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Development of efficient forest wildfire policies requires an understanding of the underlying reasons
behind forest fire occurrences. Globally, there is a close relationship between forest wildfires and human
activities; most wildfires are human events due to negligence (e.g., agricultural burning escapes) and
deliberate actions (e.g., vandalism, pyromania, revenge, land use change attempts). We model the risk of
wildfire as a function of the spatial pattern of urban development and the abandonment/intensity of
agricultural and forestry activities, while controlling for biophysical and climatic factors. We use a count
data approach to model deliberately set fires in Galicia, N.W. Spain, where wildfire is a significant threat
to forest ecosystems, with nearly 100,000 wildfires recorded during a thirteen-year period (1999—2011).
The spatial units of analysis are more than 3600 parishes. Data for the human influences are derived from
fine-resolution maps of wildland—urban interface (WUI), housing spatial arrangements, road density,
forest ownership, and vegetation type. We found wildfire risk to be higher where there are human
populations and development/urbanisation pressure, as well as in unattended forest areas due to both
rural exodus and a fragmented forest ownership structure that complicates the profitability of forestry
practices. To better help direct management efforts, parameter estimates from our model were used to
predict wildfire counts under alternative scenarios that account for variation across space on future land-
use conditions. Policies that incentivize cooperative forest management and that constrain urban
development in wildlands at hotspot fire locations are shown to reduce wildfire risk. Our results high-
light the need for spatially targeted fire management strategies.

© 2014 Elsevier Ltd. All rights reserved.

Keywords:

Wildfire risk

Spatial distribution

Urban development pressure
Deliberate-caused fires
Wildland—urban interface

Introduction

Forestlands are increasingly exposed to multiple disturbances
such as those associated with wildfires, storms, or pest outbreaks
which can cause important losses to biodiversity and the provision
of valuable ecosystem services (Holmes, Prestemon, & Abt, 2008).
In Europe over the period 1990—2012, the average annual number
of wildfires was 81,000, burning about 530,000 ha forest area. In
the Mediterranean region, in countries such as Spain and Portugal
where human-caused fires dominate, the data are of particular
concern for policy makers: from 1990 to 2012, there has been an
annual average of 18,000 and 23,000 forest fires, burning about
123,000 and 140,000 ha annually, respectively (European
Commission, 2013). Figures of this magnitude highlight the need
to reduce wildfires as an issue of major public concern, and justify

* Corresponding author. Tel.: +34 881 811549.
E-mail addresses: marisa.chas@usc.es (M.L. Chas-Amil), jprestemon@fs.fed.us
(J.P. Prestemon), colin.mcclean@york.ac.uk (CJ. McClean), julia.touza@york.ac.uk
(J. Touza).

http://dx.doi.org/10.1016/j.apgeog.2014.11.025
0143-6228/© 2014 Elsevier Ltd. All rights reserved.

targeted fire management strategies aimed at the underlying so-
cioeconomic drivers.

The literature on the causes of wildfires accepts the significant
role of human behaviour in increasing the risk of fires through: land
use (Badia, Serra, & Modugno, 2011; Catry, Rego, Bacao, & Moreira,
2009); population density (Marques et al. 2011; Sebastian-Lopez,
Salvador-Civil, Gonzalo-Jiménez, & SanMiguel-Ayanz, 2008); road
densities (Narayanaraj & Wimberly, 2012); forest land tenure
(Cardille, Ventura, & Turner, 2001; Padilla & Vega-Garcia, 2011);
labour market opportunities (Martinez, Vega-Garcia, & Chuvieco,
2009; Prestemon & Butry, 2005; Prestemon, Chas-Amil, Touza, &
Goodrick, 2012). Moreover, the spatial pattern of wildfire risk is also
receiving increasing attention, as fires are rarely randomly
distributed across landscapes, i.e., they are often concentrated in
certain locations (Genton, Butry, Gumpertz, & Prestemon, 2006;
Hering, Bell, & Genton, 2009; Kwak et al. 2012). Consequently,
many studies assert that only by taking into account the spatial
arrangement of fires and their socioeconomic drivers, will it be
possible to substantially advance in the understanding of this risk
across landscapes and help direct management efforts (Prestemon
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& Butry, 2005; Syphard et al. 2007). This is because human factors,
as those mentioned above, are themselves also spatially structured.
Therefore, the predictive ability of any wildfire risk model may be
limited without accounting for the heterogeneous distribution of
these socioeconomic factors across the landscape. Spatial and
spatio-temporal clusters of wildfires may also be manifested
through copycat or serial firesetting behaviour, i.e., fires ignitions
that have the potential for cascading effects in nearby areas (serial)
or distant areas (copycat) (Prestemon et al. 2012). Therefore, the
analysis of fire management strategies to minimise fire risk should
include spatial targeting measures, in contrast to the spatial
insensitivity of general prescriptions across regions/nations that
may result from non-spatially based research on fires.

Here, we model the wildfire risk at a fine (local) spatial scale,
focussing on the effects that human population, urban develop-
ment patterns, and the abandonment/intensity of agricultural and
forestry activities have on the probability of wildfire occurrence. In
addition, to better understand this risk and to guide policy as-
sessments, we use parameter estimates from our models to predict
wildfire counts under various future scenarios that evaluate
changing land-use conditions across the study area.

Our focus is on addressing the spatial heterogeneity of the
incidence of wildfires and their underlying human related drivers,
taking as a case study the region of Galicia in northwestern Spain. In
this region, deliberately-caused fires expose the territory to an
unusual fire regime with extreme fire frequency, in spite of the fact
that climatic conditions would not generally favour wildfire
occurrence (Vazquez de la Cueva et al., 2006). Nearly all wildfires in
the region are human-caused; approximately 82% are set with
illegal intent typically labelled “arson”, and only 5% are either
ignited accidentally or through negligence' (Chas-Amil, Touza, &
Prestemon, 2010). These intentionally caused wildfires may be
related to pyromania, revenge, resentment against forestry policies,
attempts to increase land value, or even to the use of fire in agri-
cultural/livestock activities in cases where the responsible person
does not undertake the necessary precautions established by law
and has not obtained the corresponding burn permit. More than
30% of annual forest fires in Spain are located in Galicia, reaching
values as high as 50% in some years, even though the region rep-
resents only 6% of Spanish territory. Previous research that
modelled fire risk at the national level for Spain has been hampered
by poor statistical fit of their models for the region of Galicia,
because the high fire occurrence in this region creates a spatial
imbalance in Spanish-scale wildfire models (Martinez et al. 2009;
Padilla & Vega-Garcia, 2011). We therefore seek to extend this
literature by focussing on Galician biophysical, climatic and socio-
economic conditions, using data derived from fine-resolution maps,
estimating count data models to improve existing understanding of
the high vulnerability to wildfire events in this area of Spain.

We also develop further previous work, which has found
higher wildfire intensity in wildland—urban interface (WUI) areas
(Chas-Amil, Touza, & Garcia-Martinez, 2013; Herrero-Corral,
Jappiot, Bouillon, & Long-Fournel, 2012; Lampin-Maillet et al.
2010). WUI areas are increasing worldwide predominantly due to
(i) urbanized spaces colonizing forested areas and (ii) forestland
that is colonizing rural areas due to the rural population exodus
(e.g., Hammer, Radeloff, Fried, & Stewart, 2007; Montiel & Herrero,
2010; Theobald & Romme, 2007). This work illustrates how these
factors that influence on WUI expansion also affect wildfire risk.
Thus, we found that fire counts are higher where there are higher
human populations and development/urbanisation pressure, as

! The remaining is explained by lightning (1%), unspecified (unknown) reasons
(9%), and reproduced (reignited) fires (3%).

well as in unmanaged forest areas, due to both rural exodus with
the consequent expansion of shrublands in abandoned land, and a
fragmented forest ownership structure that complicates the prof-
itability of forestry practices.

Our investigation is organized around three key questions. First,
what is the spatial distribution pattern of wildfire risk? Second,
how do human factors explain the spatial pattern of (mostly
deliberate) wildfire ignitions? Finally, how might wildfire occur-
rence change with higher proportions of cooperatively managed
forest and with future expansion of urban uses?

Materials and methods
Study area

Galicia is located on the western edge of Europe. Its ancient
mountains, with an average elevation of 508 m, characterize the
territory. In winter, the climate is characterised by Atlantic storms,
which leave heavy rains and winds predominantly from the
southwest, while in Summer northeast winds bring mainly dry
weather. The annual mean temperature is 13 °C, with remarkable
differences between the coastal and continental temperatures; at
the same elevation, in summer (winter), temperatures are on the
order of 2° higher (5° lower) in the continental part. Thus, the
lowest temperatures can be observed in the interior, where the
highest mountains are located, with average minimum tempera-
tures around 5 °C. Summers are warm, particularly in the south-
east of the area, with maximum temperatures exceeding 30 °C.
Annual rainfall ranges between 1600 and 1900 mm at the coast on
the southwest of the region, while the interior is drier, with
rainfall oscillating between 800 and 1000 mm (Lorenzo, Iglesias,
Taboada, & Gémez-Gesteira M, 2010).

Forests cover nearly 70% of its territory, and approximately 67%
of this forestland is wooded. Pinus pinaster (28%), Quercus robur
(13%), Eucalyptus globulus (12%) and Quercus pyrenaica (7%) are the
main species in monospecific stands. Mixed stands are very het-
erogeneous but are dominated by P. pinaster and the introduced
exotic, Eucalyptus globulus. In fact, more than half of the total
wooded-land is covered by these two species. Other tree species,
such as Pinus sylvestris, Pinus radiata and Castanea sativa are less
common. Publicly owned forestlands are negligible (around 1%),
and private lands can either be owned by a single individual or
collectively, where ownership is shared by a group of individuals in
the same community. Individual private ownership represents 68%
of the forestland, while 30% is under collective private ownership.
Collective ownership forest holdings average 221 ha, while indi-
vidual property plots average between 1.5 and 2 ha (GEPC, 2006).

We opted for parishes as the geographical unit for the analysis
because they are the smallest administrative unit that divides the
territory and are compatible with the scale of all of our datasets.
Parishes are an important social division in Galicia given that
population is highly dispersed. There are 3780 parishes, with a
mean size of 779 ha and a standard deviation of 664 ha. Specifying
the parish as the spatial unit of inference for our analysis also has
the advantage that socioeconomic characteristics are likely to be
homogeneous within these small geographical areas. In order to
focus on the interactions between human presence and forest fires,
we excluded the following parishes: two islands, two with no
population, and fifteen that have no forestland.

Dataset development
Dependent variable

The wildfire data cover a 13-year series of reported fire events
(1999—2011) with a total of 99,923 reported forest fires burning
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387,522 ha. These data were obtained from the National Forest Fires
Database (EGIF), compiled by the Spanish Forest Service and the
Rural Affairs Department of the Regional Government. Wildfire
reports include area burned, date and estimated time of ignition,
weather conditions, fire location, causes, and fire fighting measures
applied. From the wildfires in the database, we assembled a dataset
of total counts of reported wildfires for each of the Galician parishes
during the 13-year span covered by our analysis.

Explanatory variables

We consider a number of societal factors that may influence
human-ignited wildfires, focussing on human population, devel-
opment pressures and agricultural and forestry land-use activities.
Overall, the variables selected have been associated with fire risk
because they: may affect fuel characteristics; segregate the land-
scape affecting forest fragmentation; determine the accessibility to
forests; and capture important land-use social conflict aspects
(Arndt, Vacik, Koch, Arpaci, & Gossow, 2013; Carmo, Moreira,
Casimiro, & Vaz, 2011; Catry et al. 2009; Martinez et al. 2009;
Mercer & Prestemon, 2005; Moreira, Vaz, Catry, & Silva, 2009;
Narayanaraj & Wimberly, 2012). Moreover, our modelling con-
trols for explanatory variables related to topographic and climatic
conditions. Slope and elevation are often used to explain fire
occurrence due to their influence in local climate, vegetation
types, distribution of fuels, and accessibility (e.g., Carmo et al.
2011; Prestemon et al. 2013). Similarly, meteorological variables
are widely accepted to have important influences on wildfire
occurrence (Viegas, Bovio, Ferreira, Nosenzo, & Sol, 2000). In the
study area, where human-caused forest fires are dominant, it is
expected that the best time for intentional firesetting is on dry,
warm, and calm wind days, with favourable fuel flammability
conditions that make ignition more successful (Prestemon et al.
2012). Dummy variables indexing historical (1991—-1998) wildfire
activity were also included in the modelling to capture potential
persistent wildfire risk over the long-run, indicating that there are
factors not easily measurable, such as the presence of serial or
copycat firesetters who reside in the vicinity of hotspot parishes
(Prestemon et al. 2012). The selection of explanatory variables is
summarised in Table 1 along with a review of such in the
literature.

The sources and mapping process used in developing the
explanatory variables are as follows.

(i) Agriculture, forestland cover and forest ownership: This infor-
mation was obtained from the Third Spanish Forest In-
ventory cartography (1:50,000) for Galicia, covering the
period 1997 and 1998. These maps describe the boundaries
enclosing a patch (i.e., area under a single cover category)
and provide a detailed description of forest species cover.
This inventory distinguishes between land with tree crown
cover, or equivalent stocking level, of at least 5% (wooded
land) and of less than 5% (other wooded land). We derived
information on dominant forest vegetation, depending on
whether the forest is comprised mainly of conifers, euca-
lyptus, or other broad-leaved species. Area of forest planta-
tions is defined as a subset of forest consisting primarily of
conifers and eucalyptus species. Forest ownership status was
included, distinguishing between individual private owner-
ship and communal ownership parcels.

(ii) Population density was calculated as the mean of a parish's
population during the study period, divided by its
geographical area. Population data were obtained from the
Spanish Statistical Institute (INE).

(iii) Rural exodus was estimated as the level of reduction in the
parish's population from 1999 to 2011. We calculated the

compound annual growth rate of the population for all
parishes, and wused this rate in absolute terms for
those parishes in which there was a reduction in the
population.

(iv) Unemployment data were collected from the Public Employ-
ment Service at the municipality level and assigned to all
parishes belonging to the municipality. The unemployment
rate was calculated over total population, obtained from
municipal administrative records, because data on the size of
the economically active population are not available at the
municipality level.

(v) Road density was computed based on the road network ob-
tained from the National Topographic Base 1:25,000 (BTN25)
(®Spanish Geographic Institute).

(vi) Wildland-urban interface (WUI) was defined as the intersec-
tion of the forest area and/or forest influence areas (up to
400 m from forestland) with a buffer of 50 m around
buildings, where bush clearing is compulsory by law.” The
number of hectares under WUI per parish was obtained from
Chas-Amil et al. (2013), expressed in our analysis as the
proportion of total parish area occupied by the WUL

(vii) Spatial arrangement of buildings was obtained from Chas-
Amil et al. (2013) which distinguished between isolated-
dispersed, and densely clustered building areas. Densely
clustered building structure locations are defined as those
with clusters of 8—155 buildings located less than 50 m
apart. Note that about 47% of the WUI in the case study re-
gion and 60% of the buildings fall under this category.

(viii) Topographic variables were calculated using the Spatial An-
alyst extension to ArcGIS® 9.3.1 by ESRI to derive the slope,
elevation, aspect, and curvature based on a 10 m spatial
resolution digital elevation model (DEM) (1:5000 scale),
developed by SITGA. For each parish, we calculated the slope
in percentage (maximum, mean, minimum, and range) and
elevation in meters (mean and range). Aspect, defined as the
slope direction, was processed considering its circular scale
(0—360°); by dividing the aspect cells values into 8 intervals
of 45° (N, NE, E, SE, S, SW, W or NW) and flat. Curvature of the
surface represents the variation in elevation around a cell,
showing the relief characteristics. It indicates if the topo-
graphical surface is concave (negative), convex (positive) or
flat (zero). We divided the curvature distribution among low
(from -0.25 to 0.25), medium (from -0.5/0.25 to
—0.25—0.5), high (from —0.75/0.5 to —0.5/0.75), and extreme
curvature (<0.75 or >0.75). Our dataset includes the area of
each parish that corresponds to each interval defined above
for aspect and curvature.

(ix) Meteorological information on mean annual temperature
(maximum, mean, and minimum) and mean annual precip-
itation by parish were extracted from the Digital Climatic
Atlas of the Iberian Peninsula (Ninyerola, Pons, & Roure,
2005), with a spatial resolution of 200 m. This atlas is
spatially interpolated from meteorological stations and data
reported for more than 20 years.

(x) Number of fires by parish in the years prior to the study period
(i.e., 1991-1998)° was included in the model through three
dummy variables that take into account: if the number of
fires has been between 10 and 20; between 20 and 30; or
more than 30.

2 Law 3/2007 of April 9, 2007, addressing the issues of wildfire prevention and
suppression, as modified by Law 7/2012 of June 28, 2012.

3 Available data on reported fire ignitions prior to 1991 have no location infor-
mation, and therefore could not be used for this study.
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Variables Data source Description Units Some references where similar variable is used
Land cover
Agriculture land Third Spanish Forest Inventory Area of agricultural land ha Badia et al. (2011), Catry et al. (2009), Kalabokidis,
cartography (1:50,000). MARM. Koutsias, Konstantinidis, and Vasilakos (2007),
Martinez et al. (2009), Sebastidn-Lépez et al. (2008),
Sturtevant and Cleland (2007), Vasconcelos et al.
(2001)
Forest area: Third Spanish Forest Inventory Area with tree crown cover, or ha Catry et al. (2009), Gonzalez and Pukkala (2007),
- Wooded forestland cartography (1:50,000). MARM. equivalent stocking level of: Magnussen and Taylor (2012), Martinez et al.
- Non wooded forestland - higher than 5% (2009), Prasad, Badarinath, and Eaturu (2008),
- lower than 5% Sturtevant and Cleland (2007), Vasconcelos et al.
(2001), Verdu et al. (2012)
Broadleaves area Third Spanish Forest Inventory Area dominated by broadleaves ha Badia et al. (2011), Calef, McGuire and Chapin
cartography (1:50,000). MARM. (2008), Gonzalez and Pukkala (2007), Kalabokidis
et al. (2007), Reineking et al (2010), Syphard et al.
(2007), Verdd et al. (2012)
Forest plantations Third Spanish Forest Inventory Area of planted forest ha Reineking et al (2010), Sturtevant and Cleland
cartography (1:50,000). MARM. consisting primarily of (2007)
introduced species.
Forest land tenure: Third Spanish Forest Inventory Area ha Cardille et al. (2001), Martinez et al. (2009), Padilla
Single private ownership cartography (1:50,000). MARM. and Vega-Garcia (2011)
Communal private
ownership
Human factors
Population density Nomenclator (INE) Mean of parish's population in Hab/ha Brosofske, Cleland and Saunders (2007), Cardille
the period divided by parish et al. (2001), Catry et al. (2009), Magnussen and
area Taylor (2012), Mercer and Prestemon (2005),
Miranda, Sturtevant, Stewart, and Hammer (2012),
Narayanaraj and Wimberly (2012), Padilla and
Vega-Garcia (2011), Prasad et al. (2008), Sebastian-
Lopez et al. (2008), Sturtevant and Cleland (2007),
Syphard et al. (2007)
Rural exodus Nomenclator (INE) Compound annual growth rate % Martinez et al. (2009), Sturtevant and Cleland
of the population in absolute (2007)
terms for those parishes in
which there was a reduction in
the population.
Unemployment rate Population Census (2001) Mean rate % Butry and Prestemon (2005), Martinez et al. (2009),
Municipal data Mercer and Prestemon (2005), Oliveira et al. (2012),
Prestemon and Butry (2005), Prestemon et al.
(2012), Prestemon and Butry (2008), Sebastidn-
Lépez et al. (2008)
Road density: Base Topografica Nacional m of roads included in the m/m? Brosofske et al. (2007), Cardille et al. (2001),
Highways (BTN25) (1: 25,000) parish divided by parish area Martinez et al. (2009), Narayanaraj and Wimberly
Conventional roads, (2012), Oliveira et al. (2012), Padilla and Vega-
Rural roads Garcia (2011), Sebastidn-Lopez et al. (2008),
Sturtevant and Cleland (2007), Syphard et al.
(2007), Syphard et al. (2008), Vilar, Woolford,
Martell, and Martin (2010)
Wildland-urban interface Chas-Amil et al. (2013) Area ha Martinez et al. (2009), Narayanaraj and Wimberly
(2012), Syphard et al. (2008), Vilar et al. (2010)
Dense built area Chas-Amil et al. (2013) Areas with clusters of 8—155 ha Miranda et al. (2012), Oliveira et al. (2012),
buildings located less than 50 m Sturtevant and Cleland (2007)
apart
Topographic variables
Slope 10 m Digital Elevation Model Mean, minimum, maximum % Badia et al. (2011), Calef et al. (2008), Gonzalez and
(1:5000). SITGA. and standard deviation of the Pukkala (2007), Kalabokidis et al. (2007),
parish slope. Narayanaraj and Wimberly (2012), Padilla and
Vega-Garcia (2011), Prasad et al. (2008), Sebastian-
Lopez et al. (2008), Syphard et al. (2008),
Vasconcelos et al. (2001), Verdd et al. (2012)
Aspect 10 m Digital Elevation Model Area in each interval of 45° (N, ha Calef et al. (2008), Gonzalez and Pukkala (2007),
(1:5000). SITGA. NE, E, SE, S, SW, W or NW) and Kalabokidis et al. (2007), Oliveira et al. (2012),
flat Padilla and Vega-Garcia (2011), Prasad et al. (2008),
Sebastian-Lopez et al. (2008), Syphard et al. (2008),
Vasconcelos et al. (2001)
Elevation 10 m Digital Elevation Model Mean and range elevation m Brosofske et al. (2007), Catry et al. (2009), Gonzalez

(1:5000). SITGA.

observed in the parish.

and Pukkala (2007), Kalabokidis et al. (2007),
Marques et al. (2011), Narayanaraj and Wimberly
(2012), Padilla and Vega-Garcia (2011), Prasad et al.
(2008), Sebastian-Lopez et al. (2008), Syphard et al.
(2008), Vasconcelos et al. (2001), Verdu et al.
(2012), Vilar et al. (2010)

(continued on next page)



168 M.L. Chas-Amil et al. / Applied Geography 56 (2015) 164—176

Table 1 (continued )

Variables Data source Description Units Some references where similar variable is used
Curvature 10 m Digital Elevation Model Area in each curvature class: ha Narayanaraj and Wimberly (2012), Prasad et al.
(1:5000). SITGA. Low (0.2—0.25) (2008)
Medium (0.5/0.25—0.-0.25
—0.5)
High (0.75/0.5—0.5/0.75)
Extreme (<0.75 or >0.75)
Meteorological variables
Temperature Digital Climatic Atlas of the Annual mean, maximum, °C Alberston et al. (2010), Badia et al. (2011), Calef

Iberian Peninsula- spatial mininum
resolution 200 m (Ninyerola

et al. 2005). Monthly data.

Precipitation Digital Climatic Atlas of the Annual mean
Iberian Peninsula- spatial
resolution 200 m (Ninyerola

et al. 2005). Monthly data.

et al. (2008), Cardille et al. (2001), Kalabokidis et al.
(2007), Magnussen and Taylor (2012), Miranda et al.
(2012), Narayanaraj and Wimberly (2012), Oliveira
et al. (2012), Padilla and Vega-Garcia (2011), Pew
and Larsen (2001), Prasad et al. (2008), Prestemon
et al. (2012), Syphard et al. (2008), Verdd et al.
(2012), Vilar et al. (2010)

1/m? Alberston et al. (2010), Badia et al. (2011), Brosofske
etal. (2007), Calef et al. (2008), Cardille et al. (2001),
Kalabokidis et al. (2007), Magnussen and Taylor
(2012), Miranda et al. (2012), Narayanaraj and
Wimberly (2012), Oliveira et al. (2012), Padilla and
Vega-Garcia (2011), Pew and Larsen (2001),
Plucinski et al. (2014), Prasad et al. (2008),
Prestemon et al. (2012), Sturtevant and Cleland
(2007), Verdd et al. (2012), Vilar et al. (2010)

In addition to the above factors, it is important to include a
parish-level exposure to risk variable in the fire occurrence predic-
tion model. The number of hectares under forestland was taken as a
good measure of an exposure variable.

Modelling approach

Question 1: what is the spatial distribution of wildfires?

To investigate if the distribution of wildfire occurrence is
spatially clustered, we calculated global and local measures of
spatial association using Global Moran's I statistics (Anselin, 1995),
and the Getis and Ord (1992) Gi* statistics allow hotspot analysis.
The Global Moran Index ranges from —1 to 1, taking a value
approaching to zero when there is a random spatial pattern. A
positive (negative) value for Moran's I indicates that parishes have
neighbouring parishes with a similarly (dissimilarly) aggregated
number of fires over the studied period. For statistical hypothesis
testing, Moran's I values are transformed to z-scores, with a z-score
near zero indicating no apparent clustering, and a positive (nega-
tive) value indicating clustering of parishes with a high (low) fire
incidence risk rate.

Getis-Ord Gi* identifies whether a local pattern of forest fire
occurrence for a given parish and its neighbours is different from
what is generally observed across the whole study area. It computes
a z-statistic by comparing the proximity-weighted sum of total fires
at a particular parish to the sum across the entire sample in order to
identify areas of more intense clustering of high (low) forest fire
occurrence. A positive high (low negative z-score) z-score (p-
value < 0.10) indicates areas of unusual high (low) risk indicating
likely “hot spot” (“cold spot”) areas across the region. A z-score near
zero (p-value > 0.10) indicates no apparent spatial clustering. To
summarize the spatial relation between parishes, we used a binary
matrix of spatial weights considering polygon queen contiguity.
The calculation of Global Moran's I and Gi* statistics was conducted
using the Hot-Spot analysis function in ArcGIS 10.1.

Question 2: how does human presence explain the spatial pattern of
(mostly deliberately-caused) wildfires?

This study models the number of fire events per parish during
the 13-year study period. Unlike logit and probit approaches (e.g.,

Alberston, Aylen, Cavan, & McMorrow, 2010; Chang et al. 2013;
Martinez et al., 2009; Padilla & Vega-Garcia, 2011), which are
based on the idea of a threshold-crossing latent probability of a fire
variable with a modelled dependent variable binary counterpart,
count data approaches assume a dependent variable resulting from
an underlying discrete probability distribution. The expected
number of wildfires per parish i, E[y;|x;] = x; is linked to the
explanatory variables using a log-linear relationship, and the par-
ish's forest area, F; as an exposure variable:

K
log(u;) = log(Fy) + > _ BiXik
k=0

where the x;j;'s represent the explanatory variables and the fj's are
the estimable coefficients representing the effects of the covariates.
Poisson regression is often the first choice for modelling count data,
but recent research indicates that fire ignition data are likely to be
overdispersed (e.g., Kwak et al. 2012; Plucinski, McCaw, Gould, &
Wotton, 2014). Our wildfire data has an obvious signal of over-
dispersion, with an average number of forest fires per parish of 26.4
and variance of 1376.9. The existence of overdispersion causes an
underestimation of the real variance, yielding attenuated standard
errors and inefficient though unbiased parameter estimates
(Cameron & Trivedi, 2005). Rather than constrain our model esti-
mates to the mean-variance equality assumption, we assume that
our dependent variable stems from a negative binomial data dis-
tribution (i.e., a Poisson gamma mixture), which requires estima-
tion of an overdispersion parameter in addition to the conditional
mean. Thus, the negative binomial regression relaxes the assump-
tion that the mean of fire frequency equals the variance by adding
an error term to the expected wildfire frequency (u;) such that

K
log(r) = log(Fy) + > BiXik + &
k=0

where ¢ is assumed to be independent of the covariates and follows
a gamma distribution with mean one and variance «. We estimate a
Generalised Linear Model (GLM) NB2 negative binomial
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specification, with a log-link function, which allows the mean to
differ from the variance

Var(y;) = pi + au?

Here, « is used as a measure of dispersion. If the value of this
overdispersion parameter is zero, then « = 0, the NB2 collapses to
the Poisson model, producing the equidispersion property. The
Langrange multiplier test and boundary likelihood ratio test (Hilbe,
2011) were used to support the appropriateness of using the
negative binomial regression as opposed to a Poisson model. The
Tukey-Pregibon link test (Hilbe, 2011) for generalized linear models
was used to check if the logarithmic link function assumed was
adequate.

In order to make our estimation robust to heteroskedasticity and
any spatial correlation due to wildfire data from locations close to
each other having more similar values than those farther apart, we
utilize cluster-robust standard errors with clusters defined over
municipalities (i.e., 313 clusters) (Cameron & Trivedi, 2005; Hilbe,
2011). We estimate our models using STATA® 11.2.

Correlation between variables in Table 1 was assessed, and a
correlation limit of 0.5 was used for those variables included in the
model. The AIC (Akaike Information Criterion) and pseudo-R? (p?)
were used to assess if dropping individual variables that were not
statistically significant (p-value > 0.1) had a significant effect on
the model fit. For instance, aspect and curvature were found to be
statistically insignificant in a preliminary estimate and were
therefore omitted from the final set of explanatory variables. The
square, square root, and logarithmic terms of the variables were
investigated for possible inclusion in the model using a multivar-
iable fractional polynomials approach (Royston & Ambler, 1998).
Summary statistics of the dependent, exposure, and explanatory
variables included in the model are presented in Table 2. The
Anscombe and Pearson residuals were used to evaluate the pres-
ence of unusual observations (outliers), and the presence of spatial
autocorrelation. If spatial autocorrelation still exists in the re-
siduals of an econometric model of spatial data, the independence
and identically distributed assumption of the residuals is violated,
compromising inference. It causes standard errors to be artificially
low, and coefficients may appear significant when they are not
(i.e., inflates type I errors) (Anselin, 2002; Dormann et al. 2007).
The presence of residual spatial autocorrelation was examined
using correlogram plots of the residuals, which measure the sim-
ilarity of the residuals between observations as a function of
geographical distances between the observations. Finally, note that
extreme outliers, defined as parishes with more than 118 fires
(three times the interquartile range) in either of the last two de-
cades, were excluded. The final dataset contains 96% of the initial
observations.

Question 3: how does wildfire occurrence change as a result of the
effect of cooperative forest management and future expansion of
urban uses?

We estimated the magnitude of change in fire counts that might
result from future changes in urbanisation pressures (i.e., expan-
sion of the WUI) and in forest ownership arrangements (i.e., pro-
moting joint management of individually owned small parcels). We
used parameter estimates from the negative binomial model to
simulate the effects of plausible scenarios. From these analyses we
derived the total predicted change in wildfires in the region and the
effects of the changes on the spatial arrangement of wildfire oc-
currences. This allows us a more complete understanding of the
underlying socioeconomic processes that produce wildfires,
enlightening the effects of factors that are under the control of
policy planners and/or controlled by people. For example,

municipal, regional, or national policies may govern how land is
used—encouraging or discouraging building houses at specific lo-
cations which may alter the prevalence of WUI conditions in par-
ishes. Similarly, sustainable forest management might be favoured
or discouraged by subsidies related to afforestation and restoration
measures, or by ordinances (e.g., Galician Forestry Law 7/2012, June
28, 2012) that affect the importance of forestry land use in relation
to other land uses in the region and may determine the level of
silviculture practices, or the lack of them, and therefore the avail-
ability of fuel.

The scenarios considered are as follows:

(A) Expanded use of joint management of forest parcels through
associations of single private owners. In this scenario we simulate
that a policy to incentivize jointly/cooperative management will
affect 25% of the forest under single private ownership in each
parish. This effect was modelled through the corresponding in-
crease in the variable communal forestlands, as each cooperative of
single private owners are expected to “act” as a management unit,
and therefore become comparable to communal forest
management.

(B) Expansion of the proportion of land classified as WUL Here,
we conducted several versions of this simulated expansion. (1) An
increase by 20% in the proportion of WUI areas in all parishes. This
simulation provides us with a general appreciation of the effects of
WUI land use on overall wildfire activity in the region. (2) The same
simulation as in (1) but taking into account that such increases in
the WUI are expected to be associated with changes in other so-
cioeconomic variables: building density, conventional road den-
sities, and local/rural road densities. To generate changes in each of
these other variables, which were found to be significantly and
positively correlated with WUL* we estimated simple linear re-
gressions of each of the variables against a constant and the pro-
portion of WUI in the parish. The parameters estimated from these
regressions were used to predict new levels of each of these vari-
ables, and these new levels were included in the prediction of
wildfire counts given the WUI expansion (e.g., Ahn, 1996). (3) An
increase by 20% in the proportion of WUI areas only in those par-
ishes identified as hotspot areas taking into account also changes in
the significantly correlated variables for those hotspot parishes
where the WUI is assumed to increase. In order to be consistent
with the previous simulation, correlated variables were the same as
above, even though, rural exodus and agriculture, both positively
correlated with WUI, met the criteria to have been included in this
numerical analysis. This scenario allows us to identify the potential
wildfire consequences of a continued increasing trend of the WUI
in places most vulnerable to fires, as hotspot parishes were defined
as those with high fire incidence that are surrounded by parishes
with high fire risk as well. Following the results of the hotspot
analysis, this scenario implies changes in simulated drivers in 596
parishes.

In all sensitivity analyses, the simulated number of wildfires is
compared with the expected number of fires when the perturbed
variables are set at their unperturbed (observed) values. The sig-
nificance of simulated changes in wildfire is done with boot-
strapping (1000 iterations). Bootstraps are performed with iterated
random sampling with replacement of an equal number of obser-
vations as included in the original model estimate. Within each of
the 1000 iterations, the estimated model parameters are used to
predict the count of wildfire in each parish, with and without the
simulated change. In the prediction step, outlier parishes are
included.

4 These variables had a correlation coefficient with the WUI of 0.3 or higher.
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Table 2
Descriptive statistics for dependent and independent variables.

Variables (units)/Description Statistics

Mean Std. Dev. Min. Max.
Total fires per parish 2141 23.31 0 117
Deliberately-caused fires per parish 17.09 20.23 0 111
Area forest (ha) 512.42 538.65 1.58 6538.35
Total forest area per parish
Parish agriculture (%) 34.32 19.40 0.00 99.26
Proportion of agricultural land in relation to parish area
Non wood forest (%) 27.21 25.60 0.00 100.00
Proportion of non wood—forest in relation to parish forest area
Broadleaves area (%) 24.81 23.11 0.00 100.00
Proportion of broadleaves area (no eucalyptus) as dominant forest vegetation in relation to parish forest area
Plantations dummy 0.49 0.50 0 1.00
1/0 if parish has/has no area of forest plantations consisting primarily of introduced species.
Communal forest (%) 18.89 26.66 0.00 99.99
Proportion of communal private land ownership in relation to parish forest area
Population density (persons/ha) 1.07 4.52 0.01 106.04
Mean of parish's population in the period divided by parish area.
Rural exodus (%) 1.73 3.13 0.00 100.00
Mean % reduction in population in absolute terms from 1999 to 2011.
Unemployment rate (%) 8.40 2.24 31 204
Annual mean of the unemployment rate by municipality.
Highway density (m/m?) 0.00006 0.0002 0.00 0.003
Conventional road density (m/m?) 0.0009 0.0007 0.00 0.009
Rural road density (m/m?) m of each type of roads in the parish divided by parish area. 0.002 0.001 0.00 0.008
WUI (%) 10.14 8.57 0.00 90.59
Proportion of Wildland—Urban Interface in relation to parish area.
Dense built area (%) 0.41 0.38 0.00 5.98
Proportion of total built area in dense population category in relation to total parish area.
Slope range (%) 68.40 20.99 1.92 99.99
Maximum - minimum slope of the parish.
Elevation mean (m) 44285 256.59 427 1572.62
Mean elevation of the parish.
Mean temperature (°C) 17.55 1.10 13.87 20.96
Mean in the Summer months
(June—September)
Mean precipitation (1/m?) 52.85 9.74 21.79 107.25
Mean in the Summer months
(June—September)
Fires30 dummy 0.19 0.39 0 1
1 if wildfires higher than 30 in previous years (1991—1998).
Fires2030 dummy 0.11 0.32 0 1
1 if wildfires between 20 and 30 in previous years (1991—-1998).
Fires1020 dummy 0.20 0.40 0 1

1 if wildfires between 10 and 20 in previous years (1991—1998).

Results
Question 1: what is the spatial distribution of wildfire occurrence?

A parish level map of the 13-year total number of reported
wildfires (Fig. 1) illustrates that most fires occur along the Atlantic
coast and in the south-eastern part of the region. The global Mor-
an's Index for wildfire occurrence over the entire study area was
0.476, indicating the presence of a statistically significant positive
spatial autocorrelation among fire rates (z-score = 49.916, p-
value < 0.0001).

Fig. 2 illustrates the results of the Gi* statistics. Hotspots are
mainly concentrated in the Atlantic coast, while another large
cluster is located in the South, near the border with Portugal and
other Spanish region. Coldspots are mostly located in the interior
rural areas.

Question 2: how does human presence impact wildfire risk?
Table 3 presents the results of the negative binomial regressions

for total fires and for deliberately caused fires. For total fires, the
overdispersion parameter was found to be significantly different

from zero, suggesting the appropriateness of the negative binomial
specification relative to the Poisson. In addition, the Langrange
multiplier test (LM value = 1,703,993.9, p-value < 0.000) and
boundary likelihood ratio test (LR = 25,238.296, p-value < 0.000)
both rejected the null hypothesis of no overdispersion. The majority
of the explanatory variables are statistically different from zero at
stronger than 1%, and the model has a reasonable overall statistical
fit, as indicated by the p? statistic. The negative binomial model
estimated for deliberately caused fires presents very similar results
(Table 3), which is expected, given that nearly all fires in the region
are intentionally-caused.

The marginal effects on the expected wildfire frequency in a
parish with mean predictor values when one of its predictors
changes for all the parishes are also reported in Table 3. For the
continuous variables, we estimate the elasticities. For dummy
variables, these values show the proportional change in wildfire
frequency when there is a discrete change in the dummy variable
from zero to one.

The relationship identified between human population density
and wildfire occurrence is positive, as is the relationship between
densely built area and wildfires; a 1% increase in the proportion of
densely built area increases wildfire counts by over 0.15%.
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The unemployment rate has a significant (10%) positive effect on
the count of wildfires. Similarly, rural exodus has a positive effect
on wildfire occurrences. The three measures of road densities
(highways, conventional and rural/local roads) are each positive
contributors to wildfire counts. Among the different types of roads,
the density of rural/local roads has a greater contribution to wild-
fires, with an estimated increase in the number of fires by nearly
0.21% per 1% increase in density.

In relation to land use variables, we found that wildfire counts
are related statistically to agricultural activities: the greater the
share of agriculture in the parish, the higher the frequency of
wildfires. A quadratic relationship is indicated, with the number of
wildfires increasing at an increasing rate with respect to agricul-
tural area. A positive relationship is observed for the percentage of
non-wooded forestland: a 1% increase in the proportion of non-
wooded forest has an increase in the number of wildfire occur-
rences by 0.13%. Non-wooded land is heavily vegetated with shrubs,
whose fine fuels may serve as ideal ignition media. Tree plantation
is negatively related to wildfire counts. The share of the parish's
forest occupied by broadleaf species reduces the number of fires,
but at a decreasing rate, and at locations where the proportion of
broadleaf forest is relatively high fire risk increases. Forest owner-
ship also has an impact on the count of wildfires. Communal private
forestlands are negatively related to wildfire counts. Dummy vari-
ables indexing historical (1991-1998) wildfire activity in each
parish indicate a positive relationship with the count of wildfires
during the study period. The effect is larger for higher historical
rates of wildfires. If there is a discrete change in the dummy fire 30
from zero to one (i.e., equal to 1 if the count of wildfires in the
parish is higher than 30 in previous period 1991—98), the increase
in the expected fire occurrences would be of 39%. This result
highlights the importance of recognizing high historical rates of
wildfires in the models, potentially accounting for the existence in
the parish of one or more persons with an atypically high pro-
pensity to ignite multiple fires (e.g., Prestemon et al. 2012).

We found a negative association between fire incidence and the
average slope in the parish and a positive association with the mean
elevation. Mean temperature and mean precipitation in the sum-
mer months (June—September) showed positive and negative re-
lationships to wildfire counts, respectively, even though, mean
precipitation is not significant for deliberately-caused fires.

The correlogram plot in Fig. 3 shows that there is a small degree
of spatial autocorrelation still present in the model's residuals. The
negative binomial model's residuals display limited spatial auto-
correlation up to 20 km.

Question 3: how does wildfire frequency change due to spatially
heterogeneous changes in socioeconomic pressures?

The sensitivity analyses we conducted to evaluate the effects of
changes in policy relevant variables on the total number of fires all
show statistically significant effects of changes on the number of
wildfires (Table 4). All changes are statistically different from zero
at the 1% significance-level. Increasing the share of forests managed
communally by 25% among current individually owned private
forestlands would be expected to reduce the total wildfires from
104,563 to 97,663, a reduction of 6.6% (Fig. 4).

Changes in the WUI share in all parishes have a positive influ-
ence on the expected number of wildfires, but accounting also for
expected changes in significantly correlated variables enlarges the
effect of WUI expansion. Increasing the observed share of land
classified as WUI by 20% in all parishes would be expected to in-
crease the number of wildfires by nearly 1400 (Table 4). Fig. 5
shows that such an increase in the expected number of fires
would be clustered in the Atlantic part of the region, in the parishes
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Fig. 1. Total 13-year (1999—2011) counts of reported wildfires in Galicia at parish level.

surrounding the main cities. Increasing the share of WUI by the
same percentage but also changing the proportion of dense built
area, local/rural road density, and conventional road density in
ways demonstrated by their sample correlations as well, would be
expected to yield a statistically significant additional 4607 wildfires
(Table 4), and larger effects in a greater number of parishes (Fig. 6).
Moreover, results show that a similar simulation for only hotspot
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Fig. 2. Z scores from Gi* for spatial correlation of the total number of wildfires in each
parish in Galicia. Observations from orange to red indicate “hot spots” with clustering
of parishes with high fire counts while observations in blue indicate “cold spots” with
clustering of parishes with low number of forest fires. Areas in yellow indicate no
significant clustering of high or low total number of fires. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Table 3

Estimated coefficients, standard errors, and significance levels of independent variables using negative binomial estimation, and marginal effects estimates of independent
variables (elasticities estimates for continuous variables, and one-unit change of dummies from O to 1).

Variable Total fires Deliberately caused fires

Coef. (Std. Err.) p-value Marginal effects Coef. (Std. Err.) p-value Marginal effects
Constant —9.994"** (0.752) 0.000 —11.011*** (0.848) 0.000
Parish agriculture 0.735* (0.417) 0.078 0.255 1.017** (0.477) 0.033 0.353
Parish agriculture? 1.498*** (0.488) 0.002 0.237 1.251** (0.557) 0.025 0.198
Non-wood forest 0.487*** (0.108) 0.000 0.129 0.615*** (0.119) 0.000 0.162
Broadleaves area —1.013*** (0.290) 0.000 —0.254 —1.081*** (0.325) 0.001 -0.271
Broadleaves area® 1.524*** (0.353) 0.000 0.178 1.708*** (0.387) 0.000 0.200
Plantations dummy —0.190"** (0.040) 0.000 -3.141 —0.175"** (0.439) 0.000 -3.141
Communal forest —0.382*** (0.097) 0.000 —0.069 —0.503*** (0.110) 0.000 —0.091
Population density 0.039*** (0.005) 0.000 0.042 0.037*** (0.005) 0.000 0.039
Rural exodus 0.007*** (0.002) 0.007 0.012 0.101*** (0.003) 0.005 0.017
Unemployment rate 0.026* (0.015) 0.086 0.220 0.033* (0.017) 0.052 0.277
Highway density 320.749*** (83.456) 0.000 0.020 302.007*** (92.987) 0.001 0.019
Conventional road density 107.811*** (34.043) 0.002 0.103 103.121*** (39.056) 0.008 0.099
Rural road density 84.144*** (18.919) 0.000 0.207 92.280"** (21.671) 0.000 0.227
WUI 0.627*** (0.255) 0.014 0.063 0.465 (0.287) 0.106 0.047
Dense built area 36.218*** (5.651) 0.000 0.150 36.169*** (6.502) 0.000 0.150
Slope range —0.004*** (0.001) 0.000 —0.298 —0.006*** (0.001) 0.000 -0.417
Elevation mean 0.0008*** (0.0001) 0.000 0.364 0.0011*** (0.0002) 0.000 0.509
Mean temperature 0.313*** (0.038) 0.000 5.500 0.335*** (0.043) 0.000 5.881
Mean precipitation —0.006** (0.003) 0.037 -0.324 —0.003 (0.003) 0.304 -0.171
Fires30 dummy 1.209*** (0.050) 0.000 39.269 1.344™** (0.057) 0.000 39.269
Fires2030 dummy 0.956*** (0.054) 0.000 30.380 1.072*** (0.059) 0.000 30.380
Fires1020 dummy 0.578*** (0.043) 0.000 14.028 0.639*** (0.049) 0.000 14.028
Sample size 3629 3629
Alpha 0.4865 0.000 0.5911 0.000
(1/df) Deviance 1.1235 1.1430
AIC 7.4113 6.9991
Restricted log-likelihood (constant only) —15,067.76 —14,137.52
Log-likelihood at convergence —13,424.85 —12,676.99
0? 0.109 0.103

Note: Standard errors in parentheses. Asterisks indicate that the parameter estimate is significantly different from zero at the 10% (*), 5% (**), or 1% (***) level.

parishes would be expected to yield a statistically significant
additional 1554 wildfires (Table 4). This means that limiting the
WUI expansion in these locations would generate a reduction on
average of 2.26 fires per parish. The nature of the correlated vari-
ables included in the simulation means that wildfire risk effect
from such an expansion is more apparent in the more populated
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Fig. 3. Correlogram plot of residuals from negative binomial estimated model of
wildfire frequency.

WUI hotspots near the coast and less apparent in those hotspots in
the south-east, which have lower urbanisation pressures (Fig. 7).

Discussion and conclusions

Our results show that wildfire occurrence at the parish level is
positively spatially clustered; “hotspots” and “coldspots” are
widespread in the region. Hotspots, mainly in the south and west,
represent both locations of rapid urban growth in the surroundings
of the most populated areas, as well as areas of abundant shrub-
lands, and high rural exodus. Many hotspots in the west are found
in proximity to Galicia's most populated locations, in particular
surrounding the biggest cities (A Coruna, Ourense, Pontevedra,
Santiago, and Vigo), which have experienced rapid urban devel-
opment in the last few decades (Precedo, Miguez, & Fernandez,
2008). While hotspots occurring in southern parishes are charac-
terised by higher elevation (mean value over 800 m), higher pro-
portions of shrublands in forestlands (mean value 54%) and greater
rates of population decline (—2.1%/yr) than other hotspot parishes.
Coldspots in the north and east interior parishes are associated
with the lowest levels of population density of the region and with
lower accessibility compared to the hotspots.

Consistent with this, the count data analysis derived from fine-
resolution maps reveals that wildfire occurrence in Galicia is tightly
connected not just to biophysical variables but also, critically, to
multiple measures of human presence and human activities. More
people living on and using landscapes generally leads to higher
wildfire occurrence. However, similarly to Catry et al. (2009), the
marginal effect of population density was found to be much smaller
than the role of road densities, as these modulate human presence
and uses of the landscape, representing forest accessibility. Among
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Table 4
Sensitivity analysis on total fires.

Number of Average fires Total fires, all Simulated Implied percent
observations per parish parishes combined change in total fires change in total fires
Base expected fires 3763 27.79 104,563
Increase the share of “jointly managed” individually owned private 3763 25.95 97,663 —6900*** —6.60
forests by 25%
Increase the share of WUI by 20% for all parishes 3763 28.16 105,960 1397*** 1.34
Increase share of WUI by 20% for all parishes and also imputed 3763 28.55 107,431 4607*** 441
changes in correlated variables
Increase share of WUI by 20% for hotspot parishes and also imputed 3763 28.28 106,419 1554*** 1.49

changes in correlated variables

Note: *** indicates statistically different from zero at 1% significance, based on confidence bounds generated by 1000 bootstrapped iterations.

the different types of roads, the density of rural/local roads has the
highest influence on wildfire occurrence because these roads con-
nect peri-urban areas, are often more proximate to flammable fuels,
and give access to forested areas (Oliveira, Oehlera, San-Miguel-
Ayanz, Camia, & Pereira, 2012). Moreover, parishes with densely
clustered housing that capture the peri-urban interface have more
wildfires. These areas where urban and rural activities are juxta-
posed may have higher urbanisation pressure on wildland. The
marginal effect of the variable measuring building density indicates
that how human populations are spatially distributed matters more
for wildfire occurrence than do the absolute levels of those
populations.

Our results provide a picture of the effects of agricultural and
land abandonment in Galicia. The unemployment rate, often used
as a proxy for labour market conditions and potential social con-
flicts (e.g., Martinez et al. 2009; Oliveira et al. 2012), is only weakly
related to wildfire occurrence in Galicia. A similar result was also
shown in Prestemon et al. (2012). However, rural exodus, often a
consequence of this unemployment, leads to unattended land and
hence to an increase in available wildfire fuels, and therefore to
more successful wildfire ignitions. Nevertheless, it is questionable
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Fig. 4. Simulated changes in the total number of reported wildfires (1999—2011) by
parish, given a 25% increase in the proportion of privately owned forests managed
jointly.

whether this process increases wildfire probability compared to a
situation of intense agriculture/livestock land use. According to
prior research (e.g., Catry et al. 2009; Verd, Salas, & Vega-Garcia,
2012), agricultural lands are associated generally with higher
rates of wildfires. There may be an ongoing culture of firesetting as
a managerial tool related to agricultural and livestock activities in
the studied area (e.g., Ganteaume et al. 2013; Vélez, 2002). In
addition the effects of rural exodus and abandonment may be
behind the non-linear effect on wildfires occurrences of the pro-
portion of broadleaves in the landscape. This is because even
though broadleaves, mainly oaks, have been exploited in Galicia in
the past, they are now hardly used in forestry activities and their
high presence is commonly associated to unattended forestlands
and little silvicultural activity (Diaz-Maroto & Vila-Lameiro, 2008).
Thus, the colonisation of abandoned fields by natural vegetation
simplifies the traditional agriculture landscape mosaic and at the
same time increases fuel loads if left unattended (e.g., Ganteaume
et al. 2013). In an area such as Galicia, where frequent fires favour
the expansion of shrubland communities or the persistence of
regenerating forests with a shrubland-type physiognomy (Moreira
et al. 2011), this effect increases the risk of wildfire.

Unattended forestlands and high numbers of fire occurrences
are also associated here with an ownership pattern of individual
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Fig. 5. Simulated changes in the total number of reported wildfires (1999—2011) by
parish, given a 20% increase in the proportion of WUI for all parishes.
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Fig. 6. Simulated changes in the total number of reported wildfires (1999—2011) by
parish, given a 20% increase in the proportion of WUI and also imputed changes in
correlated variables.

private holdings, whose typical size is too small to support many
forestry practices. Moreover, coefficients on dummy variables
measuring wildfire occurrences in the years previous to our period
of inference indicate that coldspots and hotspots are temporally
persistent. Persistent hotspots, therefore, might be targeted with
higher levels of wildfire prevention education activities (e.g.,
Prestemon, Butry, Abt, & Sutphen, 2010), which can increase fire
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Fig. 7. Simulated changes in the total number of reported wildfires (1999—2011) by
parish, given a 20% increase in the proportion of WUI in hotspot parishes and also
imputed changes in correlated variables.

prevention awareness particularly among land managers in Galicia.
Promotion of appropriate incentives for fuels management and
sustainable forestry practices may also yield success. These policies
could potentially have payoffs in terms of lowering overall damages
and wildfire suppression spending in the region.

Our findings on slope and elevation variables are in concordance
with other studies in similar regions of Portugal. As Catry et al.
(2009) showed, at higher elevations, fire ignitions are more likely,
probably as a consequence of pastoral burns; and Marques et al.
(2011) found a higher proportion of burned areas in such upland
locations. In addition, high-elevation areas are more likely to be
characterised by larger proportions of non-wood forest areas
(shrubland). We contend that the slope variable captures the more
limited accessibility of steep forestlands, as well as the net effects of
the types of vegetation and climatic conditions found in parish
forests. Similarly, meteorological variables suggest higher counts of
wildfires occur when warmer and drier conditions are favourable to
fire spread, as has been found in other studies (Oliveira et al. 2012;
Prestemon et al. 2012).

Our statistical simulation of changes in policy variables shows
that homogeneous variation in land use conditions across the re-
gion generates heterogeneous effects in parishes. This highlights
the suitability of spatially targeted fire management strategies,
which would focus on those areas where higher benefits in wildfire
risk reduction are expected. For example, incentives to jointly
manage small single private holdings seem to have higher effects
on fire risk in the west and south, where wildfire hotspots pre-
dominate. Therefore, promoting cooperative management of forest
holdings would have many potential benefits for landowners,
including economies of scale in forestry practices and the provision
of a variety of ecosystem services (GEPC, 2006; Touza, Perrings, &
Chas-Amil, 2010). Our study reveals an added potential benefit of
cooperative management: reducing the overall rate of wildfires.

Additionally, although studies focused on many parts of North
America have indicated the exacerbating role that building in
wildland areas plays in terms of wildfire damages and suppression
costs (e.g., Gude, Jone, Rasker, & Greenwood, 2013; Syphard, Keeley,
Massada, Brennan, & Radeloff, 2012), few studies have shown this
for European locations. Our simulations show that this WUI
expansion, when linked to changes in WUI-correlated variables
such as density of building clusters and roads, can lead to large
increases in wildfire activity in some areas, to the potential detri-
ment of the WUI's human occupants and for fire management
budgets. It therefore follows that policies that limit the expansion
of WUI areas in Galicia could potentially result in a significantly
lower number of wildfires, mainly occurring in hotspot areas, and
particular at the cluster of hotspot parishes in the west, which have
had a rapid urban expansion in the last decades (Precedo et al.
2008).

Although our modelling uncovers a range of variables that
appear to be influential on wildfire, our checks for spatial auto-
correlation in model residuals also suggest that we may be missing
explanatory variables. Residual spatial autocorrelation results in
estimation inefficiencies, affecting tests of statistical significances.
However, one “cure” for spatially autocorrelated residuals, spatial
aggregation, carries with it another set of potential statistical dis-
tortions, including aggregation bias. Spatial resolution therefore
represents modelling trade-offs. In our case, the parish level of the
study has the benefit of providing potentially greater insights to the
finer resolution variation of wildfires across Galicia.
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