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a  b  s  t  r  a  c  t

Two  different  sampling  approaches  for  estimating  urban  tree  canopy  cover  were  applied  to  two  medium-
sized  cities  in the United  States,  in conjunction  with  two  freely  available  remotely  sensed  imagery
products.  A random  point-based  sampling  approach,  which  involved  1000  sample  points,  was  compared
against  a plot/grid  sampling  (cluster  sampling)  approach  that  involved  a 1.83  m square  grid  of points
embedded  within  0.04  ha  circular  plots.  The  imagery  products  included  aerial  photography  from  the  U.S.
Department  of  Agriculture  National  Agricultural  Imagery  Program  (viewed  within  ArcGIS),  and  Google
Earth imagery.  For  Tallahassee,  Florida,  the estimate  of tree  canopy  cover  was  48.6–49.1%  using  Google
Earth  imagery  and  44.5–45.1%  using  NAIP  imagery  within  ArcGIS.  Statistical  tests  suggested  that  the  two
sampling  approaches  produced  significantly  different  estimates  using  the  two different  imagery  sources.
For Tacoma,  Washington,  the  estimated  tree canopy  cover  was  about  19.2–20.0%  using  Google  Earth
imagery  and  17.3–18.1%  when  using  NAIP  imagery  in  ArcGIS.  Here,  there  seemed  to be  no  significant
difference  between  the  random  point-based  sampling  efforts  when  used  with  the two  different  image
sources,  while  the opposite  was  true  when  using  the  plot/grid  sampling  approach.  However,  our  findings
showed  some  similarities  between  the  two  sampling  approaches;  hence,  the  random  point-based  sam-

pling  approach  might  be  preferred  due  to the  time  and effort  required,  and because  fewer  opportunities
for  classification  problems  might  arise.  Continuous  review  of  urban  canopy  cover  estimation  procedures
suggested  by  organizations  such  as the  Climate  Action  Reserve  and  others  can  provide  society  with
information  on the accuracy  and  effectiveness  resource  assessment  methods  employed  for  making  wise
decisions  about  climate  change  and  carbon  management.

© 2016  Elsevier  GmbH.  All  rights  reserved.
. Introduction

An urban forest can be described as the woody vegetation within
 city that includes street trees located on both public and pri-
ate lands, urban parks, and other trees located on residential
roperties, commercial land, and other lands. This resource pro-
ides a number of essential benefits to human beings, a few of

hich include providing aesthetic value, reducing energy use, facil-

tating cooling effects, improving water and air quality, providing
iverse wildlife habitat, and increasing human health and well-
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R. Akbulut).
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being (Nowak, 1993; Jensen et al., 2004; Leuzinger et al., 2010;
Nowak et al., 2010; McPherson et al., 2011; Richardson and Moskal,
2014). The ecosystem services derived from an urban forest are
often directly related to the amount of tree canopy cover, which
is ideally composed of healthy and functioning vegetation (Nowak
and Greenfield, 2012). Tree canopy cover, generally estimated as
the percentage of a site covered by tree canopies, is the simplest and
most often used metric to quantify urban forest extent (Richardson
and Moskal, 2014) and can be used to inform management deci-
sions and policy analyses. For instance, a tree canopy assessment
was conducted for Los Angeles to determine the capacity of the city
to plant an additional one million trees (McPherson et al., 2011).

The human population of the United States increased from 281.4

million to 308.7 million between 2000 and 2010, and over 83.7% of
the population now lives in metropolitan areas (large cities), where
the population grew almost twice as fast as micropolitan areas
(small cities with 10,000 to 50,000 people) (Mackun et al., 2011).
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nless the administrative boundaries of cities expand, growth in
he human population applies certain types of pressure upon the
rban forests found there (Nowak, 1993; McPherson et al., 2011).
or many United States cities, developed areas were created from
reas once previously forested. In the 1990s, approximately 0.4
illion hectares (ha) of forested land was converted each year to

eveloped or other uses. Even if tree canopy cover increases in asso-
iation with urban expansion of Great Plains and desert states, it is
stimated that by 2050, an additional 9.3 million ha of forested
rea will become some other land use in the United States due to
rbanization (Alig et al., 2003), thus population growth may  result

n direct or indirect negative impact on the structure, pattern and
unction of urban ecosystems in and around urban areas (Nowak,
993).

In recent years, various approaches such as aerial photogra-
hy interpretation, satellite-based image analysis, and aerial LiDAR
Light Detection and Ranging) analysis have proved useful for
stimating tree canopy cover. These remotely-sensed sources of
nformation can be both cost-effective when compared to field
ampling, and can facilitate comparable analyses among different
ities (McPherson et al., 2011). As examples, Irani and Galvin (2003)
sed 4 m resolution remotely sensed imagery to assess tree canopy
over in Baltimore. Nowak and Greenfield (2012) conducted a study
sing paired aerial photographs to determine tree canopy cover
hanges in 20 cities in the United States. Parlin (2009) also used
igital land cover maps developed from 0.6 m resolution remotely
ensed imagery to estimate tree cover change in Seattle. Remotely
ensed imagery thus provides an opportunity to efficiently and
ffectively measure canopy cover across both space and time.

Specific tree canopy cover estimates can be developed using sev-
ral different sampling approaches. The most common sampling
pproach involves random point-based sampling, where random
oints are located within the boundary of a city, and then are clas-
ified through aerial photo interpretation as either falling on a tree
rown or not falling on a tree crown. The observation value from
his sampling approach is binary (yes/no or 1/0), indicating pres-
nce or absence of tree canopy at the sample point, as interpreted
rom the imagery. As suggested above, for 20 cities in the United
tates, Nowak and Greenfield (2012) used random point sampling
o assess tree cover change over a five year period. They found that
here was a decreasing trend in tree cover, about 0.27% per year
n average, in these cities. Walton et al. (2008) also used a random
oint sampling approach and compared their results to classified
atellite images.

A second sampling approach for estimating tree canopy cover
ight be to create random polygons and delineate tree crowns
ithin these polygons. Nowak et al. (1996) were perhaps the first

o use a fixed polygon approach like this for estimating tree cover.
owak et al. (2008) studied the impact of polygon size on urban

orest estimates, and noted that an increase in polygon size meant
logically) an increase in time required to perform the assess-

ent. For Detroit and Atlanta, Merry et al. (2014) used a polygon
pproach to estimate tree canopy cover from aerial photography,
nd noted that the estimate of tree canopy cover using a polygon
ampling approach could be slightly different than the estimate
erived from using a point-based approach. The combined effects
f mis-registration, feature displacement, and shadows could have

mposed minor challenges to either method.
A third sampling approach may  be to create a random polygon

nd then create a grid of points within the polygon in order to esti-
ate canopy cover. Therefore, rather than draw the outline of tree

anopies within the polygon and compute the proportion of tree

anopy cover using the tree canopy and non-tree canopy areas (as
n Merry et al., 2014), the proportion of grid points that fall on tree
anopies within the polygon is used as the estimate of canopy cover
or the polygon. From this juncture forward we will refer to this
n Greening 16 (2016) 221–230

cluster sampling process as the plot/grid sampling approach. This
approach was  proposed by the Climate Action Reserve (Nickerson,
2014a), in their draft Urban Forest Project Protocol. The Climate
Action Reserve is a private nonprofit environmental organization
and leading entity in the measurement of forest resources for car-
bon policy implementation. Their aim is to provide support to
activities that decrease greenhouse gas emissions (GHG) by assur-
ing the environmental entirety and economic benefits of emissions
reduction projects. Along these lines, the Climate Action Reserve
has a goal of establishing high quality standards for carbon offset
projects and supporting activities that reduce air pollution, enhance
growth in new green technologies, and facilitate the attainment of
emission reduction goals. Since the cluster sampling approach for
estimating canopy cover (when proposed) was  different than other
approaches described in the literature, we embarked on a study of
its effectiveness for this purpose.

Interestingly, the cluster sampling process described in the
draft Climate Action Reserve protocol (Nickerson, 2014a) was
absent from the final protocol to allow people involved in these
assessments the flexibility to respond to improvements in method-
ological and technological tools. However, they refer to desired
sampling error in the Quantification Guidance (Climate Action
Reserve, 2014a) and to verification of tree canopy cover estimates
through a point-based sampling approach in the final proto-
col. Comments received with respect to the draft Urban Forest
Project protocol (Climate Action Reserve, 2014b) suggested that
the plot/grid sampling approach may  have been reasonable for
large, contiguous forest areas, but may  have been unsuitable for
urban areas that include a scattered arrangement of trees (street
trees and others). However, this limitation would also seem to
affect a point-based sampling approach. Further, it was suggested
through feedback on the draft protocol that the processes used for
estimating urban canopy cover needed to be less detailed and struc-
tured, and needed to allow for the use of other equally valid tree
canopy cover sampling protocols. While not included in the final
protocols for urban forest projects by the Climate Action Reserve,
the plot/grid sampling approach has not heretofore been assessed;
therefore, it is the focus of this study.

Our goal was to compare two  sampling approaches for estimat-
ing urban tree canopy cover in two United States cities (Tacoma,
Washington and Tallahassee, Florida), using remotely sensed
imagery from two  different sources. We  wanted to determine the
feasibility of each sampling approach and to compare the results of
canopy cover estimates using the two  different remotely sensed
imagery sources. The two  sampling approaches are (a) the ran-
dom point-based and (b) the plot/grid approach. The two remote
sensing imagery sources used in this study included (a) U.S. Depart-
ment of Agriculture National Agriculture Imagery Program (NAIP)
imagery viewed within ArcGIS (ESRI, 2013) and (b) Google Earth
imagery (Google Inc., 2014). The NAIP imagery presents features in
natural color (0.4–0.7 �m wavelengths of energy), is contained in
compressed county mosaic form, and has a 1 m spatial resolution.
The imagery is provided by the U.S. Department of Agriculture’s
Farm Service Agency (U.S. Department of Agriculture, 2013), and
was captured between September 16th, 2013 and October 28th,
2013. Google Earth imagery arises from a variety of sources such as
the U.S. Department of Agriculture, DigitalGlobe, GeoEye-1, Ikonos,
MODIS Terra, city or state governments, and commercial aerial
photographers (Taylor, 2014). Thus due to the use of third-party
sources of imagery contained in Google Earth, and because the
imagery is aggregated, the spatial resolution varies. The Google
Earth imagery was dated as May  5th, 2013 and April 1st 2013

for Tacoma and Tallahassee, respectively. The most recent imagery
available through Google Earth also presents features in natural
color; the historical imagery available through Google Earth may be
panchromatic. These two imagery sources (NAIP and Google Earth)
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ere selected because they are freely available and temporally cur-
ent. The Google Earth imagery is also temporally consistent with
he NAIP imagery within the two cities studied. NAIP imagery has
een used in other recently published assessments of urban tree
anopy cover (e.g., McGee et al., 2012; Merry et al., 2014), while
oogle Earth imagery has not.

In summary, we conducted a study to determine the percent-
ge of tree canopy cover using NAIP imagery within ArcGIS and
sing Google Earth imagery in order to compare whether estimated
ree canopy cover levels would be comparable when using either
magery source. We  also conducted the study in a manner that

ould allow us to compare the two sampling approaches. Statistical
ests were employed to determine whether significant differences
xisted. The following hypotheses were developed:

H1: When employing the random point-based sampling
pproach across Tallahassee, there is no significant difference in the
stimated tree canopy cover derived from using the NAIP imagery
n ArcGIS and the estimated tree canopy cover derived from using
he Google Earth imagery.

H2: When employing the random point-based sampling
pproach across Tacoma, there is no significant difference in the
stimated tree canopy cover derived from using the NAIP imagery
n ArcGIS and the estimated tree canopy cover derived from using
he Google Earth imagery.

H3: When employing the plot/grid sampling approach across
allahassee, there is no significant difference in the estimated tree
anopy cover derived from using the NAIP imagery in ArcGIS and
he estimated tree canopy cover derived from using the Google
arth imagery.

H4: When employing the plot/grid sampling approach across
acoma, there is no significant difference in the estimated tree
anopy cover derived from using the NAIP imagery in ArcGIS and
he estimated tree canopy cover derived from using the Google
arth imagery.

. Methods

In the sections below, the study areas (cities) and the remotely
ensed data around which the study was conducted are described,
long with the sampling approaches employed and the statistical
ests used to address the hypotheses.

.1. Study areas

As we suggested earlier, we selected two United States cities
Tallahassee, Florida and Tacoma, Washington) as case studies
ithin which to estimate tree canopy cover using two sampling

pproaches and two imagery sources. We  wanted to select two
edium-sized cities that were located in two different regions of

he United States, which contained in theory different forms of veg-
tative cover. These two cities were further selected based on the
vailability of both NAIP imagery and Google Earth imagery for
he year 2013, and because Tallahassee and Tacoma have similar
uman population sizes. According to the Census Bureau (2014),
allahassee was the seventh largest city in Florida with an esti-
ated total population of about 186,000 people in 2013 and a

opulation density of about 700 people per square kilometer (km2).
omparably, Tacoma was the third largest city in Washington with
n estimated total population of about 203,000 people in 2013 and

 population density of about 1541 people per km2. The percent
hange in population from April 1, 2010 to July 1, 2013 was 2.5%

or Tacoma and 2.8% for Tallahassee.

For both cities, we used NAIP imagery viewed within ArcGIS and
oogle Earth imagery, both captured in 2013. Google Earth com-
iles imagery from multiple imagery sources including USDA NAIP
n Greening 16 (2016) 221–230 223

imagery. However, through visual analysis we confirmed that the
imagery used when analyzing sampling methods in Google Earth
was not NAIP imagery.

2.1.1. Sampling approaches for tree canopy cover estimates
Two  different approaches were employed: a random point-

based approach and a plot/grid approach. We  randomly located
1000 points each within the boundaries of each city (Fig. 1). Sug-
gested minimum samples were 100 per class for a large area by
Congalton and Green (2009). Our sample size, 1000 points, goes
beyond the minimum requirements presented by Congalton and
Green (2009) and is comparable to recent studies by Nowak and
Greenfield (2012) and Richardson and Moskal (2014). These ran-
dom points were created using the random point generator in
ArcGIS. They were converted to a .KMZ format for use in Google
Earth. For the plot/grid approach, the plots were centered on the
points of the point-based approach.

The point-based approach uses binary data that is typically
expressed as a proportion or percent when reported for an entire
population (or sample area). The samples involve a determina-
tion from a random or systematic dot grid whether tree canopy
is present or absent. This metric is often reported as the per-
cent canopy cover for the sample area. In this study, through
aerial photo interpretation we determined whether the location
of every single point fell onto a tree crown (1), or did not fell
onto a tree crown (0) representing a presence/absence type of
analysis. We  used the same 1000 sample points to assess canopy
cover with the NAIP imagery in ArcGIS and with the Google Earth
imagery. Points were analyzed simultaneously in the two imagery
sources in order to make sure they fell on the same location and
to limit mis-classification, but the order of the sample was  ran-
domly assigned for each data set, so as to not introduce bias into the
presence/absence decision. Also, in estimating canopy cover a fixed
scale was  utilized (1:600–1:800) when interpreting NAIP imagery
within ArcGIS, and a fixed eye altitude was  utilized (200–300 m
(m)) when interpreting Google Earth imagery. The percentage of
tree canopy cover (p) was  calculated by dividing the number of
samples (x) indicating tree canopy cover by the total number of
sample points (n) within each city (p = x/n). The standard error (SE)
for the tree canopy cover of an individual sample was  defined using
following equation:

SE = (p(1 − p)/n)0.5 (1)

We also derived the pooled sample proportion

p ∗ = ((p1∗n1 + p2 ∗ n2)/(n1 + n2)) (2)

for the estimates of tree canopy cover between NAIP imagery (p1)
and Google Earth imagery (p2) (Macfie and Nufrio 2006), and the
SE from pooled sample proportion:

SE∗  = (p∗(1 − p ∗ ))((1/n1) + (1/n2)))0.5 (3)

where p* is the pooled sample proportion, n1 is the size of sample
1, and n2 is the size of sample 2.

For the plot/grid (cluster sampling) approach, the original 1000
randomly sampled points were buffered in ArcGIS to create circu-
lar polygons of a size (0.04 ha) that was  suggested by Nickerson
(2014a) as appropriate for this type of analysis. A grid of points was
then placed inside each plot in order to estimate canopy cover. The
spacing between the points within the circular plots was  1.83 m,
and a large number of points (121) were created for each circular
plot (Fig. 1). Thus, 121,000 points were interpreted (1000 plots x

121 points per plot) for each imagery product. Some plots were
very quickly interpreted, if all or most points fell inside or out-
side of tree canopies, thus the average rate of interpretation per
point in this method is much faster than the per-point rate for the
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ig. 1. The Tallahassee city boundary (upper left), an example of the random poin
mbedded within the 0.4 ha plots (lower right).

oint-based approach. A Visual Basic program was used to create
he grid of points based on the center location of the plot. A shape-
le of these grids was created for use in ArcGIS, and a .KMZ file was
reated for use in Google Earth. The number of the points within
he circular points that fell on a tree canopy was counted and the
ercentage canopy cover was estimated for each plot by dividing
hrough by the total number of points in the grid. While the order of
lot assessment was randomized, for consistency, we  followed the
ame order for assessing the grid of points within each plot (north
o south and laterally west to east). Also, some of the circular plots
verlapped, overlapping points were not discarded but treated as

 separate plot/grid sample. After interpretation of the grid within
ach plot, each plot became associated with an observation of the
ercentage canopy cover that ranged between 0 and 100 percent.
For the plot/grid approach, the mean and standard error for the
ntire sample within each city were calculated, along with 95% con-
dence intervals for tree canopy cover. We  also calculated SE for
ed sampling approach (upper right), 0.4 ha plots (lower left), and the 1.83 m grid

each plot to compare with standard error of the entire sample. Simi-
lar to the point-based sampling approach, we reordered the sample
randomly for each imagery source (NAIP and Google Earth) to avoid
introducing sampling bias in the tree canopy cover estimation. We
also used the same fixed viewing scale for the random point-based
sampling approach (1:600–1:800 for NAIP imagery within ArcGIS
and 200–300 m eye altitude for Google Earth imagery, respec-
tively). Although Nickerson (2014a) suggests progressive sampling
of plots until “a confidence estimate for average canopy cover for
each urban forest class is achieved at ±10% at the 90% confidence
interval”, we initially used the same number of samples (1000)
as we  used in the point-based sampling approach. However, we
re-analyzed the data collected to determine how many samples
would have been required had the stopping point been determined

where the ±10% range in average canopy cover equaled the 90%
confidence interval for canopy cover.
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The plot/grid (cluster sampling) approach that we  employ is a
orm of simple random one-stage cluster sampling process that
nvolves a geographic sampling frame or cluster (a city) in which
here are listing units (the 0.10 acre plots) and elementary units
the collection of points within the plots) from which we  estimate
he proportion of tree cover. The clusters (cities) however are not
elected randomly from the entire population (sampling frame) of
ities within the United States. The listing units were randomly
ispersed (or selected) within each city. Given that the plots could
iffer in tree canopy characteristics by simply shifting them a meter
r so in any direction, the sampling frame for the plots might be
onsidered infinite or very large. The feasibility and economics of
luster sampling have been noted as reasons for using this type
f sampling process. In our case these reasons may  not be viewed
s advantages for our sampling effort, since the listing units are
ositioned in the same locations as the random sample points, and
ince more time is required to assess the elementary units (points)
ithin the plots. High standard errors within samples have also

een suggested as a disadvantage of cluster sampling approaches
Levy and Lemeshow, 1991). However, an estimate of the percent
anopy cover for each of the listing units (plots) is obtained from the
inary data associated with each elementary unit (the points within
he plots). This continuous value (range 0–100 percent) is then used
o determine canopy closure within each city rather than the binary
alue associated with the point-based sampling approach noted
reviously.

.1.2. Statistical tests related to tree canopy cover estimates
For hypotheses H1 and H2 (referencing the random point-

ased approach) we tested the difference between proportions (H0:
1 = p2, Ha: p1 /= p2). We  developed the pooled sample propor-
ion and the standard error of the sampling distribution difference
etween two proportions. A Z-score was determined using the fol-

owing equation;

 = (p1 − p2)/SE∗ (4)

We then assessed the probability (P-value) associated with the
-score to determine whether significant differences existed, and
o determine whether to accept or reject the hypotheses. Because
he data collected from the plot/grid sampling approach resulted in

 continuous value estimate (from 0 to 100%) of tree canopy cover
as opposed to the presence/absence response from the random
oint-based sampling approach), to test H3 and H4 we first exam-

ned the normality of the data by employing the Shapiro-Wilk test,
ince our data set was smaller than 2000 elements. The results indi-
ated that the tree canopy estimates from the plot/grid sampling
pproach, using both the NAIP imagery viewed within ArcGIS and
he Google Earth imagery, were not normally distributed. Hence,
he non-parametric Wilcoxon Signed Rank Test was used to test
ypotheses H3 and H4.

.1.3. Assessment of classification error, mis-Registration and
eature displacement

Inevitably when conducting analysis with two  remotely sensed
magery sources, issues such as image mis-registration and the
esulting mis-classification of a point between imagery sources will
eed to be addressed. As suggested by Nowak and Greenfield (2012)
hese components of image analysis may  lead to incorrect estima-
ions of land cover, for example a point may  be reported as falling
n tree canopy in one imagery source and not falling on a tree in a
ifferent imagery source. Using a second interpreter can help mit-

gate this mis-classification; therefore, we randomly selected 10%

f the points from the 1000 sampling points in each city and with

 second interpreter analyzed the presence/absence of trees using
he NAIP and Google Earth imagery in the two cities. There was a
5–98% agreement between the analyses of the two interpreters
n Greening 16 (2016) 221–230 225

across the two  imagery sources and two cities, which is similar to
that found in Nowak and Greenfield (2012). Differences were due
to the subjective nature of the classification near the edges of tree
crowns.

For further clarity on the potential for mis-classification of a
point due to its proximity to a tree canopy edge and potential
mis-registration between the two  imagery sources on the point
classification, four independent sets of randomly selected points
were generated from the original 1000 point-based sample. For
both the NAIP and Google Earth imagery, 100 of the points classi-
fied as having fallen on a tree were selected. These were not paired
points but 100 unique points for each imagery source. Addition-
ally, 100 points that were classified as having not fallen on a tree
were selected. For each point, a measurement was made to esti-
mate the proximity of the point to the nearest tree canopy edge
(those points not classified as having fallen on a tree) as well as
the proximity of points classified as having fallen on a tree to near-
est edge of the tree canopy. These measurements were of interest
in assessing whether potential mis-classification by the interpreter
may  have contributed to the cause of some error.

For large areas, mis-registration of images may  not be very
important in estimating tree cover for a single point in time.
Yet when comparing points between images taken at different
points in time (e.g., to perform a landscape change analysis), the
mis-registration of images may  lead to false differences. When
assessing two temporally different images, ideally an image inter-
preter may  be able to account for mis-registration by locating
on the second image the original position of each point from
the first image. However, this is difficult in circumstances where
points fall on tree crowns or within groups of trees. Therefore
in order to further understand mis-registration (or registration
inconsistencies) between the imagery sources, another 100 inde-
pendent points of the original 1000 point sample were randomly
selected for analysis in both cities. From these points, a linear
distance measurement was  made to a place on a clearly visible,
permanent feature using both the NAIP imagery and the Google
Earth imagery. Since it is impossible to know which of the two
imagery sources is correct, the absolute difference in the distances
between these measurements was used to understand the average
mis-registration distance among the two  imagery sources. These
estimates of mis-registration distances are compared to the dis-
tances of points to the nearest canopy edge, using the sub-sets of
sample points noted in the previous paragraph.

Finally, feature displacement can be a significant issue along the
edges of individual aerial images, depending on a number of factors
(flying height of the aircraft, focal length of the camera or sen-
sor, etc.). With composited images, one would hope that feature
displacement would be minimized, but through casual observa-
tion, the effects can occasionally be seen. Unfortunately, feature
displacement depends also on the height of the features and the
distance of the features from the nadir of each individual aerial
image, two  measurements that are elusive for a study such as ours;
the image nadir is especially difficult to determine within com-
posite images. To determine the nadir, one would need to locate
the places in the composite images where feature displacement is
negligible, which is difficult if these areas include a high density
of trees, or if tree crowns are rounded (i.e., deciduous trees). For
these reasons, we  failed to provide a process for estimating feature
displacement in the study areas.

3. Results
In evaluating the tree canopy cover of Tallahassee through the
use of the point-based sampling approach, we  estimated that 49.1%
of the land within the boundary of the city was  covered with trees
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Table 1
Summary statistics for the point-based sampling approach (1000 randomly-located sample points) and the plot/grid sampling approach (1000 randomly-located sample
plots)  using imagery available through Google Earth and NAIP imagery viewed within ArcGIS.

City

Tallahassee Tacoma

Point-based Sampling Approach Plot/grid Sampling Approach Point-based Sampling Approach Plot/grid Sampling Approach

Estimated 95% Estimated 95% Estimated 95% Estimated 95%
Canopy Standard Confidence canopy Standard Confidence Canopy Standard Confidence Canopy Standard Confidence

Imagery Cover Error Interval cover error Interval Cover Error Interval Cover Error Interval
source (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
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NAIP  44.5 1.50 41.7–47.3 45.1 1.30 42
Google Earth 49.1 1.40 46.2–52.0 48.6 1.29 46

n 2013 when viewed with Google Earth imagery, while 44.5% was
overed with trees when viewed with NAIP imagery in ArcGIS
Table 1). Therefore, the difference between two imagery sources
eemed to be about 4.6% in tree canopy cover estimates (stan-
ard error of the difference = 2.23%). The standard errors employed

or the confidence intervals were 1.50% for the Google Earth and
.40% for NAIP analyses and the resulting 95% confidence intervals
ere [46.2 –52.0%] and [41.7–47.3%] for Google Earth and NAIP

nalyses, respectively. For Tacoma, through the use of the point-
ased sampling approach our estimate of tree cover in 2013 using
he Google Earth imagery was 19.2%. The estimate of tree canopy
over was 18.1% when using NAIP imagery within ArcGIS. The esti-
ated tree cover difference between Google Earth imagery and
AIP imagery within ArcGIS was thus 1.1% (standard error of the
ifference = 1.74%). The standard errors employed for developing
onfidence intervals were the same (1.20%) for both Google Earth
magery and NAIP imagery within ArcGIS, and hence the 95% con-
dence intervals were [16.8–21.6%] and [15.7–20.5%] for Google
arth imagery and NAIP imagery within ArcGIS, respectively.

With respect to the point-based sampling approach results,
fter performing the statistical tests associated with the hypothe-
es, we encountered some interesting findings. For Tallahassee,
he results suggested that we cannot accept the H1 null hypoth-
sis (p < 0.05). There seemed to be a significant difference between
he estimated percentage tree canopy cover using the random
oint-based approach with NAIP imagery within ArcGIS and the
stimated percentage tree canopy cover using the random point-
ased approach with Google Earth imagery. On the other hand, the
esults for Tacoma suggested that we can accept the H2 null hypoth-
sis (p > 0.05). There seemed to be no significant difference between
he estimated percentage tree canopy cover with the random point-
ased approach when using either NAIP imagery within ArcGIS or
oogle Earth imagery.

In assessing tree cover using the plot/grid sampling approach,
e estimated that 48.6% of the land within the city boundary of

allahassee was covered with tree canopy in 2013 when viewed
ith imagery contained within Google Earth, and 45.1% was cov-

red with tree canopy when viewed with NAIP imagery within
rcGIS (Table 1). Thus, the difference between the estimates of tree
anopy cover was  3.5%. The estimate using Google Earth imagery
as slightly lower than what we found using the point-based

pproach with Google Earth imagery, and the estimate from using
AIP imagery within ArcGIS was slightly higher than the result
e found from the point-based approach. The standard errors
ere 1.29% and 1.30% for Google Earth imagery and NAIP imagery
ithin ArcGIS, respectively, hence the 95% confidence intervals
ere [46.1%–51.1%] and [42.7%–47.7%] for Google Earth imagery

nd NAIP imagery within ArcGIS, respectively. For Tacoma, tree

anopy cover was estimated to be about 20.0% in 2013 when viewed
ith Google Earth imagery, and 17.3% when viewed with NAIP

magery in ArcGIS, a difference in estimated tree canopy cover of
.7%. Contrary to the Tallahassee results, the estimate from using
.7 18.1 1.20 15.7–20.5 17.3 0.93 15.4–19.1

.1 19.2 1.20 16.8–21.6 20.0 0.92 18.2–21.8

NAIP imagery within ArcGIS was slightly lower than what we
found using the point-based approach; however, the estimated tree
canopy cover from using Google Earth imagery was  slightly higher
than the results we found from the point-based approach. The stan-
dard errors were 0.92% and 0.93% for the Google Earth imagery and
using NAIP imagery within ArcGIS, respectively, hence the 95% con-
fidence intervals were [18.2–21.8%] and [15.4–19.1%] for Google
Earth imagery and NAIP imagery within ArcGIS, respectively.

With respect to the plot/grid sampling approach results, after
performing the statistical tests associated with the hypotheses,
we encountered some unexpected findings. The results suggested
rejecting the H3 and H4 hypotheses (p < 0.05), since for both cities
there seemed to be significant differences between the use of
Google Earth imagery and NAIP imagery within ArcGIS for estimat-
ing tree canopy cover.

In re-analyzing the set of 1000 samples from the plot/grid
approach, we  found that the point at which the ±10% range in
average canopy cover equaled the 90% confidence interval for
canopy cover was  greater when using the NAIP imagery than when
using Google earth imagery for both cities. Further, the number
of plot/grid samples that would have been required in Tacoma was
greater than the number of plot/grid samples that would have been
required in Tallahassee using this rule. For Tacoma, the number of
plot/grid samples required would have been 796 using the NAIP
imagery in ArcGIS, and 504 using Google Earth imagery. For Talla-
hassee, the number of plot/grid samples required would have been
200 using the NAIP imagery in ArcGIS, and 140 using Google Earth
imagery. However, estimates of canopy cover using these sample
sizes were greater (2–8%) than the estimates of canopy cover using
1000 samples.

From measurements made to a sub-set of sample points, on
average for the two  cities, those points that fell on a tree were
within approximately 25 m (Tacoma) to 35 m (Tallahassee) of the
edge of the canopy when using the NAIP imagery and approxi-
mately 15 m (Tacoma) to 24 m (Tallahassee) when using Google
Earth imagery. Those points that were classified as not falling
on a tree were, on average, approximately 37 m (Tallahassee) to
46 m (Tacoma) from a canopy edge when using the NAIP imagery
and approximately 24 (Tallahassee) to 69 m (Tacoma) from a tree
canopy edge when using Google Earth imagery. Therefore, the like-
lihood of a mis-classification due to a point falling on the edge of a
tree canopy in one image and not in the other was deemed minimal
for the point-based sampling approach. The variation in these dis-
tances to canopy edges was  high, however. In Tacoma, when points
within tree canopies were considered, 12% were within 1 m from
the edge of the canopy. When points not falling on tree canopies
were considered, 1.5% were within 1 m from the canopy edge. In
Tallahassee, when the sub-sample of points within tree canopies

were considered, 2.5% were within 1 m from the edge of the canopy.
When points not falling on tree canopies were considered, 5.5%
were within 1 m from the canopy edge. As a result, photo interpre-
tation error due to close, subjective classifications along the edges
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f tree crowns seems minimal, but likely contributes to some of
he differences observed between sampling systems and imagery
roducts. This is particularly of concern with the plot/grid approach
here many points within a grid imposed within a plot may  be close

o the edge of a tree canopy.
The average absolute difference between specific points located

n both the NAIP and Google Earth imagery, using locations of a
ub-sample of paired points, was 1.19 m in Tacoma and 1.70 m in
allahassee. These can be viewed as estimates of image registration
ifferences. For Tacoma, using the NAIP imagery, 10% of the previ-
us sub-sampled points classified as having fallen on a tree canopy
ere closer to the edge of the canopy than the corresponding

mage registration difference. Comparatively, none of the previ-
us sub-sampled points classified as not being on a tree canopy
ere closer to the edge of the canopy than the corresponding

mage registration difference. When using Google Earth imagery,
hese were 20% and 4% of the previous sub-sampled points, respec-
ively. For Tallahassee, using the NAIP imagery, less than 1% of
he previous sub-sampled points that fell on a tree canopy were
loser to the edge of the canopy than the corresponding image
egistration difference, while 3% of the points classified as not hav-
ng fallen on tree canopy were closer to the edge of the canopy
han the corresponding image registration difference. When using
oogle Earth imagery, these were 12% and 15% of the previous sub-

ampled points, respectively. As a result of this analysis, it becomes
bvious that some of the differences in tree canopy classification
stimates may  be associated with registration differences among
he two imagery products. Again, this is particularly of concern with
he plot/grid approach where many points within a grid imposed
ithin a plot may  be close to the edge of a tree canopy.

. Discussion

In this study, our findings show similarities to other recent
ndings (e.g., Merry et al., 2014) that indicate tree canopy cover
stimates can be statistically significantly different when differ-
nt sampling approaches or imagery sources are employed, even
hen the sample units are basically positioned in the same loca-

ion within the study areas. However, the sampling process itself
hould not be the cause of these differences; as we noted earlier
he combined effects of mis-registration, feature displacement, and

is-classification could have imposed minor challenges to either
ethod.

Given the large number of sample observations collected (1000
ample points, which exceeded the minimum requirement repre-
ented by Congalton and Green (2009)), it should be of no surprise
hat the standard errors are relatively small, and therefore slight
ifferences in sample means might be considered statistically sig-
ificant. For example, when employing point-based sampling, the
ifferences in canopy cover between using NAIP imagery and
oogle Earth imagery were 4.6% and 1.1% for Tallahassee and
acoma, respectively. Statistical test results showed that these
ere significantly different than the estimated tree canopy cover

or Tallahassee but not Tacoma. However, when the plot/grid sam-
ling approach was employed the differences in canopy cover
etween using NAIP imagery and Google Earth imagery are 3.5% and
.7% for Tallahassee and Tacoma, respectively, and these were not
ignificantly different. This might be a result of the plot/grid sam-
ling approach minimizing the impact of image mis-registration
nd feature displacement. The SEs for the plot/grid sampling
pproach are slightly smaller than the SEs for the point-based

pproach. However, the average SE of each plot within the plot/grid
ampling approach was  1.80% when using the NAIP imagery and
.88% when using the Google Earth imagery for Tallahassee. For
acoma, the average SE for the individual plots was  1.48% and 1.80%
n Greening 16 (2016) 221–230 227

with the NAIP imagery and Google Earth imagery, respectively.
These are slightly larger than the SEs for the point-based sampling
approach. Even though many more points were employed in the
plot/grid sampling approach, the SE of this approach should be sim-
ilar to the SE of the point-based approach given that the plot is the
sample unit, not the grid of 121 points used within each plot. Had
a smaller number of sample observations been utilized, and larger
standard errors observed, statistical tests may  have suggested that
there were no significant difference in the mean values of the Talla-
hassee results when using the point-based sampling approach. As it
stands, the significant differences in results are more likely associ-
ated with some combination of mis-classification, mis-registration,
and feature displacement issues of the sampling protocol.

A number of factors could have introduced bias or error into our
findings. These include problems inherent in the imagery, such as
topographic displacement, spatial resolution, minor georeferenc-
ing problems, mis-registration, parallax, shadows, image tone and
texture issues along edges of individual image frames, and other
image processing issues for which users are unaware. During the
image interpretation process, the majority of the differences were
attributed to points falling on the edge of tree canopies within
shadows of one imagery source and not within a shadow on the
other imagery source. This was  due to differences in the timing
of the capture of the imagery (time of day, time of year). This
was also particularly evident within the NAIP imagery. Further,
due to the spatial resolution of the NAIP imagery, pixilation at
a larger scale resulted in some challenges related to the classifi-
cation of points. Google Earth imagery was  advantageous in that
regard because it has a finer spatial resolution at larger scales.
Allowing the interpreter to vary the scale may also be beneficial to
image interpretation efforts and canopy cover assessments using
Google Earth imagery, but may  have less benefits to similar efforts
employing NAIP imagery. Finally, while the imagery used for anal-
ysis were captured within months of each other, the variation in
season between the two imagery sources may have attributed to
the differences in canopy estimates specifically when a point fell
on a deciduous tree species.

Without sub-meter accurate horizontal positions to compare
against, it is difficult to tell which of the two imagery sources had
more mis-registration problems. Orthophotos like those offered by
the USDA, by nature, have been processed and corrected to limit
these sorts of issues (Lillesand et al., 2004) while the same correc-
tions may  not have been applied to the composite imagery offered
from Google Earth. Overall, a small level of inconsistent registration
was evident across both imagery sources and cities, and therefore
likely had some impact on the point classification process. Given
that both are composite images, the registration differences are not
consistent across the landscape, and a correction process employed
for an analysis such as this (estimating tree canopy cover in urban
areas) would be time-intensive.

Shadows may  result in urban trees not being easily distin-
guishable from other nearby features. Shadows can also result in
mis-classification of the vegetation because of dense appearance of
tree canopies (Merry et al., 2014). In addition, we assumed a fixed
viewing scale for interpretation purposes, and this may compound
the effect of the shadows; hence it may  be better to change scales in
order to more clearly interpret the image. Also, the finer spatial res-
olution of the Google Earth imagery may  have played a role in the
generally higher canopy cover estimates when compared to using
the NAIP imagery. Other factors that could have played a role in the
results we  obtained included photo interpretation error caused by
fatigue or distraction (blunders, random error), and photo interpre-

tation error in the assessment of vegetation (e.g., trees vs. bushes).
However, it is comforting to know that our estimated tree canopy
cover for Tacoma was  similar to other recent estimates (Nowak
and Greenfield, 2012) and the results of our mis-registration and
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is-classification tests showed that these issues were minimal in
nfluencing our analysis.

Estimation of tree canopy cover using different sampling
pproaches and different imagery sources provides us with an
nderstanding of the time, effort, and complexity of the processes.
he time required to implement each process associated with this
tudy was important, as the use of different sampling approaches
nd imagery sources required a significantly different amount
f time for interpretation and determination of tree cover. The
lot/grid sampling approach may  seem to represent a more pre-
ise way to estimate tree canopy cover, but it also required more
ime and attention to detail than when simply interpreting indi-
idual random points—when using the same number of sample.
or instance, for the photo interpreter associated with this project,
he plot/grid approach required approximately one hour to assess
00 plot/grid sample locations (1/10 of the sample size), but for the
oint sampling approach about 200–250 points were interpreted
ithin same period of time (1/4 of the sample size). It may  seem

hat the plot/grid sampling approach would be more time consum-
ng than reported but the interpreter did not always have to count
ach point within each grid. There were many instances when the
lot/grid fell completely onto a forested area or the area of canopy
over fell within one continuous section of the grid requiring only

 portion of the points to be interpreted. Conversely, there were
nstances when the plot/grid fell completely onto a developed area
r water, so only a minimal number of points within the grid (or
o points at all) had to be analyzed, allowing the interpreter to
ove on to the next plot quickly. Had we ceased to sample using

he plot/grid approach when the point at which the ±10% range
n average canopy cover equaled the 90% confidence interval for
anopy, the time required for sampling (as compared to the point-
ased approach) would have actually been less for Tallahassee, but
ot for Tacoma. This may  be related to the lower level of canopy
over in Tacoma and the larger standard error as a proportion of
he mean canopy cover. In addition, the higher spatial resolution of
oogle Earth imagery may  reduce the number of samples required
nder this rule.

With regard to viewing scale, the NAIP imagery analysis within
rcGIS provided a fixed scale option which made it easier to provide
nd apply a consistent process for canopy cover estimation. How-
ver, the Google Earth imagery analysis required more attention
n the photo interpreter’s behalf to the fixed eye altitude in order
o maintain a consistent scale while interpreting canopy cover for
he sample points. Hence, more time was required for tree canopy
over analysis with the Google Earth imagery than when using the
AIP imagery within ArcGIS.

Several sampling approaches have been tested recently for their
sefulness in assessing urban canopy cover in addition to the clus-
er sampling approach evaluated here. These include sampling
rocesses that use satellite or aerial imagery (such as the ran-
om point and cluster sampling approaches) and integrated tools

or field-based assessments of canopy cover. For example, the
Tree application tool, developed by the U.S. Forest Service and
heir cooperators, was designed to help users assess and man-
ge the character of urban forests (King and Locke 2013; Nowak
t al., 2008). The iTree application tool allows one to collect field
ased measurements of urban tree canopy cover at sample points
nd to collect estimates of other forest information (tree size,
pecies, etc.) needed for management purposes. In comparing dif-
erent approaches using the iTree application tool, high-resolution
and cover data (GIS), and skyward-oriented hemispherical pho-
ographs, King and Locke (2013) found that estimates of canopy

over from using these provided similar results. While we did not
irectly compare the cluster sampling approach described here to
he use if the iTree application tool or hemispherical photographs,
ne might assume that the cluster sampling approach applied using
n Greening 16 (2016) 221–230

high-resolution aerial imagery might also provide similar canopy
cover estimates. If conducted well, a point-based sample should
provide verifiable tree canopy cover estimates for use in carbon
credit projects and carbon sequestration analyses. It also appears
that the very latest versions of two freely available imagery prod-
ucts for the United States, Google Earth imagery and NAIP imagery,
should both be adequate for providing estimates of tree canopy
cover. Google Earth imagery may  be more suitable for this type of
analysis in urban areas due to its finer spatial resolution at vary-
ing scales. However, in using any composite aerial imagery, one
must be aware of the potential for imagery mis-registration issues
and feature displacement issues. In general, estimated tree canopy
cover using NAIP imagery within ArcGIS and Google Earth imagery
are similar when we compared the point-based sampling approach
to the plot/grid sampling approach within the two cities of this
study.

Protocols and procedures for estimating tree canopy cover from
remotely sensed imagery continue to be tested for their usefulness
in providing high quality information to support management deci-
sions and policy analyses. The results of this study underline the
importance of selecting resource assessment methods (sampling
design, intensity, and frequency) for the development of protocols
for urban forest carbon projects. Sampling costs and their relation-
ship to carbon credit prices are essential for the economic feasibility
of carbon projects under consideration. While some of the tested
procedures may  seem to advance our ability to provide more pre-
cise and realistic tree canopy cover estimates, given advances in the
resolution (spatial and spectral) of remotely sensed imagery, esti-
mates from various sampling approaches seem no better than those
provided by point-based sampling, and provide no advantages in
terms of time, effort, or reduction in complexity.

Clearly, to have a viable carbon market reliable resource assess-
ment methods are required in order to generate marketable carbon
credits and provide assurances that these represent real, meeting
specific registry criteria, carbon emission offsets. At the same time,
carbon credits have relatively low values. While prices of forest
or tree-based carbon credits vary greatly depending on the trading
platform and credit attributes the average price of California carbon
allowance futures has been in the $12 to 13 per tonne CO2 equiva-
lent range since mid-2013 (Climate Policy Initiative, 2015). Climate
Action Reserve carbon offset projects generate values of about $10
per tonne CO2 equivalent on average (California Carbon, 2015). As
of May  2015, several improved forest management and reforesta-
tion projects have been registered with the Climate Action Reserve,
yet no specific urban forestry projects have been registered, likely
because of high project development and implementation costs
which include carbon verification and monitoring efforts. Kerchner
and Keeton (2015) also noted that high project development and
long-term monitoring costs may  prevent forest landowners from
developing carbon projects.

While recognizing the differences between urban tree resources
and forests in rural settings, forest inventories are typically taken
at the time of timber sale or purchase and then not more frequently
than every five to ten years during the life of a forest stand (Borders
et al., 2008). For example, planted pine stands in the U.S. South may
be inventoried twice or three times during their lifetime, at the time
of sale and then once or twice during mid-rotation. This sampling
intensity is considered by and large as appropriate for the resources
of such value. It can also be argued that timber stumpage prices
in the U.S. South and carbon offset prices fall into similar ranges.
Yet carbon inventories in forestry settings still require higher pre-
cision and frequency, and supplementary measurements (Holland

2013), which in turn rise project costs and may  yield carbon project
infeasible.

Therefore, there is a tradeoff between the stringency of project
development and implementation rules and the volume of carbon
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rojects that are economically feasible. The challenge is, at least in
ur minds, to find a balance which would maximize environmen-
al benefits expressed in additional carbon storage and offsets. It

ay  be the case that the current rules may  be too restrictive and
herefore too expensive (given current carbon offset values), and
his may  prevent environmentally beneficial projects from being
eveloped. Further research aimed at developing reliable yet cost-
ffective resource assessment methods may  help to address these
ssues.

Organizations which are taking proactive leadership in the mea-
urement of forest resources for carbon policy implementation
hould continue to allow their suggested protocols to undergo
eview. Deferring to the expertise of reviewers allows, in the case
f the Urban Forest Management protocol (Nickerson, 2014b),

andowners and agencies to select the process that best suits par-
icular conditions. Research results, such as those presented here
nd elsewhere (e.g., Walton et al., 2008; Merry et al., 2014), pro-
ide guidance to others and help advance society’s goals of making
nformed decisions with respect to climate change and carbon man-
gement.

. Conclusions

The development of an accurate estimate of urban tree canopy
over can be a critical aspect of assessments of the carbon seques-
ration potential of an urban forest and the ecosystem services
otentially provided by an urban forest (Nowak et al., 2008).
esides the more common sampling methods employed (point-
ased and polygon-based sampling approaches), a cluster sampling
ethod was also proposed (Nickerson, 2014a), whose improve-
ent in accuracy was heretofore unknown. While comparing

oint-based sampling approach to the plot/grid sampling approach,
e found that the estimated tree canopy cover was  similar within

he two study areas (two medium-sized cities). Though with larger
and coverage, the plot/grid sampling approach may  represent
ctual tree cover better than the point-based sampling approach,
et the plot/grid sampling approach requires more time and effort.
ike others have suggested, the point-based sampling approach
ay  be the preferred method for assessments of tree canopy cover

sing remotely sensed imagery, particularly if fewer than 1000
amples are collected. However, in cities where the average canopy
over is relatively high and the resulting standard error of sampled
anopy cover in proportion with the mean canopy cover is rela-
ively low, using Google Earth imagery and a plot/grid sampling
pproach may  require equal or less time than the point-based sam-
ling approach if the stopping point for sampling is determined
s the number of samples required for the ±10% range in average
anopy cover to equal the 90% confidence interval for canopy cover.
owever, given a fixed time window within which the assessment
ust be completed, distributing more points to the point-based

pproach may  reduce the SEs more quickly, and therefore providing
reater confidence in the results.

In our study, it also seemed that using different remotely sensed
ources may  influence the estimates of percentage tree canopy
over under the two different sampling approaches. While some
f the differences are statistically significant, the estimates of tree
anopy cover were similar, and one should be comforted in know-
ng that some of the freely available remotely sensed data (e.g.,
irborne and satellite imagery) for the United States can provide
eliable and repeatable results for purposes such as assessments
f urban canopy cover. Remotely sensed imagery can help urban

orest managers monitor current tree cover change levels and can
acilitate processes that help to sustain desired tree canopy levels
e.g., McPherson et al., 2011), however when used for projects that
nfluence financial outcomes or management policies, an explicit
n Greening 16 (2016) 221–230 229

description of the sampling methods and data employed seems
paramount.
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