Monthly land cover-specific evapotranspiration models derived from global eddy flux measurements and remote sensing data

Yuan Fang,1 Ge Sun,2* Peter Caldwell,3 Steven G. McNulty,2 Asko Noormets,1 Jean-Christophe Domec,1,4 John King,1 Zhiqiang Zhang,5 Xudong Zhang,6 Guanghui Lin,7 Guangsheng Zhou,8 Jingfeng Xiao9 and Jiquan Chen10

1 Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
2 Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Raleigh, NC, USA
3 Coweeta Hydrologic Laboratory, Southern Research Station, USDA Forest Service, Otto, NC, USA
4 University of Bordeaux, Bordeaux Sciences Agro UMR INRA-ISPA 1391, Gradignan, France
5 College of Soil and Water Conservation, Beijing Forestry University, Beijing, China
6 Institute of Forest Research, Chinese Academy of Forestry, Beijing, China
7 Center for Earth System Science, Tsinghua University, Beijing, China
8 Institute of Botany, Chinese Academy of Sciences, Beijing, China
9 Earth Systems Research Center, University of New Hampshire, Durham, NH, USA
10 Center for Global Change and Earth Observations (CGCEO), and Department of Geography, Michigan State University, East Lansing, MI, USA

ABSTRACT

Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets. Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to create a new set of monthly ET models that can better quantify landscape-level ET with readily available meteorological and biophysical information. We integrated eddy covariance flux measurements from over 200 sites, multiple year remote sensing products from the Moderate Resolution Imaging Spectroradiometer (MODIS), and statistical modelling. Through examining the key biophysical controls on ET by land cover type (i.e. shrubland, cropland, deciduous forest, evergreen forest, mixed forest, grassland, and savannas), we created unique ET regression models for each land cover type using different combinations of biophysical independent factors. Leaf area index and net radiation explained most of the variability of observed ET for shrubland, cropland, grassland, savannas, and evergreen forest ecosystems. In contrast, potential ET (PET) as estimated by the temperature-based Hamon method was most useful for estimating monthly ET for deciduous and mixed forests. The more data-demanding PET method, FAO reference ET model, had similar power as the simpler Hamon PET method for estimating actual ET. We developed three sets of monthly ET models by land cover type for different practical applications with different data availability. Our models may be used to improve water balance estimates for large basins or regions with mixed land cover types. Copyright © 2015 John Wiley & Sons, Ltd.

KEY WORDS eddy covariance flux; evapotranspiration; ecosystem modelling; ecohydrology; FLUXNET

Received 12 August 2014; Revised 25 January 2015; Accepted 16 March 2015

INTRODUCTION

Global climate and land use changes directly affect the hydrological cycle (Caldwell et al., 2012), water resources (Sun et al., 2008; Thompson et al., 2014), and ecosystem services (King et al., 2013) by altering evapotranspiration (ET) processes at multiple scales. ET is tightly coupled with the ecosystem energy balance (Chen et al., 2004; Sun et al., 2010) and carbon balance (Law et al., 2002; Beer et al., 2007; Beer et al., 2010; Sun et al., 2011a; Tian et al., 2011), and thus plays an important role in the climatic feedback between land surface and climate systems (Baldocchi et al., 2001; Bonan, 2008; Cheng et al., 2011). In spite of the importance of quantifying ET for various ecosystems (Baldocchi and Ryu, 2011; Shuttleworth, 2012), accurate quantification of watershed to regional scale ET remains costly and uncertain due to the highly dynamic nature of ET processes (Sun et al., 2011a; Li et al., 2012; McMahon et al., 2012; Jasechko et al., 2013).

There are many ways to quantify ET at different temporal and spatial scales (Jackson et al., 2000; Shuttleworth, 2012). Direct ecosystem-scale ET measure-
ment techniques include catchment water balance (Bosch and Hewlett, 1982), sap flow (Smith and Allen, 1996), eddy covariance (Baldocchi et al., 2001), and Bowen Ratio methods. Remote sensing techniques allow monitoring ET at a very large spatial scale (Kustas and Norman, 1996). Wilson et al. (2001), and more recently, Domec et al. (2012a) compared multiple direct ET measurement methods and found that each method had its own limitations. The eddy covariance method measures site-level fluxes continuously, offering high temporal resolution data series and representing perhaps the most accurate method in ecophysiological studies during the past two decades. Remote sensing has been widely used to estimate global ET (Justice et al., 1998; Ray and Dadhwal, 2001; Mu et al., 2007, 2010; Mu et al., 2011; Song et al., 2011), and the accuracy of the resulting gridded products is often assessed using eddy covariance flux measurements.

Because of the high cost of measuring ET directly (e.g., eddy flux methods) or estimating at large scales (i.e., watershed to regional), mathematical modelling has been widely used to estimate ET (see review in McMahon et al., 2012). The empirical ET models developed by Zhang et al. (2001), Sun et al. (2011a, b), and Zeng et al. (2012) capture the basic biophysical controls on ET including leaf area index (LAI), water, and energy availability (Feng et al., 2012; Hoy, 2012). However, these models clearly have deficiencies. For example, while these models take into account differences in LAI among land cover types, the same equation is used for all land cover types that does not differentiate the influence of biome-specific physiological characteristics (e.g., canopy conductance, rooting depth, and water use efficiency) on ET processes (Mackay et al., 2007). The literature shows that ET rates vary across different vegetation cover types under similar climatic and meteorological conditions (Dunn and Mackay, 1995; Liu et al., 2010).

The objectives of this study were to (1) examine the environmental controls of ET in terrestrial ecosystems at a monthly scale by combining ET measurements from the global eddy covariance flux network and remote sensing data, and (2) create a new set of ET models to improve the previous ET models (Sun et al., 2011a, 2011b) by separating land cover types. We used the following hypotheses to guide our analysis: (1) the variables most important in explaining observed monthly ET variability differ among land cover types, (2) separating land cover type improves model accuracy from lumped models, and (3) monthly ET can be modelled sufficiently using simple energy and water availability variables, such as potential ET (PET) and precipitation, and LAI.

DATA AND METHODS
Several large time series databases were used to develop the ET models. Mean values of daily ET and other environmental variables were used to derive monthly values from mean daily values. We first corrected the reported daily ET by closing the energy balance. Then, we combined the corrected monthly ET, monthly total P, mean MODIS LAI, other monthly environmental variables (e.g., mean VPD), and PET data into one dataset. We associated all these variables with land cover types. The database spanned seven years (2000–2006) and included 9637 site-month records.

FLUXNET La Thuile ET database

This study combined site-level remote sensing data and La Thuile eddy flux database developed by the FLUXNET (http://www.eosdis.nasa.gov/FLUXNET) – a global network that measures the exchanges of carbon dioxide, water vapour, and energy between the biosphere and atmosphere (Baldocchi et al., 2001; Figure 1). FLUXNET data have been widely used to quantify the dynamics of regional and global ecosystem carbon and water balances (Beer et al., 2010; Jung et al., 2010; Williams et al., 2012; Xiao et al., 2012), and to validate various ecosystem models in which ET is a major control to the biogeochemical processes (Tian et al., 2011; Tian et al., 2012). The La Thuile ET database derived from a synthesis effort by FLUXNET consisted of 218 sites for the time period of 2000–2006 (Figure 1). These flux sites spanned a wide range of climate and physiographic regions in both hemispheres and on five continents with latitudinal distribution that ranged from 70° north to 30° south. The mean annual precipitations ranged from 93 (RU-Che, North Russia, snow dominated) to 2633 mm (CN-Anh, East China), and the mean annual temperature ranged from −5.8 (RU-Che) to 26.6 °C (ID-Pag, North Indonesia) (Figure 2). The database included 4 sites in savannas (SAV), 5 sites in closed shrubland (CS), 10 sites in open shrubland (OS), 12 sites in mixed forest (MF), 17 sites in evergreen broad leaf forest (EBF), 29 sites in deciduous broad leaf forest (DB), 31 sites in cropland (CRO), 44 sites in grassland (GRA), and 66 sites in evergreen needleleaf forest (ENF).

In addition to the ET measurements, the La Thuile database included biophysical variables that were used to explain the variability in ET. The variables used in the study included daily latent heat flux (LE, MJ m⁻²), air temperature (Ta, °C), vapour pressure deficit (VPD, 100 Pa), precipitation (P, mm), net radiation (Rn, MJ m⁻²), sensible heat flux (H, MJ m⁻²), and soil heat flux (G, MJ m⁻²). General site characteristics including the International Geosphere-Biosphere Program (IGBP) vegetation classification, latitude, and longitude were also collected. The daily flux data were scaled from half-hour eddy covariance measurements (Valentini et al., 2000; Baldocchi et al., 2001).
Uncertainties exist in the La Thuile data including measurement errors and misunderstanding of computing methods (Hollinger and Richardson, 2005). Data were considered erroneous or outliers and were removed from the database records when daily R_n exceeded 100 MJ m$^{-2}$, daily LE or H exceeded 25 MJ m$^{-2}$, calculated daily PET was negative, ET exceeded 300 mm month$^{-1}$, or VPD was negative. In addition, when estimating monthly sums from monthly mean using daily data, we removed those months with the number of day less than 15 days and the data gaps were centered within the month time span. As result, the number of sites used varied in this study for developing different models and analyses at different temporal scales.

We used an integrated procedure (Figure 3) to process the La Thuile database of eddy flux measurements from 218 sites. According to the IGBP land cover classification system, these eddy flux sites cover nine land cover types: shrubland including both closed (CS) and open shrubland (OS), cropland (CRO), grassland (GRA), evergreen needle leaf forest (ENF), deciduous broadleaf forest (DB), evergreen broadleaf forest (EBF), mixed forest (MF), and savannas (SAV). For each eddy flux tower site (Figure 1),...
we acquired ET and associated micro-meteorological data, and built relational databases of ET, VPD, P, wind speed, and Rn. PET was calculated from mean monthly air temperature using the Hamon’s method (see detailed description later).

Leaf area index data from MODIS products

Leaf area index represents projected leaf surface area per unit ground area (m² m⁻²). The development of remote sensing techniques made global LAI measurements available at a large range of spatial resolutions and short time interval (Asrar et al., 1983; Running, 1984; Running et al., 1989). LAI has been widely used in understanding ecosystem processes and building ET and hydrological models (Cramer et al., 1999; Sun et al., 2011a, 2011b).

The LAI time series for each tower site was downloaded from the Oak Ridge National Laboratory Distributed Active Archive Center (http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html). MODIS LAI was derived from the fraction of absorbed photosynthetically active radiation (FPAR) that a plant canopy absorbs for photosynthesis and growth in the 0.4–0.7 nm spectral range. LAI is the biomass equivalent of FPAR. The MODIS LAI/FPAR algorithm exploits the spectral information of MODIS surface reflectance at up to seven spectral bands. We extracted monthly LAI data for the time period from 2000 through 2006 across 254 sites using 8-day GeoTIFF data from the Moderate Resolution Imaging Spectroradiometer (MODIS) land subsets’ 1-km LAI global fields. First, we downloaded 8-day data for each site based on latitude and longitude. We then converted image data into a grid format and multiplied by a scale factor (0.1) to get the true value of LAI (Mu et al., 2011). We estimated monthly LAI by computing the mean of the 8-day daily values for each month, and finally, we extracted individual time series data from the grid cells containing each tower site.

Evapotranspiration correction

The latent heat (LE) flux represents energy absorbed for water to change from the liquid state to vapour phase without a change in temperature through the ET process. The ET rates were calculated from LE with a conversion factor, constant of heat vaporization. According to literature (Wilson et al., 2002; Foken, 2008), the LE can be underestimated by as much as 20% because of a lack of energy balance closure. Previous studies suggest that the incomplete energy closure issues were mainly caused by
inaccurate estimation of available energy, incomplete energy balances (e.g., heat storage term is often neglected) (Mayoocchi and Bristow, 1995), a changing source area of turbulent fluxes (Schmid, 1997; Shao et al., 2014), and large mobility of the turbulent flux and flux sampling errors (Mahrt, 1998).

We corrected the daily ET estimates using the method by Twine et al. (2000) to account for the energy conservation discrepancy in eddy flux measurements. This method redistributed the residual of available energy (Rn minus G) and the sum of latent heat and sensible heat (H + LE) back to both LE and H by maintaining the Bowen Ratio (H/LE) such that

\[
ET_c = ET \times \frac{Rn - G}{H + LE}
\]

where ETc is the corrected daily ET (mm), Rn is the net radiation (MJ m\(^{-2}\)), G is the daily soil heat flux (MJ m\(^{-2}\)), H is the sensible heat flux (MJ m\(^{-2}\)), and LE is the latent heat flux (MJ m\(^{-2}\)).

Potential evapotranspiration estimation

Potential evapotranspiration is widely used in modelling actual ET and streamflow, and it sets an upper limit of actual ecosystem water loss assuming unlimited soil water availability (Lu et al., 2003; Lu et al., 2005; Sun et al., 2011a). Hamon’s (1963) PET method was used in this study because of its simplicity and wide use (Vörösmarty et al., 1998; Lu et al., 2005). The Hamon PET method computes daily ET based on air temperature and daytime length

\[
PET = 0.1651 \times \text{DAY} \times \frac{216.7 \times e_s}{t_a + 273.3}
\]

where PET is the daily potential ET (mm), DAY is the day length in multiples of 12 h calculated as a function of latitude (Lat) and Julian day, \(e_s\) is the saturation vapour pressure at a given temperature, and \(t_a\) is the mean air temperature (°C).

The saturation vapour pressure, \(e_s\), is computed as follows:

\[
e_s = 6.108 \times e^{17.2694 \times t_a / (t_a + 237.3)}
\]

The day length is computed as follows:

\[
\text{DAY} = 2 \times \text{acos} \left(-1 \times \tan(Lat \times 0.0175) \times \tan \left(0.4093 \times \sin \left(\frac{2 \pi \times 1415 \times \text{DoY}}{365.0} - 1.405 \right) \right) / 3.14159 \right)
\]

where DoY is the Julian day of the year ranging between 1 and 366.

The FAO grass reference ET (ET\(_o\)) method has been widely used to characterize local meteorological conditions or PET in reference to a standard land cover, such as a short grass (Allen et al., 1994). Daily ET\(_o\) is calculated by the process-based Penman–Monteith ET equation parameterized for a hypothetical well-watered grass that has a 0.12 m canopy height, a leaf area of 2.8, a bulk surface resistance of 70 s m\(^{-1}\), and an albedo of 0.23 as estimated as follows:

\[
ET_o = \frac{0.408 \Delta (Rn - G) + \gamma \frac{C_0}{t_a + 273} \mu_2 (e_s - e_a) \Delta + \gamma (1 + 0.34 \mu_2)}{\Delta + \gamma (1 + 0.34 \mu_2)}
\]

where ET\(_o\) is the grass reference ET (mm day\(^{-1}\)), \(\Delta\) is the slope of the saturation water vapour pressure at air temperature \(T\) (kPa °C\(^{-1}\)),

\[
\Delta = 2503 \left(T + 237.3 \right)^{1.277}/(T + 237.3)^2
\]

Rn is the net radiation (MJ m\(^{-2}\)), \(G\) is the soil heat flux (MJ m\(^{-2}\)), \(\gamma\) is the psychrometric constant (kPa °C\(^{-1}\)), \(e_s\) is the saturation vapour pressure (kPa), \(e_a\) is the actual vapour pressure (kPa), \(\mu_2\) is the mean wind speed (m s\(^{-1}\)) at 2 m height, and \(C\) is the unit conversion factor with a value of 900.

Development of monthly ET model using regression analysis

The global flux sites represent contrasting biomes under a wide range of climatic regimes and management conditions (i.e., irrigated croplands and plantation forests). After conducting data quality assessment and quality control, we selected the best independent variables for predicting ET using Pearson correlation metrics. We examined different combinations of biophysical variables to achieve the best model fit for each of the eight ecosystem types. The multivariate linear regression procedures in the SAS 9.2 software (SAS Institute Inc., 2008) were used for model development. Combinations of key biophysical factors were examined to achieve the best model fit. For each regression model, collinearity issues among independent variable were assessed by computing the variance inflation factor (VIF; Marquard, 1970). A VIF above 5 indicated collinearity among independent variables, and the variables would be removed from the linear regression models.

We created three sets of empirical ET models to meet the requirements of different types of potential users and test whether a model with higher complexity improves predictability. Type I models were developed using the most significant variables (Rn, P, LAI, and PET) that potentially maximized model accuracy. Type II models
were constructed using only three biophysical variables (P, PET, and LAI) that are readily available from standard weather monitoring stations and regional remote sensing products (LAI) (Sun et al., 2011a, b). Type III models were similar to Type II except that PET variable was replaced with \(\text{ET}_\circ \), calculated by the more robust but also more data-demanding FAO reference ET equation. We evaluated the model performance at two different levels: overall model performance by biome type across all sites, and site-specific model performance at two forest sites. To assess model performance by biome type, we compared our models separating land cover types with models by lumping all land cover types (Sun et al., 2011a, b). To assess site-specific model performance, we applied the generalized ET model developed for evergreen needleleaf forest (ENF) to two flux sites with contrasting climatic characteristics and examined potential modelling errors. We used coefficients of determination (\(R^2 \)) and root of mean square error (RMSE) to quantitatively evaluate model performance.

RESULTS

Long-term mean annual ET rates for any ecosystems are primarily controlled by water (P) and energy (PET) availability. This section presents both mean annual and seasonal relationships among ET, PET, and P using the Budyko (1974) framework. We used the Hamon PET for this analysis after we have found that this method was more dependable for more ecosystems than the \(\text{ET}_\circ \) had. Although PET and \(\text{ET}_\circ \) were highly correlated on average across all sites, the \(\text{ET}_\circ \) method gave about 30% higher estimates of ET than the Hamon PET model (not shown). Across all sites, the mean annual ET was 474 mm, while the mean annual PET and \(\text{ET}_\circ \) was 1030 and 750 mm, respectively.

The ET, PET, \(\text{ET}_\circ \), and P relationship at annual scale

Annual P and PET rates varied dramatically among the biomes. The majority of evergreen broadleaf forest (EBF) was found in a tropical climate with a mean annual P of 1330 mm and mean PET of 1087 mm. In contrast, evergreen needleleaf forest (ENF) had a much wider range, with PET ranging from 450 to 1300 mm (mean = 635 mm) and P from 166 to 1907 mm (mean = 785 mm). Deciduous forest (DB) had the highest range in P (250–2500 mm), with a mean of 908 mm and PET from 500 to 1144 mm (mean PET = 702 mm). Fewer flux sites were found in mixed forest (MF); the 12 sites examined by this study had a very narrow range in PET (521–684 mm) with a mean of 572 mm, but a large P ranging from 93 to 1600 mm (mean = 727 mm). Grassland sites had a wide range of P (~236–1316 mm) with a mean of 750 mm, and a large range of PET (mean = 687 mm) varying from 313 to 1032 mm. There was substantial overlap in the ranges of P and PET between grassland and DB. The 31 cropland (CRO) sites were found in a warmer climate than grasslands and also had a wide range of PET (551–1453 mm, mean = 788) and P (333–1389 mm, mean = 774 mm). Similar to grasslands, the shrublands had a large range in P, varying from 123 to 1500 mm. The ranges of P and PET for shrublands (CS and OS) (mean P = 594 mm, PET = 781 mm) and savannas (SAV) sites (mean P = 673 mm, PET = 1134 mm) overlapped with those for grasslands. Annual PET rates exceeded 400 mm for all ecosystems but one (CN-Ham, Haibei Alpine Tibet site in

![Figure 4. Distribution of mean annual PET and precipitation. CRO, cropland; CS, closed shrubland; DB, deciduous broad leaf forest; EBF, evergreen broad leaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.](image-url)
China) where PET was only 313 mm and mean air temp was -2.2 °C (Figure 4).

Annual total ET exceeded P at 35 out of the 137 sites (Figure 5a and b). Notably, the ET of the three cropland sites (ES-ES2 in Spain, IT-Cas in Italy, and US-IB1 in the US) (889–1048 mm) was much higher than P (553–623 mm) (Group 1, Figure 5). The three sites received substantial irrigation (Cheng et al., 2011), leading to much higher ET compared with P. Among the other three forest sites in Group 1 (Figure 5), Wisconsin US-Wi1 and US-Wi2 located in the lowlands had an ET of 776 and 673 mm, respectively. The P for the US-Wi1 and US-Wi2 was only 284 and 297 mm, respectively. These two sites likely received supplemental groundwater to meet the ET demand. The other forest site (CN-Bed, Beijing, China) in Group 1 was a highly productive poplar plantation that received irrigation in the spring when drought occurred (Zhou et al., 2013).

We also found that ET exceeded Hamon PET at 22 out of the 137 sites, particularly US-Wi1, two grassland sites in Italy (IT-MBo and IT-Mal), an evergreen needleleaf forest (ENF) site in Nebraska (US-NR1), a pine plantation in North Carolina on coastal wetlands (NC2) (Sun et al., 2010), and an alpine grassland in China (CN-HaM).

The ET, PET, ET₀, and P relationship at the growing season scale

The ET fluxes for vegetated surfaces were the highest during the growing season. Total ET in the growing season

![Figure 5. A comparison of (a) mean annual ET versus precipitation (P), and (b) mean Evaporative Index (ET/P) and Dryness Index (PET/P) in the Budyko (1974) framework, for all FLUXNET sites used in the analysis. CRO, cropland; CS, closed shrubland; DB, deciduous broad leaf forest; EBF, evergreen broad leaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OS, open shrubland; SAV, savannas.](image-url)
exceeded P at about 60% of the study sites (Figure 6). When growing season ET exceeded P, ecosystem water use was supplied not only by growing season P but also by soil water storage, the ‘old water’. Evergreen needleleaf forest (ENF) and grassland (GRA) sites spread almost equally around the 1:1 line, suggesting that there sites have a wide range of growing season climatic regimes. Mixed forest (MF), closed shrubland (CS), and cropland (CRO) sites were mostly found with ET exceeding P. A few CRO sites had much higher ET than P in the growing season, presumably due to irrigation. As expected, growing season P exceeded ET greatly for evergreen broad leaf forest (EBF) in a wet tropical environment. Most interestingly, ET was close to or greater than P at all deciduous broad leaf forest (DB) sites except one, suggesting that soil water storage was more important for supplying ET demand in DB ecosystems than in other ecosystems over the growing seasons.

Key environmental controls on ET

Energy availability (PET or Ta, Rn), atmospheric dryness (VPD), and plant biomass (LAI) were the top five influential variables for predicting ET at the monthly scale across all sites (Table I). Interestingly, water availability as represented by total precipitation (P) did not correlate well with ET. As expected, overall, the energy terms (Rn, PET, and Ta) were highly correlated among themselves, moderately correlated with LAI but weakly with VPD (Table I).

When examining the data by ecosystem type, there were similarities and differences among the key variables for explaining the variability of measured ET (Table II). Rn and LAI correlated consistently well with ET for all ecosystems. Precipitation (P) was not as influential as other five variables (Pearson correlation coefficients < 0.32) for all biomes. For shrublands, energy and air humidity indicators (Ta, PET, and Rn) and VPD, respectively, did not correlate with ET. Instead, LAI could explain 77% of the variability of ET.

Stepwise regression analysis by ecosystem type revealed complex relationships between ET and environmental controls (Table III). The environmental factors could be represented by a different set of key independent variables for different ecosystems. For example, PET alone explained 79% ($p < 0.0001$) of the variability of ET for mixed forest (MF). In contrast, LAI and VPD (total partial $R^2 = 0.69$) were most useful for estimating ET of Savannas ecosystem.

Monthly ET models. The Type I regression models for each land cover type (Table IV) consist of the top three
Table II. Pearson correlation coefficient (PCC) between monthly evapotranspiration and biophysical parameters for different land cover types.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Ta</th>
<th>PET</th>
<th>LAI</th>
<th>Rn</th>
<th>VPD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>.</td>
<td>.</td>
<td>0.6</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Cropland</td>
<td>.</td>
<td>0.67</td>
<td>0.01</td>
<td>0.04</td>
<td>.</td>
<td>0.03</td>
</tr>
<tr>
<td>Grassland</td>
<td>.</td>
<td>.</td>
<td>0.04</td>
<td>0.04</td>
<td>0.75</td>
<td>.</td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td>.</td>
<td>.</td>
<td>0.73</td>
<td>.</td>
<td>.</td>
<td>0.06</td>
</tr>
<tr>
<td>Evergreen needle leaf forest</td>
<td>.</td>
<td>.</td>
<td>0.64</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Evergreen broad leaf forest</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.11</td>
<td>.</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>0.01</td>
<td>.</td>
<td>0.79</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Savannas</td>
<td>.</td>
<td>.</td>
<td>0.05</td>
<td>0.50</td>
<td>0.16</td>
<td>.</td>
</tr>
</tbody>
</table>

Only correlation coefficients greater than 0.3 or less than −0.3 are shown. Ta, air temperature; VPD, vapour pressure deficit; PET, potential evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area index.

Most significant independent variables \((p < 0.03)\) as identified in Table III. The three variables in each of models did not have co-linearity as determined by VIF values \((<5.0)\). The models had \(R^2\) varying from 0.66 to 0.86, and RMSE ranging from 14.2 to 23.9 mm month\(^{-1}\).

Table III. The most significant variables contributed to evapotranspiration with their partial \(R^2\) values of different land cover types.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Ta</th>
<th>PET</th>
<th>LAI</th>
<th>Rn</th>
<th>VPD</th>
<th>P</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>0.54</td>
<td>0.6</td>
<td>0.77</td>
<td>0.5</td>
<td>.</td>
<td>.</td>
<td>123</td>
</tr>
<tr>
<td>Cropland</td>
<td>0.74</td>
<td>0.82</td>
<td>0.59</td>
<td>0.81</td>
<td>0.6</td>
<td>.</td>
<td>609</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.71</td>
<td>0.79</td>
<td>0.50</td>
<td>0.86</td>
<td>0.5</td>
<td>.</td>
<td>802</td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td>0.77</td>
<td>0.85</td>
<td>0.66</td>
<td>0.82</td>
<td>0.5</td>
<td>.</td>
<td>636</td>
</tr>
<tr>
<td>Evergreen needle leaf forest</td>
<td>0.78</td>
<td>0.80</td>
<td>0.57</td>
<td>0.79</td>
<td>0.5</td>
<td>.</td>
<td>1360</td>
</tr>
<tr>
<td>Evergreen broad leaf forest</td>
<td>0.86</td>
<td>0.87</td>
<td>0.29</td>
<td>0.87</td>
<td>0.5</td>
<td>.</td>
<td>190</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>0.79</td>
<td>0.89</td>
<td>0.71</td>
<td>0.86</td>
<td>0.79</td>
<td>.</td>
<td>261</td>
</tr>
<tr>
<td>Savannas</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.50</td>
<td>0.16</td>
<td>.</td>
<td>36</td>
</tr>
</tbody>
</table>

All \(R^2\) have \(p\) values less than 0.0001; only top four significant variables listed. Ta, air temperature; VPD, vapour pressure deficit; PET, potential evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area index.

Table IV. Type I models by land cover type developed using the three most significant variables.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model by land cover (Type I)</th>
<th>Model by land cover</th>
<th>Lump model</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ET = 0.51 + 0.03 \times PET + 14.73 \times LAI + 0.08 \times Rn)</td>
<td>14.0</td>
<td>0.79</td>
<td>25.9</td>
</tr>
<tr>
<td>Shrubland</td>
<td>(ET = 0.87 + 0.19 \times Rn + 13.99 \times LAI + 0.06 \times P)</td>
<td>23.9</td>
<td>0.73</td>
<td>17.3</td>
</tr>
<tr>
<td>Cropland</td>
<td>(ET = 5.55 + 72.23 \times LAI + 0.20 \times Rn)</td>
<td>16.3</td>
<td>0.79</td>
<td>15.8</td>
</tr>
<tr>
<td>Grassland</td>
<td>(ET = -14.22 + 0.74 \times PET + 0.10 \times Rn)</td>
<td>22.2</td>
<td>0.77</td>
<td>15.9</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>(ET = 3.00 + 0.30 \times PET + 3.99 \times LAI + 0.09 \times Rn)</td>
<td>17.1</td>
<td>0.71</td>
<td>18.2</td>
</tr>
<tr>
<td>Evergreen needle leaf forest</td>
<td>(ET = -0.15 + 0.47 \times PET + 0.13 \times Rn)</td>
<td>13.3</td>
<td>0.86</td>
<td>11.6</td>
</tr>
<tr>
<td>Evergreen broad leaf forest</td>
<td>(ET = -8.76 + 0.95 \times PET)</td>
<td>14.8</td>
<td>0.80</td>
<td>12.1</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>(ET = -8.07 + 33.46 \times LAI + 0.07 \times Rn)</td>
<td>14.0</td>
<td>0.66</td>
<td>35.15</td>
</tr>
</tbody>
</table>

RMSE, root of mean square error; ET, evapotranspiration; PET, potential evapotranspiration; P, precipitation; Rn, net radiation; LAI, leaf area index.
The Type II model took the following form:

\[
ET = -4.79 + 0.75PET + 3.92LAI + 0.04P \\
R^2 = 0.68, p < 0.0001, \text{RMSE} = 18.1 \text{ mm month}^{-1}
\]

(2)

The Type III model had the following form:

\[
ET = -2.22 + 0.30ET_0 + 6.32LAI + 0.09P \\
R^2 = 0.49, p < 0.0001, \text{RMSE} = 22.6 \text{ mm month}^{-1}
\]

(3)

Model evaluation

We evaluated the model strength in two broad ways. We examined whether ET models by ecosystem types provide overall improvement to predictions by generalized models (Type I, II, and III) by lumping all data (Equations (1)–(3)). Comparisons of model performance in terms of \(R^2\) and RMSE are presented in Tables IV, V, and VI. We also examined the accuracy of a land cover-specific ET model to predict ET at two conifer forest sites in California and Florida with contrasting climates and tree species.

Land cover-specific models versus a generalized model

When applying the generalized model (Type I, Equation 1) to each biome, similar \(R^2\) values for the majority of biomes, similar \(R^2\) values for the majority of biomes.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model by land cover (Type II)</th>
<th>Model by land cover (Type II)</th>
<th>Lumped model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ET = -3.11 + 0.39PET + 0.09P + 11.12LAI)</td>
<td>(R^2 = 0.80)</td>
<td>(ET = -18.8)</td>
</tr>
<tr>
<td>Shrubland</td>
<td>(ET = -8.15 + 0.86PET + 0.01P + 9.54LAI)</td>
<td>(20.9)</td>
<td>(17.5)</td>
</tr>
<tr>
<td>Cropland (CRO)</td>
<td>(ET = -1.36 + 0.70PET + 0.04P + 6.56LAI)</td>
<td>(16.8)</td>
<td>(16.9)</td>
</tr>
<tr>
<td>Grassland (GR)</td>
<td>(ET = 0.10 + 0.64PET + 0.04P + 3.53LAI)</td>
<td>(16.8)</td>
<td>(15.9)</td>
</tr>
<tr>
<td>Deciduous broad leaf forest (DB)</td>
<td>(ET = 14.82 + 0.98PET + 2.72LAI)</td>
<td>(23.7)</td>
<td>(17.8)</td>
</tr>
<tr>
<td>Evergreen needle leaf forest (ENF)</td>
<td>(ET = 0.10 + 0.64PET + 0.04P + 3.53LAI)</td>
<td>(17.8)</td>
<td>(17.1)</td>
</tr>
<tr>
<td>Evergreen broad leaf forest (EBF)</td>
<td>(ET = 7.71 + 0.74PET + 1.85LAI)</td>
<td>(16.8)</td>
<td>(15.9)</td>
</tr>
<tr>
<td>Mixed forest (MF)</td>
<td>(ET = -8.763 + 0.95PET)</td>
<td>(13.1)</td>
<td>(12.6)</td>
</tr>
<tr>
<td>Savannas (SVA)</td>
<td>(ET = -25.66 + 0.18PET + 0.10P + 44.63LAI)</td>
<td>(11.1)</td>
<td>(34.2)</td>
</tr>
</tbody>
</table>

RMSE, root of mean square error; ET, evapotranspiration; PET, potential evapotranspiration; P, precipitation; LAI, leaf area index.

Copyright © 2015 John Wiley & Sons, Ltd.

the biomes were found except for shrublands and savannas (Tables IV–VI). For example, the lumped Type I model had much lower R^2 (0.39) and higher RMSE (25.9) than the land cover-specific model ($R^2=0.79$; RMSE=14.0 mm) for shrublands (Table IV). Similarly, the lumped Type II models had much lower R^2 (0.64) and higher RMSE (18.8 mm) than land cover-specific model ($R^2=0.80$; RMSE=12.5 mm) for shrubland (Table V). This was true for Shrubland for Type III model as well ($R^2=0.73$ for land cover-specific model vs $R^2=0.53$ for lumped model) (Table VI). For savannas, all three lumped models had very little predictive power ($R^2 < 0.1$; RMSE > 20 mm month$^{-1}$).

All data taken together, the land cover-specific models had slightly higher R (0.72) than the generalized simple model (Type II) as represented by Equation 2 ($R^2=0.68$) (Figure 7a and b). The land cover-specific models therefore explained slightly higher variance of ET than the generalized simple model. Similar results were found for other two models (not shown).

Model evaluations using two evergreen needleleaf forest (ENF) sites with a contrasting climate

To test whether the Type I models (Table IV) that used the three most influential variables might not always perform better than the simpler Type II models (Table V) or the

![Figure 7. A comparison of measured and predicted ET using (a) a generalized Type II ET model and (b) models developed by land cover type.](image-url)
most data-demanding Type III model, we evaluated two sets of ET models developed for evergreen needleleaf forest (ENF) at two eddy flux sites with contrasting climate and tree species: the Blodgett Forest (US-Blo) located in northern California (N38.89, W=120.63) (Goldstein et al., 2000; Thornton et al., 2002) with measurements from 2000 to 2006 and a young slash pine (Pinus elliottii) plantation forest site (US-SP2) (locally called Mize track) located in north-central Florida (N29.76, W=82.24) (Bracho et al., 2012). The US-Blo was dominated by vigorously growing (LAI > 4.0) young ponderosa pine (Pinus ponderosa). The climate was characterized as having a warm and dry summer, but wet winter (Figure 8). Thus, ET did not positively correlate with P at this site ($R = -0.37$), but highly correlated to PET ($R = 0.93$) or E_{To} ($R = 0.95$). In contrast, the other recently established evergreen forest site (US-SP2) located in the humid north-central Florida was dominated by 2-year old stands in 2000. However, LAI for this site increased dramatically from less than 1.0 in 2001 to about 6.0, reflecting rapid tree growth and stand establishment (Bracho et al., 2012). The site had a low P and ET in winter and high P and ET in the summer (Figure 10), and therefore, monthly ET was highly correlated with PET ($R = 0.78$) and E_{To} ($R = 0.75$) and weakly with P ($R = 0.25$).

Overall, all models captured the monthly ET patterns well in spite of the large inter-annual variability of P at the US-Blo site (Figure 8). The Type I models performed better that both Type II and Type III models during the early growing season (April–June). Both Type II and Type III models underestimated ET during the growing seasons. The underestimation of ET by the Type II and III models was likely caused by the fact that actual measured ET from this site exceeded PET and E_{To} rates that were computed from a temperature-based PET model or using biological parameters for grass land surface (Tables V and VI). In addition to air temperature, other parameters such as R_n and stomatal conductance are likely important in controlling ET at the US-Blo site (Table IV). All models substantially underestimated ET in the peak growing season (July–August) at this site for some years, particularly 2005 and 2006 (Figure 9). The process-based Biome-BGC model also failed to match the high ET rate at this site in a cross-site model comparison study (Thornton et al., 2002). The differences of ET estimate among the three models were the lowest in the fall season and winter, highest in the spring, and the peak growing season of April–July (Figure 9). The differences among the three models were generally consistent over the seven year period (2000–2006) with a large annual variability in precipitation (1019–1851 mm).

In contrast, all models captured the monthly ET patterns at the Florida US-SP2 site fairly well, particularly in the dormant season (November–April) (Figures 10 and 11). Overall, the simplest Type II model for ENF performed best ($R^2 = 0.51$, 9% underestimate). The Type II and Type III models performed equally well, and both underestimated ET rates during the growing seasons, however. The largest differences among the three types of models were found during the peak growing season.
ET closely followed PET ($R = 0.78$) (Figure 10) on this coastal plain landscape where groundwater was abundant and soil water stress was rare. The underestimation of ET by the Type I and Type II models suggested that the radiation-dominated ET model or reference ET model could not fully account for forest ET in a humid environment. A combination of LAI and PET might be best predictors for southern forest ET (Gholz and Clark, 2002; Sun et al., 2010). Similar to the California site as discussed earlier, the differences of estimated ET were greatest during the growing season from May to September (Figures 10 and 11), suggesting that the biological controls to ET were not well captured in the Type I and III models. Although the Type II models provided good estimates for mean ET during the study period, they overestimated ET during the spring for the first three years but underestimated ET for almost all months during 2003–2004. The Type III models however performed best for the non-growing season. In the model evaluation, we used MODIS LAI for each site but did not use locally measured LAI to be consistent with model development and future applications.
DISCUSSION

The FLUXNET network offers the best global ET data and opportunities to contrast monthly and annual scale water balance across multiple ecosystems (Baldocchi and Ryu, 2011). Our study showed that grasslands and shrublands were not necessarily found in areas with low precipitations, and ecosystem characteristics varied within each land cover type. The combinations of precipitation and ET determined water availability that eventually influenced ecosystem structure (e.g. biomass) functions (e.g. water yield). Our study reinforced the notion (Sun et al., 2011a, b) that ecosystem water use (ET) and site hydrology were controlled by ecosystem characteristics and local climate (i.e. LAI, Ta or PET, Rn). These key factors explained the majority (60–90%) of the ET variability at the monthly scale.

Although the number of eddy covariance flux sites has dramatically increased exponentially in the past decade, the sample size of the FLUXNET used in this study for model development might still be limited and biased towards more mature ecosystems with little disturbance; therefore, a generalized model even for one land cover type may be biased. In addition, a generalized model may work well on average but can be biased during extreme conditions. Despite the potential biases, ecosystem level ET can be estimated with reasonable accuracy ($R^2 > 0.60$) using the models developed in this study with common environmental variables.

Environmental controls on monthly ET

It is well known that long-term mean ET for a region is controlled by precipitation and PET as described by the Budyko (1974) framework (Figure 5b) (Zhang et al., 2001, 2004). The effects of vegetation characteristics (e.g. rooting depth) had significant effects on annual ET at the site to small watershed scale (Zhang et al., 2001; Williams et al., 2012) but relatively minor effects over large areas (Oudin et al., 2008; Peel et al., 2010; Sanford and Selnick, 2012). Our results generally support these claims at the monthly temporal scale. However, our study clearly showed that human disturbances such as irrigation altered the general long-term relationships among ET, PET, and P as presented in Budyko (1974) (Figure 5b).

Evapotranspiration analysis at the monthly scale offered new insights about broad biophysical controls on seasonal ET for the world’s major ecosystem types. Overall, P or soil moisture content explained very small portion of the variance in ecosystem ET at the monthly scale, particularly for forests with high LAI and deeper roots with access to deep soil water storage. The insensitivity of ET to P indicated that these forests were rarely under water stress at the monthly scale. This finding was consistent with reports that mature forest ET was less variable than that of environmental conditions (Stoy et al., 2006). Shrubland and grassland ecosystems showed higher responses to soil water stress, which was consistent with the findings of Stoy et al. (2006). The influence of P was not as large as that of LAI or Rn, suggesting that the variability of ET was mainly controlled by canopy structure (LAI) and energy (Rn) availability. A study by Nagler et al. (2007) found that for sparsely vegetated grassland and shrubland, ET was strongly correlated to leaf biomass (Enhanced Vegetation Index), moderately related to P, and weakly linked to Rn and Ta. The ‘crop coefficient’, ET/PET, can be readily predicted by LAI (Sumner and Jacobs, 2005). Our study is consistent with Nagler et al. (2007) in that LAI was the best predictor of ET for shrubland sites. An added benefit
of using LAI as an independent variable is that LAI can be used to scale-up ground ET measurements to the landscape scale in arid regions. The importance of Rn in affecting ET perhaps reflects the diversity of the shrub or grass sites across large climatic gradients. At the site level, LAI represents an overall integration of vegetation resource availability (i.e. soil water, absorbed light, and nutrition status) and ecosystem productivity, and thus is likely to dominate the control on ET (Chen et al., 2002; Nagler et al., 2007), particularly for deciduous forest (Xie et al., 2013), natural grasslands (Yang et al., 2007; Zhou et al., 2010; Yang and Zhou, 2011; Zheng et al., 2011), and herbaceous wetlands such as reed marsh (Zhou et al., 2010) that have dynamic phenology. Ecosystem structure information including LAI is more useful in explaining ET and water balance differences than land cover type.

Modelling ET under extreme drought conditions

Like any empirical model, our regression models were developed for normal climatic conditions and represented the mean ET controls across each ecosystem type. Thus, when applying the model to a particular site with unique vegetation structure (e.g. forest stand age not represented in the flux network site) or to a site for a particular time period (e.g. extreme droughts), the model may result in errors. For example, under specific circumstances such as certain dry regions where unique vegetation and climate are present, soil water stored in the top 10 cm of soil is the only water source to meet the demand of plants for long periods without precipitation (Kurc and Small, 2004). Thus, soil water storage coupled with other climatic variables controls ET of the current month, not necessarily the precipitation of the current month (Seneviratne et al., 2010). In such cases, underestimation errors may occur when using our modelling approach without considering soil moisture under extremely dry conditions. Nagler et al. (2007) considered inter-annual lags of precipitation to account for effects of soil water storage on ET. During model development in this study, we also tried to use total precipitation of previous month to account for precipitation lag time on ET. However, improvements by this approach were not always achievable for all sites. Soil moisture was measured only at the top 15 cm in majority of the FLUXNET sites and was found not be a good factor in our initial analysis, and thus, later, we dropped this variable. In addition, our integrated hydrological modelling suggests that fully accounting soil moisture stress is essential to accurately model watershed scale ET and streamflow (Caldwell et al., 2012).

Model evaluation and limitation of the ET models and flux data. This study advances the lumped ET modelling approach previously presented by Sun et al. (2011a, 2011b) that used only 13 sites with limited ecosystem types represented. Here, we confirm that ecosystem-specific models are preferred in regional ecosystem flux upscaling and predictions (Xiao et al., 2012, 2014), especially for shrub lands and savannas. However, differences in species composition, plant stomatal conductance, phenology, age, and soil properties within the same ecosystem type may still contribute to modelling errors. Future studies should consider ecosystem properties such as canopy conductance and plant hydraulic conductivity at the species level. Other ET processes such as root hydraulic redistribution have not been included in a monthly scale model, but their cumulative effects can be significant (Domec et al., 2012b).

There are a few known sources of errors in measuring LE (i.e. ET) by the eddy covariance method (Leuning et al., 2012), including issues related to equipment that measures surface temperature (Kalma and Jupp, 1990) and wind speed (e.g. ultrasonic anemometers) (Nakai and Shimoyama, 2012). Along with the inevitable measurement errors, unknown disturbance, and instrument failure, deficiency of gap-filling techniques all contribute to the uncertainty of LE and thus accumulated monthly ET values. However, it is unclear if the systematic errors associated with eddy covariance instruments are also important for ET estimates at the ecosystem/landscape scale. A comprehensive review by Foken (2008) concluded that the eddy covariance method itself is designed for measuring energy fluxes for small, homogenous areas, and ET estimates are generally underestimated in most cases. Thus, Foken argued that the energy imbalance issues are scale problems and not necessarily instrument errors (also see Shao et al., 2014). In our study, the energy closure was 88 ± 1% for 6725 site-months records and was consistent with the findings of Wilson et al. (2002). The incomplete energy balance closure at FLUXNET sites caused under-estimation of H and LE at a mean value of 12% in our study. The correction methods applied in this study to remedy energy closure errors could not guarantee that the ET estimates were correct because the method assumed approximately constant H/LE ratios.

As an essential input to our models, LAI derived from MODIS has significant uncertainty. Quite often, ground-based measurements of forest LAI are lower than LAI derived from MODIS especially for multi-layer forest stands. The monthly LAI is unrealistic in some cases. For example, at the Blodgett Forest site in California, LAI fell abruptly by 1.0 (m² m⁻²) in September 2001 but elevated back to a higher value in the following month. This abnormal phenomenon should not have occurred in an evergreen forest. Previous research by Cohen et al. (2006) also found that daily MODIS LAI fluctuated unrealistically. The misclassification of vegetation types also increased the errors of estimation when computing LAI by different
become more problematic because of LAI values at the high end of the spectrum were often found to be much higher that measured in the field. For example, the reported LAI for the US-SP2 site in 2000 was greater than 3.5, but the field measured value was less than 1.0 (Bracho et al., 2012). Such estimation errors in LAI could introduce uncertainty to model development and applications. Future studies should combine other remote sensing techniques, such as high resolution Landsat imagery to characterize LAI dynamics with a higher spatial resolution. Bridging the gaps between large spatial and temporal coverage (e.g. MODIS data) and flux footprint with spatial and spectral information from multiple sensors (e.g. Landsat) will improve the estimation of ET for a large area (Gray and Song, 2012).

Our previous work (Sun et al., 2011a, b) and the current study show that PET, LAI, Rn, VPD, and water availability (SWC, P) in some cases are key variables for developing general predictive models at the monthly scale. However, because Rn and VPD were not readily available for regional applications, this study provided another set of ET models, referred as Type II, so that ET can be estimated at a regional scale despite the lack of Rn and VPD data. Our study actually indicated that adding more climate variables may not improve ET predictions when all ecosystems are considered (see Equations 1–3).

CONCLUSIONS

This multi-ecosystem study provided general relationships among terrestrial water loss, energy, water availability, and vegetation dynamics at a fine temporal scale (i.e. monthly) – a scale that most regional scale hydrological models use for global change studies. We developed three types of empirical ET models that have the potential to estimate monthly ET at ecosystem-to-regional scales with reasonable accuracy under mean climate conditions. Ultimately, the accuracy of ET estimates by modelling depends on data availability of both climate and biophysical parameters of ecosystem structure. Embedding the ET models developed in this study in integrated hydrological model may help to constrain the accuracy of predicting ET and other hydrologic fluxes. Accurately estimating seasonal ET remains to be difficult when ecosystem structure information and ET processes for different land covers are not well characterized. Future studies should evaluate and improve the monthly ET models by comparing modelling results with other ET products, such as results from ecosystem models and upscaling approaches, remote sensing products, sapflow, and soil water balance based estimates in different regions with different climatic and physiographic conditions.

ACKNOWLEDGEMENTS

This study was supported by the USDA Forest Service Eastern Forest Environmental Threat Assessment Center and by the DOE–BER Terrestrial Ecosystem Sciences Program (11-DE-SC-0006700-ER65189). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux [U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)], AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and the United States China Carbon Consortium (USCCC). We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada, and U.S. Department of Energy, and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California, Berkeley, and University of Virginia. This work also used MODIS land subset (Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2011. MODIS subsetted land products, Collection 5). We thank the anonymous reviewers for their constructive comments on the manuscript.

REFERENCES

Copyright © 2015 John Wiley & Sons, Ltd.

Hoy C. 2012. A hydrologic characterization of three headwater mountain wetlands in eastern Kentucky, USA. M.S. Thesis. University of Kentucky, USA.

