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Abstract Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants
to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially
moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by
LUE models. The objective of this study is to investigate the effects of moisture stress on LUE for a wide
range of ecosystems on daily, 8 day, and monthly scales. Using the FLUXNET and Moderate Resolution
Imagine Spectroradiometer data, we evaluated moisture stress along the soil-plant-atmosphere continuum,
including soil water content (SWC) and soil water saturation (SWS), land surface wetness index (LSWI) and
plant evaporative fraction (EF), and precipitation and daytime atmospheric vapor pressure deficit (VPD).
We found that LUE was most responsive to plant moisture indicators (EF and LSWI), least responsive to
soil moisture (SWC and SWS) variations with the atmospheric indicator (VPD) falling in between. LUE
showed higher sensitivity to SWC than VPD only for grassland ecosystems. For evergreen forest, LUE had better
association with VPD than LSWI. All moisture indicators (except soil indicators) were generally less effective in
affecting LUE on the daily and 8 day scales than on the monthly scale. Our study highlights the complexity of
moisture stress on LUE and suggests that a singlemoisture indicator or function in LUEmodels is not sufficient to
capture the diverse responses of vegetation to moisture stress. LUE models should consider the variability
identified in this study to more realistically reflect the environmental controls on ecosystem functions.

1. Introduction

As the initial carbohydrate produced by plant through photosynthesis, terrestrial gross primary productivity
(GPP) is the largest CO2 flux in the global carbon cycle and a key driver of ecosystem functions, such as
respiration and growth [Beer et al., 2010]. Ecosystem GPP minus autotrophic respiration not only dictates
the carbon balance of land surface [Nemani et al., 2003] but also maintains the food chain for all life and
defines the planetary boundary for human habitation on the planet [Running, 2012]. Therefore, it is of major
scientific significance to accurately estimate terrestrial GPP [Song et al., 2013; Anav et al., 2015]. Since carbon
and water cycles are tightly coupled, accurately estimating GPP also has importance in quantifying water
balances and carbon-water tradeoffs in ecosystem service assessment [Sun et al., 2011].

Although numerous models estimating GPP have been developed in the past decades, large discrepancies
in GPP estimation still exist due to the deficiency in characterizing the environmental regulations [Schaefer
et al., 2012; Piao et al., 2013; Yuan et al., 2014]. Light use efficiency (LUE) is a key biophysical parameter indicating
the ability of plants to convert absorbed light energy to chemical energy through photosynthesis [Medlyn,
1998]. Among those prognostic models, GPP models based on LUE using remotely sensed data from space-
borne satellites are considered to have high potential to map the spatial-temporal dynamics of GPP because
of its simplicity and the solid biophysical linkage between the fraction of absorbed photosynthetically
active radiation and remotely sensed spectral signals [Monteith, 1972; Asrar et al., 1984; Potter et al., 1993;
Yuan et al., 2007; Song et al., 2013]. However, the environmental regulations on LUE, especially from moisture,
have relatively large uncertainties [Xiao et al., 2004; Schaefer et al., 2012; Yuan et al., 2014], which constrain the
accuracy of GPP estimated with LUE-based models.
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Due to global warming and the associated enhanced variability of precipitation, drought events have become
more frequent [Vicente-Serrano et al., 2013], significantly influencing terrestrial primary productivity [Ciais et al.,
2005; Zhao and Running, 2010; Zhang et al., 2014]. To quantify water stress, different moisture scalars have
been incorporated in LUE models. For example, the Moderate Resolution Imagine Spectroradiometer
(MODIS) GPP algorithm used daytime vapor pressure deficit (VPD) to account for moisture stress on LUE
[Zhao and Running, 2010]; the 3PG [Landsberg and Waring, 1997] and CFLUX [King et al., 2011] models both
adopted VPD and soil water content (SWC) to quantify moisture stress; the VPMmodel used satellite-based
land surface water index (LSWI) to account for moisture stress [Xiao et al., 2004]; and the eddy covariance
(EC)-LUE model used the evaporative fraction (EF) to characterize moisture stress [Yuan et al., 2007].
However, LUE models generally calibrate the environmental scalars (including moisture stress) on LUE
by minimizing the overall root-mean-square error to match the GPP derived from eddy covariance flux
tower measurements. This treatment could produce relatively accurate GPP at the flux tower sites, but
may not retain the actual relationship between the specific factor (e.g., moisture) and LUE, which is a typical
modeling problem: getting the right answer for the wrong reason.

The soil-plant-atmosphere continuum (SPAC) describes the pathway of water movement from soil through
plant to the atmosphere [Tuzet et al., 2003]. The change of water content in each interface could alter the
water potential gradient along SPAC, which further influences the carbon gain efficiency of vegetation
[Williams et al., 2001]. In this study, we investigated the moisture stress from three groups of indicators along
SPAC (i.e., atmosphere, soil, and plant) on LUE across terrestrial ecosystems. To achieve this objective, we
used global eddy covariance (EC) flux data and remotely sensed data from MODIS. We first applied a series
of data screenings to minimize the influences from unrelated environmental factors on realized LUE, and
further ensured the land cover consistency between the local tower footprint and the overlying satellite data.
We conducted the analysis of LUE with different moisture indicators on three temporal scales, daily, 8 day,
and monthly, for a total of eight vegetation types.

2. Materials and Methods
2.1. Global Site Level Database

We combined worldwide EC flux data and site level remote-sensing data, and built up a global database
for eight biomes on three temporal scales (i.e., daily, 8 day, and monthly) (Table 1). In this data set, the
flux-tower-based or in situ observations include GPP (g Cm�2 d�1), incident short-wave radiation
(MJm�2 d�1), precipitation (mmd�1), daily maximum air temperature (°C), daily minimum air temperature
(°C), daytime vapor pressure deficit (VPD) (hPa), soil water content in the upper layer (~0.3m), latent heat
(MJm�2 d�1), and sensible heat (MJm�2 d�1); biophysical parameters derived from remotely sensed data

Table 1. Flux Tower Data Usage for Different Biomes on Daily, 8 Day, and Monthly Scales

IGBP Biomesa
MODIS

FPAR/LAIBiomesb

Daily 8 Day Monthly

No. of Flux
Towers

Total Data
Recordsd

No. of Flux
Towers

Total Data
Recordsd

No. of Flux
Towers

Total Data
Recordsd

ENF ENF 51 10065 27 914 5 133
EBF EBF 12 3597 10 347 4 58
DBF DBF 20 5133 14 491 4 82
MF Forestc 9 1222 4 94 1 11
SHR SHR 5 1441 4 225 3 61
SAV SAV 7 2644 5 360 5 113
GRA GCC 24 1983 7 174 1 20
CRO GCC/BC 26 3257 10 374 6 76

Total 154 29342 81 2979 29 554

aIGBP Biome abbreviations: ENF (evergreen needleleaf forest), EBF (evergreen broadleaf forest), DBF (deciduous
broadleaf forest), MF (mixed forest), SHR (close shrub and open shrub), SAV (savannas and woody savannas), GRA
(grassland), and CRO (cropland).

bMODIS FPAR/LAI Biome abbreviations: GCC (grass/cereal crop), BC (broadleaf crop); others are same as IGBP.
cSince MODIS FPAR/LAI Biomes do not include MF, “Forest” here indicate all the other forest types except MF in IGBP.
dThe data records here are shown for the availability of calculated LUE. The records for other moisture indicators may

be different.
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from MODIS include fraction of absorbed photosynthetically active radiation (FPAR), leaf area index (LAI),
and land surface wetness index (LSWI); other site information include location, biome type, soil water field
capacity, and wilting point.

The EC flux data were from FLUXNET Synthesis Data Set, which harmonized and gap filled the half-hourly
records of carbon dioxide, water vapor, and energy fluxes over 253 eddy covariance towers from 2000 to
2007 (http://www.fluxdata.org/). These sites spanned a wide range of climate and physiographic regions
from 70°N to 37°S and included major terrestrial ecosystems defined by the International Geosphere
Biosphere Programme (IGBP) classification: evergreen needleleaf forest (ENF), evergreen broadleaf forest
(EBF), deciduous broadleaf forest (DBF), mixed forest (MF), shrubland (SHR), savannas (SAV), grassland
(GRA), and cropland (CRO) (Figure 1). FLUXNET sites used in this study did not have deciduous needleleaf for-
est and crop/natural vegetation mosaic. Due to site limitation, we combined close shrub and open shrub as
SHR and savannas and woody savannas as SAV in this study. In the FLUXNET data set, the daily data were inte-
grated from the gap-filled half-hourly data [Agarwal et al., 2010]. We further scaled the daily data to 8 day and
monthly averages. Data with the missing proportion higher than 20% on the 8 day and monthly scales were
excluded in the analysis. The FPAR, LAI, and LSWI data for each tower site from 2000 to 2007 were derived
from 8 day 1 × 1 km MODIS product (MOD15A2 C5) and 500× 500m MODIS reflectance data (MOD09A1
C5), respectively. These data were downloaded from the Oak Ridge National Laboratory Archive Center
(http://daac.ornl.gov/MODIS/MODIS-menu/modis_webservice.html). Only data from the pixel containing
the flux tower were used. The smoothing and interpolation of these MODIS-based variables from 8 day to
daily and monthly scales are present in the following sections.

2.2. LUE Calculation

Light use efficiency (LUE) refers to the amount of carbon fixed per unit of absorbed photosynthetically active
radiation (APAR) by vegetation, which is defined as the ratio of GPP to APAR as

LUE ¼ GPP
APAR

¼ GPP
PAR�FPAR

(1)

where PAR is the incident photosynthetically active radiation (MJm�2 d�1), which is assumed to be 45% of
the downward short-wave radiation in this study [Campbell and Norman, 2012]; FPAR is the fraction of PAR
being absorbed by the plants.

GPP and incident radiation were obtained from the global flux data. It is important to note that flux-
tower-based GPP was not strictly in situ observation, but indirectly derived from the measured net ecosys-
tem exchange and estimated ecosystem respiration, which carry uncertainties [Reichstein et al., 2005]. FPAR
was from the above mentioned MODIS product (MOD15A2), which is an 8 day composite based on the
maximum values of daily FPAR and LAI. The main biophysical retrieval algorithm for MOD15A2 is to use

Figure 1. Geographical and biome information of FLUXNET tower sites used in this study. Biome abbreviations are given
in Table 1.
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a biome-specific lookup table derived from a three-dimensional radiative transfer model (RTM) to calculate
the most probable values of FPAR as well as LAI for each pixel [Knyazikhin et al., 1999; Myneni et al., 2002].
The RTM inputs include an eight-biome classification map, daily atmospherically corrected surface reflec-
tance from red and near-infrared bands, and associated scene Sun sensor geometry, while the RTM outputs
are the instantaneous FPAR and LAI at the time of satellite overpass (i.e., local time 10:30 A.M.) [Myneni et al.,
2002; Serbin et al., 2013]. If the main algorithm fails due to bad geometry, cloud contamination or snow/ice,
a backup algorithm based on the relationship between normalized difference vegetation index (NDVI) and
FPAR/LAI is adopted. However, the FPAR/LAI retrieved by backup algorithm is usually not reliable due to
the poor quality of input data (i.e., NDVI) in such situations [Zhao et al., 2005]. In this study, we examined
the Quality Flag (QC), and excluded the data with bad quality for each site (i.e., backup algorithm or filled
values). Based on the good quality data (i.e., RTM algorithm), we filled the temporal gaps and smoothed the
8 day FPAR/LAI data using the double logistic method in the software package of TIMSAT 3.1 [Jönsson and
Eklundh, 2004]. The 8 day smoothed FPAR and LAI data were further interpolated to the monthly data using
the time-weighted average. Since we could not extract the meaningful daily information from the maximum
composite data during the 8 day period, we assumed the daily FPAR constant within the 8 day period. It should
be noted that FPAR depends on the solar zenith angle (SZA) and shows a diurnal variation pattern. Using the
instantaneous MODIS FPAR as representative of the daily or even longer-term FPAR may add uncertainty into
the LUE calculation, although this is a common way in current LUE models, e.g., MODIS GPP [Zhao and Running,
2010] and CFLUX [King et al., 2011]. Usually, it may lead to the overestimation of LUE due to the underestimation
of FPAR at lower SZA. However, the overestimation of LUE may be reduced because the tower-based GPP is
generally underestimated [Reichstein et al., 2005]. Numerical simulation suggests that SZA-related variations
in MODIS FPAR are considerably weaker in dense heterogeneous canopies due to the counteraction of spatial
heterogeneity over the pixel [Shabanov et al., 2003]. In situ measurements from a semiarid grassland
showed that daily averages of FPAR calculated from 9:00 A.M. to 3:00 P.M. approximated well the values
at 10:30 A.M. (corresponding to MODIS overpass time) [Fensholt et al., 2004]. Based on the above limited
evaluations, we considered it reasonable to use MODIS FPAR to calculate LUE in this study.

2.3. Moisture Stress Indicators
2.3.1. Atmospheric Moisture Indicators
Atmospheric moisture indicators included precipitation and daytime averaged vapor pressure deficit
(VPD). The daytime period was determined by hour angles of local sunset and sunrise. To consider the
lag effects of precipitation on daily LUE, we further calculated the past 8 day, 30 day, and 60 day runningmeans
of precipitation.
2.3.2. Soil Moisture Indicators
Soil moisture indicators included the volumetric soil water content (SWC, m3m�3) measured at the flux tower
site in the upper layer (~0.30m) and the soil water saturation (SWS, %) defined as follows:

SWS ¼ SWC�WP
FC�WP

(2)

where FC and WP are the volumetric (m3m�3) soil water field capacity (at soil water potential of �33 kPa)
and permanent wilting point (at soil water potential of �1500 kPa), respectively. Since not all flux tower
sites had soil texture data, we derived WP and FC for each site from an up-to-date global high-resolution
soil data set (1× 1 km) which harmonized various published soil databases [Wei et al., 2014]. We averaged
the values in the upper soil layers (i.e., 0–0.29m, four of eight layers) to obtain WP and FC. In the FLUXNET
data set, SWC for several sites were questionable with values exceeding 90% probably due to measurement
errors or mismatching SWC units (e.g., degree of water saturation versus volumetric water content). We
dropped the daily SWC values for the whole year on a specific site if any SWC value during that period
was over 70%. For SWS, we excluded the values greater than 1 or less than 0.

To investigate the nonlinearity of LUE in response to SWC, we calculated the base 10 logarithm of SWC
(log10(SWC)) and the nonlinear soil moisture scalar function used in the 3PG model [Landsberg and Waring,
1997], which is defined as follows:

SWC3PG ¼ 1

1þ 1� SWC=FCð Þ=C1½ �C2 (3)
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where C1 and C2 are soil texture-
specific parameters. In the 3PG model,
the soil texture was classified into
four types, i.e., clay, clay loam, sandy
loam, and sandy. The proportions of
sand, silt, and clay for each site
were extracted from the above men-
tioned global 1 × 1 km soil data set
[Wei et al., 2014]. These soil compo-
nents were used to determine the
corresponding soil texture by the USDA
textural triangle (http://www.nrcs.usda.
gov/wps/portal/nrcs/detail/soils/survey/
?cid=nrcs142p2_054167).
2.3.3. Plant Moisture Indicators
Plant moisture indicators included
MODIS-based land surface water index
(LSWI) and flux-tower-based evapora-
tive fraction ratio (EF). The LSWI was
calculated as follows:

LSWI ¼ ρnir � ρswir
ρnir þ ρswir

(4)

where ρnir and ρswir are surface ref-
lectance in near-infrared and short-
wave infrared bands from the 8 day
MOD09A1, respectively. Unlike FPAR
and LAI, cloud-contaminated LSWI can-
not be smoothed because it is influ-
enced by synoptic weather conditions.
We masked out all the records with
clouds, cloud shadows and aerosols to
get the 8 day high-quality LSWI. We

then extracted the specific acquisition date for each 8 day record to obtain the daily LSWI. We averaged all
the 8 day high-quality records within a month (at least two records required) to calculate the monthly LSWI.

EF indicates the proportion of available energy used as latent heat (or evapotranspiration), which is defined
as [Crago, 1996]:

EF ¼ L
Lþ H

(5)

where L and H are latent and sensible heats, respectively. For EF, we excluded the values greater than 1 or less
than 0 from the data set.

2.4. Analysis Methods

To minimize the confounding effects from unrelated environmental factors in analyzing the relationships
between LUE and moisture stress indicators, we applied a series of steps on three temporal scales to screen
the data potentially influenced by rainfall, diffuse radiation, high and low temperatures. Since eddy flux
instruments do not function well during rainfall events, and flux data was mainly gap filled during this period
[Reichstein et al., 2005], we dropped the records with daily precipitation higher than 5mmd�1. The increase
of diffuse radiation on overcast sky conditions could increase LUE and counteract the effect of moisture stress
[King et al., 2011]. To keep a relatively steady sky condition, we only included the records on each temporal
scale with clear-sky index (i.e., ratio of actual to potential radiation) higher than 70%. Temperatures that
are too high or low could significantly influence the realized LUE [Ruimy et al., 1999]. We excluded the
records with averaged daily maximum temperature higher than 35°C or with averaged daily minimum

Figure 2. (a) Means and (b) variations of realized LUE stressed by moisture
for different biomes on daily, 8 day, andmonthly scales. Biome abbreviations
are given in Table 1. CV in Figure 1b is the coefficient of variation defined
as the ratio of standard deviation to the mean. The black error bar indicates
the magnitude of 1 standard deviation. The statistics in Figures 1a and 1b
were both derived from the averaged values for all flux tower sites within a
given biome. The error bar for the biome with only one site is not shown.
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temperature lower than the biome-
dependent threshold of minimum
temperature [Zhao and Running, 2010].
After the data screening, we dropped
the flux tower sites with records not
enough to conduct reliable statistical
analysis (i.e., n< 10).

MODIS FPAR/LAI data used in this
study were produced based on an
independent MODIS land cover data
[Myneni et al., 2002]. Due to classifica-
tion and geolocation errors, there
might be potential land cover incon-
sistency between the local tower
footprint and the overlying MODIS
data. In this study, we further examined
this problem by matching these two
kinds of classifications (Table 1). The
vegetation type over each FLUXNET
site was provided by its local investiga-
tor, which is defined from the 12 biome
IGBP classification, while the land cover
used to derive MODIS FPAR/LAI is a
coarse eight-biome classification [Friedl
et al., 2010]. Compared with IGBP,
the FPAR/LAI classification includes
the unique types of broadleaf crop
(BC) and grass/cereal crop (GCC), but

does not include MF. Here we regarded CRO in IGBP as BC and GCC, GRA as GCC, and MF as other forest
types in FPAR/LAI (Table 1). Those sites that did not pass the biome consistency test (about 28.4% of total sites)
were dropped. MODIS FPAR/LAI classification information for each site was obtained from the public website of
FLUXNET at Oak Ridge National Lab (http://fluxnet.ornl.gov/).

The final usage of flux data on three temporal scales was summarized in Table 1 (final chosen EC sites were
given in Table S1 in the supporting information). In general, there are more data records on the daily scale
(61% of total sites) than those on the 8 day (32% of total sites) and monthly (11% of total sites) scales, while
ENF, DBF, and CRO have more records than other biomes. Based on this database, we used Pearson’s
correlation (R) to determine the strength of association between LUE and moisture stress indicators. The
coefficient of determination (R2) provides a measure of how well the independent variable explained
the variations of dependent variable. However, it is influenced by the sample size. After a series of data
screenings, the data records for different moisture indicators on each flux site may be different. In this
paper, we calculated sample size-scaled R2 (i.e., adjusted R2 or R2adj) between LUE and different indicators,
and then analyzed the mean and standard deviation of R2adj within and among different biomes on three
temporal scales. The R2adj is defined as follows:

R2adj ¼ 1� 1� R2
� �� n� 1

n� p� 1
(6)

where n is the sample size, p is the number of independent variables (here p is 1).

3. Results
3.1. LUE Variations

Site-based statistics showed that CRO had the highest LUE among all the biomes analyzed, followed by
forests and GRA, while SHR and SAV tended to have the lowest LUE (Figure 2a). The fact that CRO had the

Figure 3. Adjusted R2 between LUE and atmospheric moisture indicators of
(a) precipitation (Pre) and (b) daytime vapor pressure deficit (VPD) for different
biomes on daily, 8 day, and monthly scales. Biome abbreviations are given in
Table 1. The black error bar indicates the magnitude of 1 standard deviation.
The error bar for the biome with only one site is not shown.
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highest LUE may be due to the
presence of C4 vegetation and
management (e.g., irrigation and/or
fertilization). Of the forest types, DBF
showed the highest LUE. Due to the
substantial within-biome variations,
most noncrop vegetation had more
or less similar LUE. However, the varia-
tions of LUE stressed by moisture in
terms of coefficient of variation (CV,
the ratio of standard deviation to the
mean) were lower in forests than non-
forest vegetation (Figure 2b). CRO as
well as most forests generally showed
lower variations of LUE on the monthly
scale than that on the daily and 8 day
scales (Figure 2b).

3.2. Atmospheric Indicators

Precipitation explained the variations
of LUE for all biomes poorly, with aver-
aged R2adj less than 10% on daily and
8 day scales, and less than 20% on
monthly scale (Figure 3a). This prob-
ably is because not much precipita-
tion variation was allowed in the
data. We further discussed the lag
effect of precipitation on LUE later in
section 4. Compared with precipita-
tion, VPD had stronger association
with LUE for most biomes, but had

larger variations in R2adj within biomes (Figure 3b). VPD explained variations of LUE in evergreen forest
(ENF and EBF) better than DBF, while SAV better than GRA, CRO, and SHR. Overall, VPD explained the
variations of LUE for most biomes better on the monthly and 8 day scales than on the daily scale, which
was similar with precipitation.

3.3. Soil Indicators

On the daily and 8 day scales, SWC explained LUE variations better in GRA and SAV than that in other biomes
in terms of R2adj (Figure 4a). After normalization by soil texture parameters, SWS generally showed the similar
R2adj in explaining LUE variations with SWC (Figure 4b). After data screening, both SWC and SWS had sparse
data on the monthly scale. Based on the limited observations, the available biomes showed no substantial
differences in R2adj between LUE and SWC/SWS on monthly scale. Although there were relatively large varia-
tions in the strength of the LUE~ SWC relationships within biomes, SWC as well as SWS generally explained
LUE variations better on the 8 day scale than that on the daily and monthly scales.

3.4. Plant Indicators

LSWI generally showed stronger relationships with LUE in CRO and SAV than other nonforest biomes
(Figure 5a). For forests, LSWI better explained LUE variations in DBF than that in other types probably due
to a larger amount of variation in canopy moisture content for DBF. R2adj between LUE and LSWI were gener-
ally higher on 8 day and monthly scales than on daily scale for most biomes (Figure 5a). It is interesting to
note that remote-sensing-based LSWI and flux-tower-based EF generally showed similar variations of R2adj
among biomes, although the latter explained the variations of LUE better than the former (Figure 5b). MF
tended to have the lowest R2adj for the LUE ~ EF relationship among the biomes, which might be caused by
its canopy heterogeneity.

Figure 4. Adjusted R2 between LUE and soil moisture indicators of (a) soil
water content (SWC) and (b) soil water saturation (SWS) for different biomes
on daily, 8 day, and monthly scales. Biome abbreviations are given in Table 1.
The black error bar indicates the magnitude of 1 standard deviation. The error
bar for the biome with only one site is not shown. Please note that due to
more strict screenings, some SWC/SWS time series on the 8 day and monthly
scales were not kept. Therefore, the bars for the relevant biomes are missing.
For SWS, we excluded the values greater than 1 or less than 0, thus SWS
usually had fewer records than SWC.
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3.5. Comparison Among Indicators

For all biomes, the strengths of asso-
ciation between moisture indicators
on LUE as measured by R2adj were
ranked as EF> LSWI>VPD> SWC>

SWS> Precipitation (Figure 6). The
atmospheric and plant moisture indi-
cators explained the variations of LUE
better on the monthly scale, while
soil moisture indicators explain the
variation of LUE better on the 8 day
scale (Figure 6). We selected three
representative indicators (i.e., VPD
for atmosphere, SWC for soil, and
LSWI for plant) and compared their
relationships with daily LUE among
three biomes (i.e., ENF (deep rooted),
GRA (shallow rooted), and CRO (mana-
ged)) along the gradients of multi-
year averaged precipitation and LAI
(Figure 7). Each data point in Figure 7
is an R2adj value between LUE and a
moisture indicator on the daily scale
for a given flux tower site. The lines in
Figure 7 indicate the trend of rela-
tionships between daily LUE and
moisture indicators along either the
precipitation or LAI gradient. For ENF

(Figures 7a and 7d), the VPD line (red) is above the SWC (blue) and LSWI (green) lines along the precipita-
tion and LAI gradients, indicating daily LUE of ENF, is more responsive to VPD compared to SWC and LWSI.
Interestingly, the relationship of daily LUE and VPD does not seem to change with precipitation. The trend
line for the relationship between VPD and daily LUE for GRA is below those of SWC and LSWI (Figures 7b
and 7e), indicating that VPD has the weakest effects on LUE. For GRA, daily LUE is most responsive to
SWC, and the relationship is stronger at wetter sites. SWC stress on CRO is low (Figure 7c), probably due
to the practice of irrigation, while LSWI is most strongly related to daily LUE of CRO along the precipitation

and LAI gradients. Through the com-
parative analysis in Figure 7, we
found that the samemoisture stressor
has different effects on daily LUE for
different biomes. Among VPD, SWC,
and LSWI, VPD has the strongest con-
trol on daily LUE for ENF, SWC on
GRA, and LSWI on CRO along either
the precipitation or LAI gradient.

4. Discussion

Terrestrial ecosystems adopt diver-
gent strategies to minimize drought
costs (e.g., defoliation to avoid dehy-
dration versus stomatal closure to
tolerate drought) [Bacelar et al., 2012].
By correlating remotely sensed vege-
tation index and drought indicators,

Figure 5. Adjusted R2 between LUE and plant moisture indicators of (a) land
surface water index (LSWI) and (b) evaporative fraction (EF) for different
biomes on daily, 8 day, and monthly scales. Biome abbreviations are given in
Table 1. The black error bar indicates the magnitude of 1 standard deviation.
The error bar for the biome with only one site is not shown.

Figure 6. Adjusted R2 between LUE and three groups of moisture indicators
for all biomes on daily, 8 day, and monthly scales. Atmosphere indicators:
precipitation (Pre), and daytime vapor pressure deficit (VPD); Soil indicators:
volumetric soil water content (SWC) and soil water saturation (SWS); Plant
indicators: land surface water index (LSWI) and evaporative fraction (EF). The
black error bar indicates the magnitude of 1 standard deviation.
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Sims et al. [2014] found that forested ecosystems had less changes in canopy greenness with drought than
nonforested ecosystems, probably due to the stored water in the stems and water accessibility via deep
roots. Site-based studies using data from eddy covariance flux towers in forest ecosystems also indicated
that extreme and lasting soil water stress are rare to significantly reduce seasonal ET and GPP [Xie et al.,
2014; Fang et al., 2015]. Our study further confirmed that besides canopy greenness, forest LUE was also
less sensitive to water stress than nonforest biomes (Figure 2b).

Vegetation conducts photosynthesis at the cost of losing water to the atmosphere [Churkina et al., 1999].
Moisture stress or physiological drought for plant would happen when there is an imbalance between water
demand and water storage in the plant [McDowell et al., 2008]. In this study, we comprehensively examined
the relationships between LUE and these three groups of moisture indicators. We found that these indicators
showed great variations in quantifying moisture stress on LUE across different terrestrial ecosystems
(Figures 3–7). Of atmosphere indicators, precipitation, as the major source of water for SPAC, could influence
all the other moisture indicators during short- or long-term period and impose indirect influences on LUE
[Siqueira et al., 2009]. However, our study showed that low precipitation (i.e.,< 5mmd�1) had weak links with
LUE variations on daily, 8 day, and monthly scales for all biomes (Figure 3a). Due to the data screening in our
study, we could not examine the effects of moderate and high precipitation (i.e., > 5mmd�1) on LUE. Here
we further examined the lag effects (i.e., past 8 day, 30 day, and 60 day) of precipitation on daily LUE as an
alternative (Figure 8). Our results showed substantial lag effects of past precipitation on LUE for most biomes,
especially for SAV and GRA (Figure 8), suggesting the indirect mechanism of precipitation in affecting plant
growth during the long-term period [Wu and Chen, 2012].

VPD, as an evaporative demand of SPAC, could affect plant growth by controlling the openness of leaf stomata
[Ocheltree et al., 2014]. Our study clearly showed that LUE was more sensitive to changes in VPD than in
precipitation on daily, 8 day, and monthly scales (Figure 3). However, VPD may decouple with soil water
dynamics due to its oversensitivity to temperature, especially in summer monsoon regions [Mu et al.,
2007], suggesting that the lag effect of precipitation may potentially influence the relationship between
VPD and LUE. Plant indicators including LSWI and EF were shown to have the closest association with
LUE for most ecosystems (Figures 5 and 6), suggesting that they should be the priority of moisture scalar

Figure 7. Comparisons of site-based adjusted R2 between daily LUE and representative moisture stress indicators for three biomes (evergreen needleleaf forest
(ENF), Grass, Crop) (a–c) along the gradients of multiyear averaged precipitation (Pre) and (d–f) leaf area index (LAI). Atmosphere indicators: daytime vapor pressure
deficit (VPD); Soil indicators: soil water content (SWC); Plant indicators: land surface water index (LSWI). Red, blue, and green lines are the linear fits for VPD, SWC, and
LSWI, respectively. The value in parenthesis in the legend is the Pearson’s Correlation between adjusted R2 and precipitation and LAI for all sites. Multiyear averaged
precipitation and LAI are derived from flux tower data and smoothed MODIS LAI, respectively.
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selection in LUE models [Garbulsky
et al., 2010]. However, the unavail-
ability of EF over space and the fre-
quent cloud contamination in LSWI
constrain the applications of plant
indicators in LUE models [Xiao et al.,
2004; Yuan et al., 2007]. In such case,
VPD could be used as a good surro-
gate to fill the spatiotemporal gaps
of plant indicators. Our study further
found that LSWI showed worse
performance in explaining daily LUE
variations than VPD in evergreen
forests (Figures 3, 5, and 7), probably
because evergreen forests have rela-
tively small seasonal variations in

canopy water content measured by remote-sensing signals compared with other biomes. It suggests that
the GPP estimation of evergreen forests may improve when integrating VPD into those LUE models that
used LSWI as the only moisture scalar (e.g., VPM [Xiao et al., 2004]).

Observed LUE tends to cancel out its short-term variations and becomes more stable as temporal scale
increases (Figure 2b) [Song et al., 2009, 2013]. Our analysis showed that most indicators were generally more
effective in affecting LUE on the monthly scale than on the daily and 8 day scales (Figure 6). However, soil
indicators explained LUE variations worse on themonthly scale than on the daily and 8 day scales, suggesting
that the longer averaged SWC may not hold useful information to reflect the water stress on LUE. Soil water
provides the direct water input for SPAC. However, our study showed poor relationships between LUE and
SWC/SWS for most biomes, especially for forests and shrubs (Figures 4 and 7), suggesting that the flux-
tower-based soil water measurement in the shallow soil layer (~30 cm) may not sufficiently capture the status
of water supply for woody plants [Reichstein et al., 2002]. However, for grassland, SWC performed better than
VPD in explaining LUE variations (Figure 7). Rooting depth and stem water storage may be the major control-
ling factors here. Direct measurement of rooting depth for natural ecosystems showed that forest and shrubs
generally had deeper roots than grassland, although variations exist in different climate zones [Canadell et al.,
1996; Schenk and Jackson, 2002]. For example, temperate grassland was shown to have a maximum rooting
depth of 1.7m, but roots of tropical deciduous forest could reach as deep as 3m [Schenk and Jackson, 2002].
Compared to herbal plants, woody plants could have higher water accessibility via deep roots, and store
more water in the stems [Schenk and Jackson, 2002; Sims et al., 2014] and thus decrease the sensitivity of
LUE to the shallow soil moisture. Furthermore, the in situ soil moisture measurement from a single point loca-
tion may not well represent the aggregate or horizontal moisture condition over the tower footprint, which is
likely another cause of the poor correspondence between LUE and SWC. The threshold effect of soil moisture
stress on LUE was expected to exist in different ecosystems [Laio et al., 2001]. However, our study found that
SWS showed no obvious advantage in explaining LUE variations compared to SWC (Figure 4), suggesting the
complexity of soil moisture stress on LUE. We recognized that the limited data records for SWC/SWS after
screening as well as the use of global soil texture parameters to estimate SWS (i.e., equation (2)) may further
contribute to uncertainties.

To explore the potential nonlinear effect of SWC on LUE, we further analyzed the relationships of LUE with dif-
ferent forms of SWC, i.e., polynomial SWC, log10(SWC), and SWC3PG on three temporal scales. The R2 between
LUE and different forms are slightly higher on 8 day scale than on daily and monthly scales. However, consider-
able nonlinearity was not observed in those treatments (Figure 9). Currently, it is still a big challenge to fully
simulate soil water dynamics by single or multibucket models [Churkina et al., 1999; Song et al., 2013].
Recently, NASA successfully launched an advanced Earth Science satellite called Soil Moisture Active Passive
(SMAP) (http://smap.jpl.nasa.gov/), which provides not only the measured SWC in the top layer of the Earth’s
surface (~5 cm) but also value added SWC down to 1m in depth taking account of additional ancillary input
data, such as precipitation and root distribution [Reichle et al., 2014]. This mission provides unprecedented soil
moisture information that could significantly enhance our understanding of global soil moisture stress on LUE.

Figure 8. Adjusted R2 between daily LUE and precipitation with different lag
times for different biomes. Pre: daily precipitation; Pre8, Pre30, and Pre60
are past 8 day, 30 day, and 60 day running means of daily precipitation.
Biome abbreviations are given in Table 1. The black error bar indicates the
magnitude of 1 standard deviation.
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Moisture stress on plant is always coupled with temperature [Brzostek et al., 2014]. In this study, we screened
the data by adopting the empirical thresholds of high and low temperatures for LUE [Zhao and Running,
2010], which was proved to be effective because no significant correlations between temperature and LUE
data were found after the data filtering (results not shown). Nevertheless, no indicator was found to explain
the variation of LUE stressed by moisture as much as one would have expected (Figures 2–7). In comparison,
for example, on monthly scale, the representative indicators from atmosphere (VPD), soil (SWC), and plant
(EF) moisture indicators only explained 20%, 6%, and 36% of LUE variations (Figure 6), respectively, reflecting
the complexity of moisture stress on canopy photosynthesis [Churkina et al., 1999]. The limited ability of
different indicators in tracking the effects of moisture stress on LUE may also be related to the following:
(1) LUE uncertainties inherited from the tower-based estimation of GPP and MODIS FPAR; for example,
tower-based GPP was subject to have 10%–30% errors due to the estimating and gap-filling methods used
[Reichstein et al., 2005; Schaefer et al., 2012], while MODIS FPAR tended to be underestimated and displayed
larger seasonal variations in old forests [Serbin et al., 2013]; (2) scaling errors between LUE over the tower foot-
print and site level in situ observations (e.g., SWC and precipitation) [Schmid, 2002]; (3) potential mismatches
of temporal scale of data analysis and that of actual environmental stress, and (4) other uncontrolled factors,
e.g., root distribution, drought adaption strategy, nutrient constraint, etc. [Bréda et al., 2006; Reyer et al., 2013;
Klein et al., 2014]. Since our empirical analysis was conducted on the site basis, the goodness of fit may be
little influenced if the above mentioned errors were systematic or evenly distributed within each site.
However, if these errors were not systematic, e.g., randomly distributed within the site, the results would
be affected. Further studies in more tightly controlled environment are needed to examine and validate
our conclusions.

Currently, understanding and modeling drought effects on terrestrial ecosystem productivity is still a big
challenge due to the complex ecophysiological responses of ecosystem to moisture stress [Ruimy et al.,
1999; Bréda et al., 2006]. Schaefer et al. [2012] evaluated 26 GPP models with flux tower data over North

Figure 9. Scatterplots between LUE with (a) soil water content (SWC), (b) logarithm of SWC (log10(SWC)), and (c) SWC
scalar from the 3PG Model [Landsberg and Waring, 1997] on the 8 day scale. Biome abbreviations are given in Table 1. The
gray line in Figure 9a is the second-order polynomial fitting.
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America and found that none of these models match estimated GPP within observed uncertainty. Yuan et al.
[2014] compared seven LUE models with global flux tower data, and found that model performance differed
substantially among ecosystem types. Both of these studies highlighted the uncertainties of the representa-
tion in moisture stress in the LUE models. Our study based on the global EC flux data covered the major
moisture stress indicators used in the current LUE models, and the diverse responses of vegetation to moist-
ure stress revealed by our study could help to improve the representation of moisture constraints and the
associated accuracy in future global LUE-based productivity models.

5. Conclusions

Water and carbon fluxes are inherently coupled, and understanding how water stress affects plant growth
is crucial to predict the responses of terrestrial ecosystems to global environmental changes. In this study,
we investigated the effects of three groups of moisture indicators (i.e., atmosphere, soil, and plant) on LUE
for a wide range of ecosystems on daily, 8 day, and monthly scales based on FLUXNET and MODIS data.
After a series of data screening, we still found large variations in moisture stress on LUE among different
ecosystems. In comparison, LUE is most responsive to plant moisture indicators (EF and LSWI), least
responsive to soil moisture indicators (i.e., SWC and SWS) with the atmospheric moisture indicator (VPD)
in between. LUE showed higher sensitivity to SWC than VPD only for grass. For evergreen forest, VPD
showed better performance in explaining LUE variations than the plant moisture indicator, LSWI. Most
moisture indicators were generally less effective in affecting LUE on the daily and 8 day scales than on
the monthly scale. Our study highlights the complexity of moisture stress on LUE and suggests that a single
moisture indicator or function in LUE models cannot capture the diverse responses of different vegetation
to moisture stress. LUE models should consider the variability identified in this study to more realistically
reflect the environmental controls on ecosystem functions.
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