equation (8)].
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The ENMs with AR (1): equations (37 and 38) showed that
observed CR of an individual tree in repeated measurements
were moderately correlated (0.55), but EMEMs equations (40 and
41) showed CR were very weakly correlated (0.12) within a plot
(Table 7). Interestingly, ENMs equation (38) provided the smallest
AIC value and comparable Fit index with equation (35) (Table 7)
but had greatly changed parameter estimates (Table 8). It

indicated that a non-linear model with both power variance func-
tion and AR (1) structure could be used in the repeated measure-
ments, as a substitute modelling approach to the mixed-effects
modelling approach.

The Goldfeld–Quandt test also failed to reject homogeneity
of variance for the crown ratio estimation models [equations
(28–32)] at the a¼ 0.05 level of significance because the esti-
mated variance ratios were less than F¼ 2.08. For example, the
ratios of variance were 1.09 and 1.08 for equations (21 and 32),
respectively. The standardized residual plot also indicated homo-
geneity of variance. The residual distribution patterns were fairly
similar within the ENMs and the EMEMs with small improvements
over the base model. The residual distribution pattern, Figure 4a of
non-linear model [equation (32)] and Figure 4b of the mixed-effects
model [equation (35)], was similar, although the latter was slightly
compact and elongated to right, indicating more constant error
variance. The residual pattern of the ENM [equation (38)] showed
some errors at the lower fitted values but more compact error at
fitted middle values than other models (Figure 4c). Similarly, the
standardized residuals plotted against d.b.h. showed similar
trends among the model forms (Figure 4d–f) and suggested large
prediction errors at the lower diameter range. The standardized
residuals from equation (32) plotted against the design variables
also showed that the median residuals are almost centred at zero
with a minimum bias over the range of design variables, but these
graphs are not shown.

Discussion
The inclusion of QMD improved the fit statistics of the modified
equation for height prediction [equation (3)] compared with the
models presented by Budhathoki et al. (2008) [equation (2)] and
Lynch et al. (1999) [equation (1)] (Table 4). It was found that the
height prediction bias of 0.02 m by equation (1) was reduced to

Table 6 Parameter estimates and fit statistics (RMSE, Fit index and AIC) for height prediction models with d.b.h. [equations (12–19)], and along with
QMD [Equations (20–27)]

Equation (no.) Parameters estimates RMSE Fit index (%) AIC

b0 b1 b2 b3

12 41.2084 0.0215 3.16 74.27 72 061
13 38.8776 0.0247 1.0551 3.16 74.28 72 058
14 37.3973 218.5592 3.25 72.64 72 921
15 1.6609 0.7209 3.19 73.76 72 336
16 67.0409 72.9095 3.16 74.24 72 076
17 3.6529 220.2320 3.23 73.05 72 708
18 51.5498 239.2751 10.7639 3.16 74.28 72 055
19 1.4364 0.0324 1.1802 3.16 74.28 72 055
20 3.5866 0.0716 0.5393 2.62 82.24 66 863
21 3.5567 0.0741 1.0387 0.5405 2.62 82.24 66 864
22 4.1877 28.2663 0.5365 2.62 82.26 66 847
23 1.0548 0.3493 0.5055 2.71 81.09 67 738
24 4.48945 13.7148 0.5188 2.63 82.08 66 983
25 1.4838 29.2260 0.5279 2.62 82.26 66 845
26 4.2827 28.6416 0.4166 0.5327 2.62 82.26 66 847
27 0.7076 0.8722 10.6304 0.5329 2.62 82.26 66 847

Table 7 Fit statistics [RMSE, Fit index (per cent), and AIC], variance
function (d), and autocorrelation (w) and likelihood ratio statistics (LR) of
the different form of crown ratio (CR) estimation model

Models RMSE Fit index
(%)

AIC d w LR

Equation (28) 0.07225 41.3 233 919
Equation (29) 0.07169 42.17 234 128
Equation (30) 0.07141 42.56 234 223
Equation (31) 0.07071 43.67 234 496
Equation (32) 0.07052 44.07 234 588
Equation (33) 0.07106 43.18 234 374
Equation (34) 0.07117 42.99 235 467
Equation (35) 0.07088 43.44 235 475
Equation (36) 0.7053 44.02 234 978 20.246 390.74
Equation (37) 0.07073 43.69 237 878 0.548 3291.8
Equation (38) 0.07095 43.35 238 397 20.364 0.55 3636
Equation (39) 0.07089 43.44 235 726 20.282 498.2
Equation (40) 0.07081 43.57 235 703 0.129 230
Equation (41) 0.07079 43.6 235 467 20.277 0.127 720.7

OLS non-linear [equations (28–31)], logistic model [equation (32)], mixed-
effects models [equations (34 and 35)], extended non-linear models (ENM)
[equations (36–38)] and EMEMs [equations (39–41)].
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0.005 m by equation (3) which supported the conclusion that
equation (3) has better prediction capability. It was also observed
that the stand competition variable ‘QMD’ in equation (3) can be
substituted by relative measure variable ‘RAQD’ to obtain similar
parameter estimates, standard error and RMSE. The parameter
estimates and fit statistics of the mixed-effects model [equation
(5)] were similar to an OLS non-linear model [equation (3)]. Predic-
tion from a non-linear mixed model with the random effect param-
eter set to zero were not as good as the OLS results, as expected
(Tables 4 and 7). Garber et al. (2009) demonstrated that imputing
height from the fixed estimates of OLS non-linear had less bias in
volume prediction (4 m3 ha21) than a mixed-effects model
(20 m3 ha21) when height was imputed for Douglas fir, as it was
discussed by Temesgen et al. (2008) while predicting height for
Douglas-fir. The smaller AIC value in the mixed-effects model
[e.g. equation (5)] than OLS non-linear models [e.g. equations
(1–3)] might be attributed to the inclusion of the random para-
meters in the mixed-effects model. However, unless calibration
data are available, the random parameters may not be of practical
help for most prediction problems. On the other hand, several
authors have shown that prediction using mixed models can be at-
tractive when calibration data are available and have indicated,
mixed model prediction may not be better than OLS unless calibra-
tion data are available (Lynch et al., 2005, 2012; VanderSchaaf,
2014).

The AR (1) structure suggested autocorrelation of residuals
within individual observation was large for height prediction and
was moderate for CR estimation. The large autocorrelation can
be perceived as a wider residual distribution with increasing diam-
eter as in Figure 3, and moderate autocorrelation can be perceived
as a circular distribution of residuals as in Figure 4. Ducey (2009)
also observed the circular pattern of residual distribution for CR
modelling of Pinus strobus. However, the autocorrelation remedi-
ation at the larger lags is not reliable because it is based on fewer
residual pairs. The EMEMs did not greatly improve model fits com-
pared with the ENMs for both height–d.b.h. relationship and CR es-
timation. So, the AIC values of the EMEMs were not smaller than
ENMs (Tables 4 and 7). The smaller AIC value in the ENMs could
be a result of more successful modelling of autocorrelation struc-
ture within individual tree than within plot or grouped data as in
the mixed model. Because of this, AIC value of the EMEMs of both
height–d.b.h. relationship and CR estimation was not greatly
reduced compared with the ENMs (Tables 4 and 7). Although LR sta-
tistics suggested EMEM with AR (1) structure was significantly dif-
ferent from the base mixed-effects model (Tables 4 and 7), both
models had similar SD of random effect and error variance.
Perhaps, the mixed-effects models each group (plots) with its
random effect and the assigned AR (1) (within stand) is formally
identical to a random effect model which has both among-group
variance (s2

m) and within-group variance (s2
w) that corresponds to

correlation parameters(r,s2). Therefore, it is possible that ENM
with autocorrelation structure and variance function can perform
better than the EMEMs.

The small, positive power parameter in both ENMs and EMEMs of
height–d.b.h. relationship indicated small amount of heteroge-
neous error due to influence of HD. The negative power parameter
associated with d.b.h. could be due to the pattern of the standar-
dized residuals distributed along the lower diameter that showed
greater variability. But the fact that large standardized residuals
occurred in this study (Figures 3 and 4) may be because the dataTa
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were from naturally occurring stands as observed in Budhathoki
et al. (2008) for shortleaf pine and in Sharma and Parton (2007)
for boreal tree species in Ontario, Canada. Height growth in natur-
ally occurring stands is not as uniform as that in plantations, such
as described, for example, by Buford (1991) for loblolly pine. It
could also partially due to measurement errors since the accuracy
of commonly used height measuring devices is likely to be in 0.5 m
if not more, and there can also be variation in the accuracy
obtained by individuals in the field measurement crew.

The issues of heteroscedastic residual distribution (non-
constant variance) when present can sometimes be substantially
resolved, if a weighted OLS non-linear model is used. After
testing different weight functions, the weight 1/d.b.h. was found

beneficial in improving model performance and addressing non-
constant error variance as used by Huang et al. (1992), Fang and
Bailey (1998) and Temesgen et al. (2007, 2014). For example, if
weight as 1/d.b.h. was used in equation (3), the residuals were
slightly more compact and constant than shown in Figure 3, but
some were still beyond+4 at lower diameter range. The standard
error of parameter estimates was not considerably different from
those of non-weighted equation (3). Because the weighted param-
eter estimates did not have variances that were substantially dif-
ferent from the unweighted parameter estimates and due to the
results of the Goldfeld–Quant test, we used the unweighted par-
ameter estimates. Of course, mathematically the sum of squares
between predicted and actual heights cannot be reduced below

Figure 4 Scatter plot of standardized residuals vs fitted values (left panel) and vs d.b.h. (right panel) for the crown ratio estimation models: (a) OLS
non-linear [equation (32)], (b) mixed-effects model [equation (35)] and (c) extended non-linear model with AR (1) and power variance function
[equation (38)].
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that obtained with ordinary unweighted OLS by weighting a model
that has the same form and the same independent variables.

Modified local models [equations (20–27)] showed substantial-
ly improved and similar model performance except for equation
(23) (Table 7). The parameter of QMD used in the ‘power’ position
was more effective than in the ‘linear’ position. The other variables
of stand competition such as BAH and TPH did not show any im-
provement, but the inclusion of relative measures ‘RAQD’ provided
RMSE similar to the RMSE with the inclusion of ‘QMD’ in some modi-
fied local models [equations (17, 20 and 21)]. However, RAQD pro-
vided larger RMSE for other modified local models than it was
observed with QMD. Therefore, the evidence suggests that QMD
can be a better surrogate covariate in improving model perform-
ance when the information on HD is not available. Temesgen
et al. (2007) also suggested that the use of BAH and BAL in the fun-
damental local model and that can reduce RMSE up to 15 per cent.
The height–d.b.h. prediction model has been often modified using
HD to reduce RMSE of a model; however, in practice HD may not be
easily available for natural stands.

Equations (28–33) fitted with OLS provided a choice of alterna-
tive models for CR estimation. The model [equation (32)] with cov-
ariate HD and RSI performed better than a model with PAG and BAH
[equation (31)], and HD and PAG [equation (30)] in addressing CR
variability. It was expected because the distance between the
trees reflects the crown competition and also thinning changes
abruptly CR of an individual tree (Smith et al., 1992; Hynynen,
1995). So, RSI has been used a measure of relative competition
index in modelling CR (Ducey, 2009; Zhao et al., 2012). It was
observed that the prediction bias was very small for all CR
models, but it was negative for equations (28–31), while it was
positive for equation (32). It suggested that model with RSI
tended to overestimate than other alternative models. Research-
ers have also used crown competition factor (CCF) as a covariate
in association with BAL to model CR (Hasenauer and Monserud,
1996; Temesgen et al., 2007).

The small amount of variation explained (44 per cent) by equa-
tion (32) in CR estimation may be due to the inherent variability of
naturally occurring forests compared with plantations
(Figure 4a–c). The proportion of variation explained by the CR
models of Dyer and Burkhart (1987) for loblolly pine plantations
was greater (60 per cent) than the proportion of variation in CR
explained by the natural stand models of Hasenauer and Mon-
serud (1996) in Austrian natural forest stands (49 per cent–17
per cent). The significance of equations (29 and 31) is that the
model can be applied when PAG is not available. Hynynen
(1995) also found HD as an important independent covariate in
CR modelling of Scot pine stands. The addition of BAH as a
linear term to the ratio of D and HD [equation (25)] improved fit
statistics more than combining it linearly to individual tree
height. Smith et al. (1992) and Monserud and Sterba (1996) indi-
cated that using BAH as an independent variable can improve pre-
diction of an individual tree crown length. This leads to the
expectation that BAH could also improve the fit of CR models.

The logistic function model for CR estimation [equation (29)]
performed similarly to the model of equation (31). The logistic
function restricts predicted crown ratio bounds within a 0–1 inter-
val. As in the d.b.h.–height models, the parameterestimates of OLS
non-linear models for CR estimation were also better than
mixed-effects models (Table 7). The mixed-effects models [equa-
tions (27 and 28)] of CR estimation also performed more poorly

than OLS non-linear CR estimation [equations (31 and 32)], but
the AIC values were smaller for mixed-effects models (Table 5).

Conclusions
The modified height–d.b.h. relationship [equation (3)] and crown
ratio relationship model [equation (32)] provided better accuracy
than existing models for estimating the height and crown ratio of
natural even-aged stands of shortleaf pine. The inclusion of QMD
as a measure of stand competition rather than BAH as an inde-
pendent variable helped to improve the understanding of the
height–d.b.h. relationship. Also, an inclusion of QMD enhanced
the precision of height prediction model forms that do not utilize
dominant height as a covariate. The RSI and HD improved the rela-
tionship of crown ratio with height and d.b.h. compared with using
PAG in CR estimations model. It was found that inclusion of RSI
instead of made small but definite improvements in CR estimation
and also that the logistic function can be used as a comparable
choice to an alternative non-linear model for CR prediction.

By alleviating heterogeneous error at stand level and adjusting
autocorrelation at the individual tree level in repeated measure-
ments, a quality non-linear model with minimum information
loss can be obtained. The parameter estimates of such a model
are preferred as an alternative to the mixed-effects modelling ap-
proach in predicting missing height and crown ratios. In repeated
measurements, the autocorrelation within individual observation
is larger while predicting the height of that individual tree than es-
timating its crown ratio. The small, but positive weight of power
parameter remediated heterogeneous errors and improved
model performance for height prediction. Mixed models provided
similar fit statistics when predictions were based only on the
fixed effects parameters compared with those of non-linear
models fitted by OLS. However, the mixed-effects models may
provide improved predictions when calibration data are available.

Parameter estimates of the ENM, equation (8) for height predic-
tion and equation (38) for CR estimation, can be incorporated in the
Shortleaf Pine Stand Simulator (Huebschmann et al., 1998) which
can be used to develop information for practical forest manage-
ment decision-making, i.e. estimation of the total stand volume
and biomass production, for naturally occurring even-aged short-
leaf pine forests. The relationships between d.b.h., height and
crown ratio could have significant implications in inventories for
biomass and carbon estimation of natural stands of shortleaf
pine in the southern US. To the extent that these formulations
are a novel approach in the forestry literature, they could be consid-
ered for application in other forest types in addition to well-known
existing equation forms.
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