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Abstract 
Machine learning approaches such as random forest have 
increased for the spatial modeling and mapping of continu-
ous variables. Random forest is a non-parametric ensemble 
approach, and unlike traditional regression approaches there 
is no direct quantification of prediction error. Understanding 
prediction uncertainty is important when using model-based 
continuous maps as inputs to other modeling applications 
such as fire modeling. Here we use a Monte Carlo approach to 
quantify prediction uncertainty for random forest regression 
models. We test the approach by simulating maps of dependent 
and independent variables with known characteristics and 
comparing actual errors with prediction errors. Our approach 
produced conservative prediction intervals across most of the 
range of predicted values. However, because the Monte Carlo 
approach was data driven, prediction intervals were either too 
wide or too narrow in sparse parts of the prediction distribu-
tion. Overall, our approach provides reasonable estimates of 
prediction uncertainty for random forest regression models. 

Introduction
Remote sensing scientists have a rich set of standard methods 
with which the uncertainty of (inherently categorical) thematic 
maps derived from remotely-sensed data can be estimated (e.g., 
Congalton and Green, 2008). For the most part, resulting uncer-
tainty estimates are (a) independent of the analytical method 
used for the categorical data analysis, and (b) contain informa-
tion on category-specific accuracy but not pixel specific accura-
cy. Methods with which to estimate the uncertainty of mapped 
continuous fields are, in contrast, much less standardized. 
Category-specific accuracy, of course, is no longer relevant, 
but the means by which uncertainty of continuous variables 
is estimated is often tied to the technique used. Examples 
abound, including use of RMSE in classical regression oriented 
approaches (Fernandes et al., 2004) and cross-validation-
derived PRESS (sum of squares of the prediction residuals) RMSE 
(Popescu et al., 2004). Cross-validation approaches are also 
widely used in regression tree analyses of remotely sensed data 
(Bacini et al., 2007). The cross-validation can estimate many 
prediction error statistics, including residual sum of squares. 
However, increasingly cross-validation is used primarily for 
model selection and (usually non-parametric) bootstrapping 
is used once the model is “fixed” (see, e.g., Molinaro, 2005). 
These methods have been extended to random forest imple-
mentations, but the resulting estimates of prediction uncertain-
ty are aggregated (i.e., global) and do not produce pixel-specific 
uncertainties required for use in subsequent spatial modeling.

The use of machine learning techniques has increased sub-
stantially in remote sensing and geospatial data development. 
For example, Homer et al. (2004) used regression trees for the 

development of a categorical land cover map for the United 
States, and Coulston et al. (2012) used random forests to 
develop a continuous field map of percent tree canopy cover. 
Other techniques that have been proposed and tested include 
artificial neural networks, support vector machines, stochas-
tic gradient boosting, and K nearest neighbor (Moisen and 
Frescino, 2002; Wieland and Pittore, 2014). Machine learning 
approaches have become particularly attractive because they 
are well suited to recognize patterns in high-dimension data 
(Cracknell and Reading, 2014). Further, several of these ap-
proaches allow for modeling either categorical response vari-
ables or continuous response variables (e.g., random forests, 
support vector machines/support vector regression). How-
ever unlike traditional parametric approaches (e.g., multiple 
regression), information about prediction error (standard error 
of a prediction for a new data point) is not readily available.

Broad scale raster maps of continuous variables have been 
developed for percent impervious surface (Homer et al., 2007), 
percent tree canopy (Huang et al., 2001; Coulston et al., 2012), 
forest biomass (Blackard et al., 2008), and forest carbon (Wil-
son et al., 2013) among other examples. These efforts all relied 
on machine learning approaches and used either Landsat or 
MODIS imagery for predictor variables. Each pixel within these 
modeled raster maps contains a predicted value yet, per-pixel 
uncertainty is rarely expressed along with the predictions. Un-
derstanding the pixel-level uncertainty is critical to understand-
ing the utility of the data. Furthermore, many geospatial datasets 
(such as those mentioned above) are used in subsequent model-
ing applications. For example, the 2001 NLCD tree canopy cover 
dataset (Huang et al., 2001) was a major component of forest fire 
behavior and fuel models (Rollins and Frame, 2006). Clearly 
the uncertainty around this fire behavior model is related to 
the uncertainty in the underlying data, such as the 2001 NLCD 
percent tree canopy cover. Our intent is to provide guidance on 
quantifying prediction uncertainty at the pixel level.

While there are numerous machine learning techniques, 
here we focus on random forest because it is straightforward 
to train, computationally efficient, and provides stable predic-
tions (Cracknell and Reading, 2014). Random forest is an en-
semble method that uses bootstrap aggregating (bagging) to de-
velop multiple models to improve prediction (Breiman, 2001). 
Along with bagging, random forests also relies on random fea-
ture selection to develop a forest of independant CART models. 
This technique has been used by Powell et al. (2010) and Bac-
cini et al. (2008) to predict forest biomass, Evans and Cushman 
(2009) to predict species occurrence probability, Hernandez et 
al. (2008) to predict faunal species distributions, and Moisen 
et al. (2012) to predict percent tree canopy cover. Though there 
have been numerous studies describing and using random 
forests, there is a lack of information regarding prediction 
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uncertainty. The objective of this study is to develop a tech-
nique to approximate prediction uncertainty for random forest 
models of continuous data. In our case we consider prediction 
uncertainty to be the uncertainty around a future prediction for 
a new observation (i.e., pixel-level uncertainty).

We further present a case example using predicted percent 
tree canopy cover in Georgia, USA. Portraying map uncertainty 
is an important component for geospatial data developers to 
consider. In some cases, prediction uncertainty is a central 
component to developing a final geospatial dataset. For exam-
ple, the 2001 and 2011 NLCD percent tree canopy cover layers 
strived to mask out areas where there is clearly no tree canopy 
cover but canopy cover models predict low levels of tree can-
opy cover. In the 2001 NLCD percent tree canopy cover layer, 
the mask was created by creating a “liberal” tree cover map 
and hand editing (Huang et al., 2001). However, the techniques 
presented here facilitate a more parsimonious approach. 

Methods
Through the methods section we use standard matrix and boot-
strap notation. Bold lower case letters (e.g., y) represent a vector. 
Bold upper case letters (e.g., X) represent a matrix. A * super-
script followed by b (e.g., y*b) refers to the bth bootstrap sample 
and a * superscript followed by –b (e.g., y*-b) denotes the portion 
of the original data that was not part of the bth bootstrap sample. 
Greek letters represent parameters (e.g., τ) and a vector of param-
eters or matrices of parameters are bold as described above.

Random Forest Overview
We provide a brief overview of Random Forest but point the 
interested reader to Breiman (2001) for more details. Random 
forest is an ensemble approach that relies on CART models. 
The goal of CART is to understand (learn) the relationship be-
tween a dependent variable (y) and a set of predictor variables 
(X). The learning algorithm employs recursive portioning in 
which splits in the X variables are selected to create homog-
enous groupings of y. The recursive portioning continues 
until either the subset of y at each node is the same value or 
further splitting adds no further improvement. Random forest 
differs from the CART procedure by (a) employing bootstrap 
resampling (Efron and Tibshirani, 1993), and (b) random vari-
able selection. Consider a regression tree which is made up 
of splits and nodes. With random forest a random subset of X 
variables (selected without replacement) is used to determine 
the split for each node. Bootstrap resampling is used to de-
velop replicates of the CART model. For continuous variables 
the ensemble estimate is the mean of the predicted values 
across trees (ŷ

_
) and the variance across trees is var(ŷ).

Methods Overview
Generally speaking, our method to approximate prediction 
uncertainty for random forest regression models has five main 
steps (Figure 1). Step 1 is to fit a random forest model based on 
all available data. Step 2 is to use bootstrap resampling to param-
eterize a large number of random forest models (Figure 1B). Boot-
strap resampling generally results in ~37 percent of the observa-
tions not being selected. Step 3: for each bootstrap replicate of 
the random forest (RF) model the observed values and predicted 
values are retained for observations not included in the bootstrap 
sample (Figure 1C). Step 3 yields an error assessment dataset. In 
Step 4 the properties of the prediction error are quantified using 
the error assessment dataset (Figure 1D). Step 5 is to make a pre-
diction, including error, for a new observation (Figure 1E). 

Bootstrap Resampling
The bootstrap is one tool that can also be used to approximate 
prediction uncertainty of a RF model (Figure 1B). Consider the 
response and predictor variables (y, X) where a bootstrap sam-
ple of (y, X) is (y*b, X*b). Suppose we draw B = 2000 bootstrap 

samples to create B = 2000 bootstrap datasets. Using the boot-
strap datasets we construct RF*1, RF*2, …, RF*2000 random forest 
models, and then for each replicate quantify the prediction 
error for each observation in (y*-b) based on the corresponding 
RF*b replicate. The error assessment is constructed for each 
observation based on the distribution of predicted values when 
the observation was not part of the bootstrap sample (Figure 
1C). The prediction error is √MSE where MSE is the mean 
square error for each observation. This technique allows one to 
quantify prediction error for each element of a holdout dataset 
but does not directly apply to predictions based on a new X. 
However, because random forest relies on bootstrap sampling 
to construct the ensemble, a random forest model contains in-
formation that we can use to quantify prediction uncertainty for 
new locations (i.e., new X data are available, Figure 1D and 1E). 

Prediction Uncertainty
In traditional parametric models (e.g., multiple regression), 
the prediction error for a new observation is a function of the 
mean squared error (MSE) and the variability in X. Recall that 
a random forest model is an ensemble of CART models and the 
ensemble estimate is the mean across the set of CART model 
predictions. Each of the CART models is considered a weak 
learner. The predictions from these weak learners inherently 
capture the variability in the relationship between X and y. 
We can calculate the variance among predictions, , for each 
observation in X, which represents the variability of predic-
tions among CART models. However, we need to scale between 
var(ŷ) and (y- ŷ

_
)2 to approximate prediction uncertainty 

(Figure 1D). This is because to approximate the prediction 
uncertainty for a new observation only var(ŷ) will be 

available. A measure such as = −( )
( )

ˆ
ˆ

y y
var y

2

τ
 
provides such a 

scaling. To implement this approach, for each bootstrap data-
set (y*b, X*b) a random forest model is constructed RF*1, RF*2, 
…, RF*B. For each observation in y*-1, y*-2, … y*-B, a prediction 
(ŷ
_
) is made from the corresponding model RF*1, RF*2, …, RF*B. 

Subsequently T = [ τ*-1, τ*-2, …, τ*-B] is calculated. The τ̂  for a 
95 percent confidence interval can be estimated either using 
a bootstrap approach or a Monte Carlo approach (Figure 1D). 
For the Monte Carlo approach, the value of τ̂  such that 95 
percent of the predictions lie within τ̂ ·sd(ŷ) of the true value 
is estimated by taking the 95th percentile across all elements 
in T. For the bootstrap approach, the value of τ̂  such that 95 
percent of the predictions lie within τ̂ ·sd(ŷ) of the true value is 
found by taking the 95th percentile for each τ*-B in T, and the 
bootstrap estimate of τ̂  is then the average across the B repli-
cates. For this analysis we used the Monte Carlo approach. 

Simulation to Generate Known Populations 
We used a simulation approach to examine our proposed 
method to approximate prediction uncertainty in random 
forest models, so that we could evaluate our technique for 
known populations. We constructed six populations repre-
senting X variables. Each was constructed using Gaussian 
random fields (Schlather et al., 2014) with different levels of 
spatial correlation (Figure 2). Gaussian random fields were 
used to simulate X variables because they offer a framework 
to develop normally distributed data within the spatial do-
main. Each map was 1,000 by 1,000 pixels. From the X maps 
we constructed three different Y populations (Figure 2):

Y1=X1+X2+X3+X4+X5+X6+N(0,2)

Y2= X1+X2+X3+X4+X5+X6+N(0,1)

Y3=X1·X2+X3+(X4+X5)
2+X6+N(0,1)

where N (mean, standard deviation) is additional random 
noise drawn from a normal distribution. The Normal High 
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population (Y1) was developed to replicate a population 
where the value was a linear combination of the X values 
and the assumptions required for multiple linear regression 
were valid. Likewise, the Normal Low (Y2) population was 
equivalent to the Normal High population except that less 
random noise was added. Both the Y1 and Y2 populations 
were normally distributed and error under linear regression 
was normal and homoscedastic. The Model Misspecification 
(Y3) population was developed based on a non-linear combi-
nation of the X values that would violate the assumptions of 
multiple linear regression. The Y3 population was non-normal 
and skewed left, and the error distribution under multiple 
linear regression was non-normal and heteroscedastic.  

Quantifying Prediction Uncertainty from the Known (Simulated) Populations
To approximate common sampling rates, we drew 500 sample 
locations (0.05 percent sample) and extracted values for each 
dependent variable (y1, y2, y3) and independent variable (X 
= [x1,x2..,x6]). First, for each dependent variable (y1, y2, y3), 
we constructed a random forest model of the form y = f (X) 
+ ε (Figure 1A). Call these models RFy1, RFy2, and RFy3. For 
each random forest model we used 500 regression trees; two 

independent variables were randomly selected for determin-
ing the splits at each node, and the models were bias cor-
rected (Liaw and Wiener, 2002). Next we employed bootstrap 
resampling (Figure 1B) and we used B = 2,000 bootstrap 
samples to create 2,000 random forest models, using the same 
model specification as described above, for y1, y2, and y3. We 
then predicted values (ŷ), calculated the variance across tree-
level predictions (var(ŷ)) (Figure 1C), calculated the squared 
prediction error ((y- ŷ

_
)2), and estimated τ̂  for each RFy1, RFy2, 

and RFy3 based on observations that were not part of each 
bootstrap sample (Figure 1D). To estimate the τ̂  value for each 
model (RFy1, RFy2, and RFy3) we selected the 95th percentile 
of T values for each model (Figure 1D).

The random forest models RFy1, RFy2, and RFy3 were used 
to predict each variable spatially (i.e., applied to all pixels in 
the map). Additionally for each of the predicted maps, the 
variance across tree-level predictions (ŷ) was calculated and 
the width of the 95 percent prediction intervals were then ± τ̂  · 
sd(ŷ)(Figure 1E). We then compared the predicted values, and 
the 95 percent prediction interval to the true population values 
for Y1 (the Normal High population), Y2 (Normal Low popula-
tion), and Y3 (Model Misspecification population) by examining 

Figure 1. Schematic of proposed methods for random forest prediction uncertainty.
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the percentage of observations that fell within the prediction 
interval for each integer value covering the range in predicted 
values.

Prediction Error from Linear Regression
To develop context for our approach, we also examined the 
behavior of prediction error based on multiple regression. The 
purpose for this is so readers can compare the behavior of our 
approach to prediction to that of multiple regression. Devia-
tions in the results between our approach for random forest 
and the multiple regression approach helps to identify areas 
were our approach could be improved.

Using the sample data (500 observations), we parameterized 
linear regression models for y1, y2, and y3. The model form 
was y = X·β+ε. We predicted values and 95 percent prediction 
intervals for Y1 (the Normal High population), Y2 (Normal Low 
population), and Y3 (Model Misspecification population) based 
on standard equations (see Draper and Smith, 1981 for back-
ground). For each population we also examined the percentage 
of observations that fell within the prediction interval for each 
integer value covering the range of predicted values.

Case Example Using Real (Unsimulated) Data from Georgia 
We provide a case example for percent tree canopy cover 

mapping based on data from Coulston et al. (2012) for Geor-
gia. The dependent variable was percent tree canopy cover 
estimated by photo interpretation of 2009 National Agriculture 
Imagery Program (NAIP) photography for approximately 4,160 
sample locations. The independent variables were based on 
leaf-on Landsat-5 TM imagery from 2008 to 2009 and elevation 
data. The six reflective Landsat-5 TM bands, normalized differ-
ence vegetation index, and tasseled cap were also used. Slope 
and cosine of aspect were derived from the elevation data 
and also used as predictor variables. Based on these data, we 
fit a random forest model which had a pseudo-R2 (Liaw and 
Wiener, 2002) of 0.85 (RMSE = 13.2) and created a predicted 
surface of percent tree canopy cover (example area in Plate 
1). We note that there is a substantial amount of area where, 
based on the NAIP imagery, there were no trees and hence the 
percent tree canopy cover should be zero. Many of these areas 
have predicted values in the 0.5 to 10 percent range. Our goal 
is to use the previously described Monte Carlo technique 
to mask out areas where the 95 percent prediction interval 
includes zero.

To implement our Monte Carlo procedure for this problem, 
note that we are interested in the uncertainty when the true 
value is zero and the predicted value is >0. In this specific 

Figure 2. Simulated independent (X) and dependent (Y) variables. For the independent variables the variogram model, the variance 
parameter, and the scale parameter are denoted in parentheses. For background on variogram models see Isaaks and Srivastava (1989) 
for an example. 
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situation we want to estimate the value of τ̂  such that 95 per-
cent of the true zero values are within τ̂  · sd(ŷ) percent of zero. 
The masked version is then developed by setting all predic-
tions to zero when ŷ

_ 
– τ̂  · sd(ŷ) ≤ 0. This approach approxi-

mates a 95 percent certainty for areas of no canopy cover. To 
implement, we used 2,000 bootstrap replicates in our Monte 
Carlo assessment. To estimate τ̂  we simply restricted the 
Monte Carlo assessment dataset to the observation where the 
true value was zero and then estimated . Additionally, we 
developed 95 percent prediction intervals for all predicted 
values.

Results
Random Forest Models
Using the 500 samples we fit random forest models for y1, 
y2, and y3. The pseudo-R2 and root mean square error (RMSE) 
for the RFy1 model were 0.85 and 2.85, respectively. For the 

RFy2 model the pseudo-R2 was 0.90 and the RMSE was 2.28. 
The RFy3 random forest model had a pseudo-R2 of 0.73 and a 
RMSE of 10.20. 

Monte Carlo Error 
The 500 original samples were sampled via the bootstrap 2,000 
times which yielded a Monte Carlo assessment dataset where 
each of the 500 observation had ~740 observed and predicted 
values for each of the dependent variables (y1, y2, y3). Figure 3 
shows the relationship between the variability in individual 
tree-level predictions and the variability of the true error for 
each dependent variable. The correlations between these two 
quantities summarized for the 500 observations were 0.75, 
0.78, and 0.93 for RFy1, RFy2, and RFy3, respectively. The  
values for constructing approximate 95 percent prediction 
intervals were 1.36, 1.18, and 1.31 for RFy1, RFy2, and RFy3, 
respectively. These steps are illustrated in Figure 1B and 1D.

Simulated Data: Predicting Values for New Observations and Uncertainty 

(a) (b)
Plate 1. Example modeling area east of Atlanta, Georgia. NAIP imagery for the area is shown in panel A. Percent tree canopy cover based 
on a random forest model is shown in panel B. 

Figure 3. The variability of tree-level predictions versus the variability of the true error for y1, y2, and y3 random forest models based on 
Monte Carlo assessment. The solid lines denote linear regression lines and are just for visualization.
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Predicted maps were made and 95 percent prediction inter-
vals were examined for Normal High (Y1), Normal Low (Y2), 
and Model Misspecification (Y3) populations. For example, we 
randomly selected 100 pixels from Normal High (Y1) popula-
tion and examined the observed, predicted, and 95 percent 
prediction interval (Figure 4). Three out of 100 predictions (3 
percent) fell outside the prediction interval (denoted by the 
open circles in Figure 4). However, across all draws of 100 ob-
servations in the population we would expect 5 percent of the 
true values, on average, to fall outside the prediction interval 
(95 percent would be in the prediction intervals). We would 
further expect the proportion of true values to fall outside the 
95 percent prediction interval for any subregion of predicted 
values (e.g., predicted values < -10 in Figure 4) to be 0.05.

Overall, 0.97 of predictions for the Normal High (Y1) 
population fell within the 95 percent prediction interval. For 
Normal Low (Y2) and Model Misspecification (Y3) populations 
0.98 and 0.96 of the observations fell within the 95 percent 
prediction interval, respectively. We further examined the 
behavior of our uncertainty approach by examining all pairs 
of observed and predicted values and the frequency at which 
observed values were contained in 95 percent prediction 
intervals (Plate 2). The frequency was determined by exam-
ining the proportion of prediction intervals that contained 
the observed value by integer bins of predicted values (i.e., 
the predicted values were round to the nearest integer). We 
expected the proportion in the 95 percent prediction interval 
to be 0.95. We found that prediction intervals were generally 
conservative for 99 percent of predicted values in the Monte 
Carlo assessment. Results were generally adequate within this 
range of predicted values although for the Model Misspecifi-
cation (Y3) population there was an underestimation of width 
of the prediction interval in the right tail of the distribution. 
The uncertainty for predictions that had little or no represen-
tation in the Monte Carlo analysis were somewhat spurious. 
In some cases prediction interval width was underestimated 
while in other cases it was overestimated leading to predic-
tion intervals that were either too narrow or too wide.      

Multiple Regression Results

We also examined the behavior of multiple regression models 
for the three populations. The y1, y2, and y3 models had r2 of 
0.93, 0.98, and 0.03, respectively. The RMSE was 1.98, 0.99, and 
19.12 for y1, y2, and y3, respectively. These fit statistics were 
not based on cross-validation. Overall, 0.95 of predictions for 
the Normal High (Y1) population fell within the 95 percent 
prediction interval. For the Normal Low (Y2) and Model Mis-
specification (Y3) populations 0.95 and 0.94 of the observations 
fell within the 95 percent prediction interval, respectively. As 
noted above, the expected proportion of true values in the 95 
percent prediction intervals was 0.95. For both the Normal 
High (Y1) and Normal Low (Y2) populations this expectation 
held within the 99 percent quantile of predicted values (Plate 
3). Outside the 99 percent quantile results varied slightly. The 
Model Misspecification (Y3) population behaved somewhat dif-
ferently because the assumptions regarding the distribution of 
errors for multiple regression were intentionally violated. This 
resulted in predicted values that were relatively close to the 
mean and prediction intervals that were generally too narrow 
outside the 99 percent quantile of predicted values (Plate 3). 

Case Example in Georgia
We developed 95 percent prediction intervals for the study 
area. The half-width of the 95 percent prediction interval 
ranged from 0.27 percent to 90 percent (Plate 4A). Generally 
speaking, the prediction interval width was wider in heteroge-
neous areas such as edges between treed areas and non-treed 
areas. We also developed a “masked” version of the percent 
tree canopy cover map and the procedure provided reasonable 
results (Plate 4B). Generally speaking, areas that were clearly 
agriculture and un-vegetated developed areas were readily 
masked out from having canopy cover predictions.

Discussion
Since the late 1980s a substantial amount of research has 
focused on uncertainty in spatial products (Foody and Atkin-
son, 2002), though, as previously noted, there is much more 
methodological maturation with respect to categorical vari-
ables (particularly for parametric classifiers) than for continu-
ous variables. With (a) the increasing prevalence of continuous 
field mapping (e.g., leaf area index, tree canopy cover, biomass, 
water turbidity, and the like), (b) the production of continuous 
field maps using non-parametric approaches, and (c) the use of 
these maps in subsequent geospatial modeling, there is a clear 
and present need for robust methods by which pixel-specific 
uncertainty can be estimated. The prior literature, while 
sparse, does clearly make the case for estimation (Wang et al., 
2005) and visualization (Dungan et al., 2003) of pixel-specific 
uncertainty. Further, the potential role of simulation has long 
been established (Englund, 1993), absent the specifics needed 
for operational implementation in our particular use-case, 
namely continuous field estimation using random forest. 

The Monte Carlo approach presented here is data driven 
and generally provided conservative prediction interval 
widths (i.e., wider than needed) within the 99 percent quan-
tile of predicted values. Outside the 99 percent quantile, 
prediction interval widths could be too wide or too narrow. 
There are several ways in which this could have occurred. 
Our approach was data driven and therefore underperforms 
in sparse areas of the distribution. For example, for our test 
we drew 500 sample of the population (0.05 percent). Increas-
ing the sample to 5,000 observations (0.5 percent sample) 
improved results significantly. Further, in the sparse parts of 
the distribution, observations can be rare enough that the way 
we analyzed the results (proportion of observations within 
their 95 percent prediction intervals (e.g., Plate 2), may not 
have sufficient information to estimate the proportion. For 
example, in the Normal High (Y1) population fewer than 20 

Figure 4. Predicted versus observed and prediction intervals for 
100 randomly selected predictions of Y1. Prediction intervals are 
denoted by the grey error bars. The open circles represent predic-
tions whose 95 percent prediction interval does not contain the 
observed value. 

194 March 2016  PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

03-16 March Peer Reviewed Revised.indd   194 2/17/2016   12:11:29 PM



observations had predicted values <−24. This means that the 
proportion within the 95 percent prediction intervals could 
increment in steps of 0.05 or greater. In short, the technique 
presented here assumes that the sampled data provide enough 
information about the population that uncertainty can be 
quantified. This assumption is common to multiple regression 
where practitioners are concerned with predicting values be-
yond the values in the sample dataset (Weisberg, 1985). Also, 
our approach assumed a random equal probability sample of 
the underlying populations. Modifications to the bootstrap 
protocol would be needed for other sampling schemes such as 
stratified random sampling.    

Our case example was based on masking out areas that 
were likely to have 0 percent tree canopy cover in a portion 
of Georgia. Our technique offers a straightforward way to ac-
complish this however; masking procedures that only operate 
on part of the distribution may increase other types of errors. 
For example, the original percent tree canopy cover had an 
error rate of 0.2 percent (predicting 0 percent tree canopy 
cover when the true value was >0 percent). The masking 
procedure increased this error rate to 9.7 percent. Decisions 

to mask final products should be made with caution. Masking 
procedures may decrease some error rates while at the same 
time increasing other error rates, as is the case here. Further, 
if a model was originally unbiased (e.g., mean error = 0) then 
manipulating predictions in one part of the distribution will 
result in overall bias (mean error  ≠ 0).

The ability to obtain a spatially-explicit understanding 
of uncertainty and error of predictions provides valuable 
information for any application where continuous variable 
mapping is desired. For complex spatial models, such as the 
LANDFIRE Prototype Project referred to previously (Rollins and 
Frame, 2006), this information can be used to understand the 
sensitivity of the modeled fire output and help to define the 
conditions for which model outputs are most reliable. Fur-
ther, maps of uncertainty and error can inform field validation 
efforts, which could significantly reduce costs of monitoring 
efforts. One example of this would be in the design of sam-
pling schemes to validate models of above ground biomass 
in remote areas such as Alaska or some areas in the tropical 
rainforests, where permanent inventory plots are lacking.

Plate 2. Top Row: observed values versus the random forest predicted values for each population. The shading of light gray to black 
denotes the density of predicted values where the observed value was inside the 95 percent prediction interval. The red dots denote 
observed values that where outside the 95 percent prediction interval. Middle Row: histogram of predicted values from the Monte Carlo 
error assessment. Bottom Row: the percent of observed values within the 95 percent prediction interval in each population. The red line 
denotes 95 percent in the prediction interval, the solid blue lines denotes minimum and maximum predicted values in the Monte Carlo 
assessment, and the dashed blue lines represent the 99 percent quantile of predicted values in the Monte Carlo assessment.
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Plate 3. Top Row: observed values versus the linear regression model predicted values for each population. The shading of light gray to 
black denotes the density of predicted values where the observed values were inside the 95 percent prediction interval. The red dots 
denote observed values that where outside the 95 percent prediction interval. Middle Row: histogram of predicted values for the 500 
samples used to parameterize each model. Bottom Row: the percent of observed values within the 95 percent prediction interval for 
each population. The red line denotes 95 percent in the prediction interval, the solid blue lines denote minimum and maximum predicted 
values based on the sample, and the dashed blue lines represent the 99 percent quantile of predicted values for the 500 samples.

(a) (b)
Plate 4. Half-width of the 95 percent prediction interval for percent tree canopy cover for a portion of (A) the Georgia study area, and 
masked predicted percent tree canopy cover with 5 percent error rate for area of no canopy cover overlaid on (B) the NAIP imagery.
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Conclusions
Uncertainty remains an important subject area in remote sens-
ing, but the tools used to quantify uncertainty must keep pace 
with the development and application of new modeling ap-
proaches. With the increased use of non-parametric modeling 
and classification approaches increased effort is required to 
provide uncertainty approaches for machine learning tech-
niques. We developed a relatively straightforward approach 
to approximate prediction uncertainty for continuous maps 
developed from random forest models, tested the approach in 
a simulation environment and provided a case example. The 
results were reasonable but the method typically provided 
conservative confidence intervals for new observation. The 
approach is applicable to a broad range mapping efforts that 
use random forest models. This general approach may also be 
applicable to other ensemble modeling techniques. 
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