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Abstract The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by
aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing
of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion
at the forest landscape scale remains challenging. We utilize canopy height information estimated using lidar
(light detecting and ranging) technology as a tool to produce a spatially distributed root cohesion model for
landslide hazard prediction. We characterize spatial patterns of total belowground biomass based on the
empirically derived allometric relationship developed from soil pit measurements in the Coweeta Hydrologic
Laboratory, North Carolina. The vertical distribution of roots and tensile strength were sampled at soil pits
allowing us to directly relate canopy height to root cohesion and use this model within a distributed
ecohydrological modeling framework, providing transient estimates of runoff, subsurface flow, soil moisture,
and pore pressures. We tested our model in mountainous southern Appalachian catchments that experienced
a number of landslides during the 2004 hurricane season. Slope stability estimates under the assumption of
spatially uniform root cohesion significantly underpredicted both the total number of landslides and the
number of “false positives,” unfailed areas of the landscape that were predicted to fail. When we incorporate
spatially distributed root cohesion, the accuracy of the slope stability forecast improves dramatically. With
the growing availability of lidar data that can be used to infer belowground information, these methods

may provide a wider utility for improving landslide hazard prediction and forecasting.

1. Introduction

Landslides are significant geophysical hazards in steep mountainous areas. Shallow landslides act as an
important mechanism of transfer of hillslope sediment to channels [Benda and Dunne, 1997] and an ecologic
disturbance mechanism [White, 1979]. The initiation of shallow landslides depends on the interactions
between soil physical properties, hillslope hydrology, and belowground ecologic processes [Wu, 1995]. On
steep slopes, plant roots increase soil shear strength, particularly in the low-cohesion colluvial soils where
shallow landslides initiate [Hales et al., 2009; Roering et al., 2003]. Rooting structures also have a strong control
on long-term hillslope hydrology, imparting high soil hydraulic conductivity and macroporosity typically
resulting in negligible infiltration excess runoff generation, such that drainage is dominated by shallow to
deep subsurface flow. In the short-term, vegetation moderates pore pressures by reducing antecedent soil
moisture through transpiration and interception and facilitating drainage by increasing macropore flow.
The combined hydrologic and soil stabilizing effects of vegetation increase slope stability on mountainous
watersheds [Ghestem et al., 2011]. Therefore, understanding the spatial and temporal patterns of root
contributions to soil strength combined with hydrological modeling of pore pressure will improve regional
landslide hazard assessment and forecasting [Band et al., 2012].

There are three predominant approaches taken for landslide hazard prediction, depending on available data
and spatial scale of the analysis. The first method, typically applied at a reconnaissance or regional scale, is
a topographically based application of an infinite slope equation with a simple hillslope hydrology model
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which provides estimates of slope stability [e.g., Montgomery and Dietrich, 1994]. A second method is
event-specific forecasting for a regional scale, applied using sophisticated geotechnical models that take into
account antecedent conditions and short-term precipitation forecasting or real-time estimation [e.g., Chen
and Lee, 2003]. A third method uses multiple regressions of climate, streamflow, and other hydrological
variables to create rule-based models of landslide initiation potential [e.g., Berti et al., 2012]. The first method
often assumes worst-case scenarios of probable maximum precipitation or specific low frequency storms,
while the second requires assessment of specific transient events, for which warnings can be developed.
The third approach requires long records of landslides, climate, and hydrological information before
implementation. For transient event forecasting, additional critical needs are the contributions of ecosystem
water use on local hydrology, particularly during interstorm periods that condition antecedent soil saturation
levels, local topography, and estimates of soil hydraulics and strength characteristics, including the
contributions of roots to soil strength.

Physically based, regional landslide hazard models, such as Shallow Landsliding Stability Model (SHALSTAB) and
Stability Index Mapping (SINMAP), often assume steady state flow conditions at specific rainfall or recharge
rates [e.g., Montgomery and Dietrich, 1994; Pack et al., 2005]. However, in the southern Appalachians, as
elsewhere, slope failures are often associated with heavy, short-term precipitation events predominantly from
subtropical storm systems in late summer and early fall [Fuhrmann et al.,, 2008; Wooten et al.,, 2007] and are
significantly influenced by antecedent conditions, violating the steady state assumption. The sequence and
timing of large storms is an important determinant of landslide occurrence, with closely spaced or long
duration events providing greater spatial frequency of landslides due to spatial heterogeneity of soil saturation.
The combination of intense precipitation, wet antecedent conditions, and convergent topography promotes
high pore pressures that can result in transient decreases in soil strength sufficient to initiate a mass failure
[Band et al., 2012; Lehmann and Or, 2012].

The main challenge of regional landslide forecasting is the uncertainty associated with the spatial distribution
of the physical parameters, primarily cohesion, friction angle, and soil depth. Despite significant advances in
hydrologic and topographic modeling, our understanding of the distribution of root and soil properties remains
poor. Soil strength (friction and cohesion) can be parameterized using soil maps, but the spatial precision of soil
map information is typically low compared to the resolution of digital elevation data [Zhu et al., 1997]. The net
effect of these assumptions often translates into spatially uniform classifications of hazard zones, from which
landslide hazard becomes dependent on topography-derived slope and drainage area, as well as precipitation
patterns. In steep terrain with colluvial soils (such as Macon County, NC), roots often provide a primary source of
spatial variability in slope reinforcement. Friction angles occupy a relatively narrow range of values in this region
(vary between 33° and 38°), but root cohesion (C,) can vary by an order of magnitude depending on the
vegetation community types occurring at a particular slope [Hales et al., 2009].

Root cohesion is a function of the number and distribution of roots within a soil column and their elastic
properties. Vertical root distributions often depend on vegetation community types [Schenk and Jackson,
2002] and the long-term distribution of soil moisture in a landscape [Hales et al., 2009]. Regional controls
on root elastic properties are not well understood, however. Root tensile properties are therefore implicitly
assumed to be static through the storm events that initiate landslides, although the strength of soil-root
bond may vary with moisture [Pollen-Bankhead and Simon, 2009]. Recently, Hales et al. [2013] found that root
strength varies strongly with root moisture content; roots are weakest at full saturation and strongest when
dry. Hence, a regional root reinforcement model must account for the role of community type, rooting depth
and biomass, and feedbacks between root moisture state and soil hydrology. However, there have been
few studies to characterize regional-scale root cohesion patterns in space and time for improving landslide
hazard prediction and mapping.

Remotely sensed vegetation information could be an important tool for developing spatial models of root
reinforcement for landslide mapping or forecasting [Miller, 2013]. Currently remote sensing is used to detect
the postevent distributions of landslides [Glade, 2003; Miller, 2013; Montgomery et al., 2000], using spectral
vegetation indices (e.g., normalized difference vegetation index (NDVI)) or vegetation cover using land cover
classification. We contend that this application could be extended to improve potential landslide forecasts.
Forest ecosystems have predictable patterns of foliar and root biomass in response to available water and
nutrient resources along hydrologic flow paths [Hwang et al., 2009]. General patterns of belowground
biomass can be estimated along these flow paths as aboveground and belowground biomass pools are
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Figure 1. The Cartoogechaye watershed in the Little Tennessee River, five gauged subwatersheds (Wayah Creek, Poplar
Cove Creek, Allison Creek, Jones Creek, and Blaine Branch; Table 1), and subcatchments (n = 1388, with different colors)
used in the evaluation process. Green points represent the climate stations (WINE, NWAY, and CS01; Table 3) and USGS
gauge stations (Cartoogechaye Creek near Franklin, NC; ID 03500240). Black circles indicate observed landslide initiation
locations during the two consecutive hurricane events in 2004 from North Carolina Geological Survey (http://portal.ncdenr.
org/web/Ir/geological_home). Coweeta Hydrologic Lab is located in the southeast of the study site.

often related, expressed as an allometric or a root-to-shoot ratio [Litton et al., 2007]. While aboveground
biomass and other canopy structural properties can be estimated using lidar (light detecting and ranging)
technology [Lee and Lucas, 2007; Lefsky et al., 2002, 2005; Popescu and Wynne, 2004; Popescu et al., 2003; Song
et al., 2010], estimating belowground biomass is more challenging. However, the combination of empirical
allometric relationships with lidar canopy data represents a significant improvement in our ability to derive
estimates of root biomass across the landscape and therefore the root contribution to soil strength.

In this paper, we explore the coupling of a distributed ecohydrological model incorporating existing spatial
patterns of canopy conditions, topography, and soils with a planar landslide model. Our work builds on
previous observations of the spatial variability in root strength characteristics between overstory hardwood
forest and shrub species in the southern Appalachians [Hales et al., 2009] and simple planar landslide models
driven by a distributed ecohydrologic model [Band et al., 2012]. We hypothesize that the use of spatially variable
root cohesion patterns, estimated from aboveground properties, will improve the simulation of landslide risk
at the storm event scale. Our main research questions are the following: (1) Can canopy height information
derived from lidar data be used to estimate and map the spatial distribution of root properties and soil cohesive
strength using simple allometric relations? (2) How effective is the incorporation of spatially variable root
properties, including root biomass and cohesion, on improving the prediction skill of landslide occurrence

in small subcatchments during major hurricane events in the southern Appalachians?

2. Methods and Materials
2.1. Study Site

The study site is the Cartoogechaye Creek watershed, located in western North Carolina in the Little Tennessee
River basin (Figure 1), which experienced significant landslide activity during two closely spaced hurricanes in
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Table 1. Gauged Subwatersheds in the Study Site and Land Use and Land Cover Information®

Area Developed Forest/Shrub Pasture/Agriculture
Subwatershed (km?) (%) (%) (%)
Wayah Creek 30.6 29 96.7 0.3
Poplar Cove Creek 9.6 8.5 90.1 1.4
Allison Creek 15.2 6.1 90.4 34
Jones Creek 153 33 943 24
Blaine Branch 33 8.4 823 9.1

®From National Land Cover Database (NLCD) 2006 [Price et al,, 2011].

2004 (Frances and Ivan). The study site is typical of southern Appalachian forests, with dominant mixed
hardwood forests including Quercus spp. (oaks), Carya spp. (hickory), Nyssa sylvatica (black gum), Betula lenta
(black birch), Acer rubrum (red maple), and Liriodendron tulipifera (tulip poplar). Major evergreen understory
species are Rhododendron maximum (rhododendron) and Kalmia latifolia (mountain laurel) [Day et al., 1988].
Tsuga canadensis (eastern hemlock) has been a common evergreen overstory species on riparian and mesic
sites but has now been significantly reduced by an invasive insect (hemlock woolly adelgid) since early 2004
[Ford and Vose, 2007; Ford et al., 2012]. Soils are of colluvial origin on steep hillsides with broadleaf forest cover,
with the exception of alluvial soils in the floodplains of the larger valleys that are typically cleared for pasture,
agriculture, or development [Hales et al., 2009]. Roads in steeper, forested areas have been significantly
extended with new second home development in the last two decades. Mean annual precipitation in the area
from low to high elevation ranges from 1800 to 2500 mm [Laseter et al., 2012]. Precipitation is relatively evenly
distributed through the year, although tropical storms in late summer and early fall can deliver high storm totals
and intensities. Stream discharge records for the Cartoogechaye Creek watershed are available from USGS

Table 2. Site Characteristics and Belowground Biomass Values of Soil Pits

Topographic  Basal Area Map?  Measured Belowground  Estimated Belowground

Watershed Species Position or DBH (cm) Biomass (g mfz) Biomass (g mfz)
WS28 Liriodendron Hollow H1 1440.8 1288.5
tulipifera
Hollow H2 2896.7 3978.7
Hollow H3 1970.0 1494.2
Nose N1 5240.5 4338.5
Nose N2 2365.8 23959
Nose N3 1054.7
Betula lenta Hollow H1 1739.7 1088.0
Hollow H2 1070.5 695.4
Hollow H3 1017.0 743.8
Nose N1 1293.5
Nose N2 1171.9 743.8
Nose N3 14953
WS36 Acer saccharum Nose 209 1156.7
Tsuga canadensis Nose 339 314.9
Rhododendron Hollow 43 604.4
maximum
Carya spp. Nose 38.8 1032.4
L. tulipifera Side Slope 17.5 462.9
Quercus rubra Hollow 84.0 7004
A. rubrum Nose 5.1 3739
Q. prinus Nose 58.7 2093.2
Q. velutina Hollow 33.7 526.1
Q. rubra Hollow 37.7 614.3
Q. rubra Nose 33.2 1068.5
R. maximum Nose 9.2 339.8
B. lenta Hollow 28.5 1600.1
L. tulipifera Hollow 225 9235
L. tulipifera Nose 20.1 598.6

a . . .
Basal area maps are available in Figure S2.
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gauge in Franklin (ID 03500240) since 1961. Streamflow from a set of five subwatersheds within the
Cartoogechaye Creek watershed was available for 2007-2009 (Table 1 and Figure 1) [Price et al., 2011].

The area has been the site of repeated debris flows. The 2004 hurricane season resulted in a number of debris
flows initiating in steep, high-elevation areas, typically at the head of hillslope hollows in areas with subtle
topographic convergence [Wooten et al., 2007]. A series of larger slope failures were documented and mapped
in the headwaters of the study site by the North Carolina Geological Survey (http://portal.ncdenr.org/web/Ir/
landslides-information; Figure 1).

2.2. Belowground Biomass Measurements

Belowground biomass was measured directly by weighing roots or estimated by measuring the cross-sectional
area of all roots and adjusting for biomass based on root density in 27 soil pits within the Coweeta Hydrologic
Laboratory (Table 2 and Figure S1 in the supporting information), which is adjacent to the study site. These
pits were selected to sample belowground biomass and/or root distribution of major hardwood species

and topographic positions at high elevations, as part of two separate projects [Hales et al., 2009; T. C. Hales
and C. F. Miniat, Hillslope-scale root cohesion driven by soil moisture conditions, submitted to Earth Surface
Processes and Landforms, 2014]. Pits were located on noses (areas of convex downward topography), on
side slopes (areas of planar topography), and in hollows (areas of concave upward topography). Identification
of the topographic position was primarily made in the field and confirmed by placing accurate global
positioning systems measurements of pit locations onto a curvature map derived from the 6.1 m state lidar
bare-earth data. Pits in Coweeta subwatershed 28 (WS28) were located in areas that were dominated by
several individuals of one of two tree species (L. tulipifera or B. lenta; Table 2 and Figure S2); both biomass
and distribution were measured in these pits. Pits in watershed 36 (WS36) were adjacent to and immediately
downslope from several major hardwood species found within the oak-hickory and northern hardwood
forest communities; only root distribution was measured in these pits. In WS28, pits were 1x 1 m in area,
and all roots in ~3 kg of soil encountered were sieved (2 mm mesh), washed, dried, and weighed. To estimate
the cross-sectional area of roots intersecting each pit face, we painted roots along a 40 cm wide vertical swath
of each pit, photographed, and digitally analyzed to gain the cross-sectional area and coordinates in

both studies.

A two-parameter exponential model was fit to the vertical distributions of root area, A(z), from each pit
[Mattia et al., 2005; Preti et al., 2010]:

Alz) = Ace™?2, (1)

where A represents root area (m?) at the surface (z=0), b is the shape parameter (m™"), and z is the
soil depth (m). We also estimated root density values across different species, topographic position, and
diameters to transform root area to root biomass. We observed dry mass, diameter, and length of the
sampled roots. Root density was then estimated from linear regression between root dry mass and
volume for all observations (n=391).

2.3. Conversion of Belowground Biomass Map to Total Root Cohesion
Assuming isotropic root distributions, total volume of roots per ground area (m>m™2)
integrating root area over soil depth:

was calculated by

- A
V, = [ At dz = FO’ 2)

The density of roots (p,; kg m~3) measured for our pit sites (Figure S1) was constant for a range of root
densities. We also calculated a constant tensile strength (T,; N m~2) across all root diameters based on the
linear regression of root tensile force at failure against root cross-sectional area (see Hales et al. [2013] for a
derivation of the method). Incorporating these parameters, we calculated total belowground biomass per
ground area (B,; kg m™2) and total root cohesion (C,) as

Ao
BI’ = Pr 3 ) (3)
C = Cl2)dz=KT,[ A dz=KT all @)
r et r)o 0 r b 5
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Table 3. Climate Stations for the Simulation and Available Data Sets

Latitude/Longitude  Elevation Available Daily
Name (degree) (m) Source Climate Data
WINE 35.1731/—83.5910 1667 NC Environment and Climate Maximum and
(Wayah Bald) Observing Network minimum temperatures
(ECONet) Precipitation
Wind speed

Solar radiation
Relative humidity

NWAY 35.17/—-83.40 658 NC Remote Automated Maximum and
(Wayah) Weather Station minimum temperatures
(RAWS) Wind speed
Solar radiation
Franklin 35.1803/—83.3925 647 NWS Cooperative Precipitation
(ID 313228) Observer (COOP)
Coweeta Hydrologic 35.0603/—83.4303 685 USDA Forest Service Maximum and
Lab (CS01) minimum temperatures
Precipitation
Wind speed

Solar radiation
Relative humidity

where C,(2) is root cohesion (Pa) at soil depth z (m) and K is a constant usually assumed to be 1.2 [Wu et al,, 1979].
Note that K in this study implicitly includes a dimension converter (m™") from root volume to area under the

assumption of isotropic root distributions. Combining equations (3) and (4),
B
C=KT,—. (5)

r

This method provides a very simple and computationally efficient estimation of the spatial pattern of total
belowground biomass and root cohesion.

2.4. Infinite Slope Model

We modeled slope stability using the limit equilibrium infinite slope approach [Montgomery and Dietrich, 1994]. The
factor of safety (FS) of a slope is defined as a ratio of soil strength (resisting forces) to soil shear stress (driving forces):

(Cr + C) + cos?0(p, — mp,,)Dtan ¢
pDsin Ocos 0 '

Fs = (©)
where C; is the soil cohesion (kPa), C, is the cohesive strength supplied by roots (kPa), ¢ is the angle of internal
friction of the soil, ps and p,, are the unit weights of soil and water (kg m~3), D is the soil depth (m), and m is
the saturated fraction of soil depth. Topographic information required to drive this simple model included
slope (0) and topographic flow paths to derive subsurface flow and resulting saturation levels (for the calculation
of m in equation (6)).

2.5. Ecohydrological Model (RHESSys) and Hydrological Records

The Regional Hydro-Ecological Simulation System (RHESSys) is a geographic information system (GIS)-based
ecohydrological modeling framework designed to simulate coupled water, carbon, and nitrogen cycling in
complex terrain [Band et al., 1993; Tague and Band, 2004]. RHESSys couples a patch-scale ecosystem
model developed from BIOME-BGC [Running and Hunt, 1993] and CENTURY [Parton et al., 1993] with

a distributed hydrologic model that routes water and solutes through topographically defined flow
networks connecting patch and hillslope hydrology to the regional stream network. RHESSys was applied
to four of five gauged headwater subwatersheds within the study site at a 10 m resolution over a
cumulative drainage area of ~145 km? (Table 1 and Figure 1) producing ~1.45 x 10° simulation units
(patches). These subwatersheds are located at high elevations with steep slopes, mostly covered by
deciduous broadleaf and evergreen coniferous forests (Table 1).

Daily climate data from three climate stations (WINE, NWAY, and CS01; Figure 1) were used in the simulations.
Details of the climate stations and daily climate data used are summarized in Table 3. For each subwatershed,
the model extrapolated daily climate data from the point observation based on topography (elevation,
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aspect, and slope) following the MT-CLIM algorithm [Running et al., 1987]. Orographic precipitation was
estimated from scatterplots of monthly total precipitation between stations assuming a simple linear trend
with elevation. Environmental and dewpoint lapse rates were estimated from the scatterplots of daily
maximum and minimum temperatures between stations. Stage-discharge rating curves were developed at
each gauged subwatershed using a Bayesian multisegment method. Detailed rating curve methods are
available in Price et al. [2011]. Area-averaged streamflow data for each subwatershed during the period of
August 2007 to February 2009 were used for model calibration. Note that flows in the subwatersheds are very
flashy, and with limited stage-discharge measurements at high flows, there can be significant uncertainty
especially during peak discharge due to the nonlinear nature of rating curves.

2.6. Prescribed Spatiotemporal Dynamics of Vegetation

We estimated spatial patterns of maximum and minimum leaf area index (LAI) for two growing seasons

(2 June 2003 and 3 September 2008) and one dormant season (7 March 2004) using Landsat Thematic Mapper
(TM) images, all of which are standard level-1 terrain-corrected (L1T) products. The maximum LAl map was
derived from the NDVI values by combining two summer images to obtain a composite cloud-free scene
(Figure S3). A modified dark object subtraction method was applied to correct atmospheric effects on surface
reflectance [Song et al., 2001]. The NDVI-LAI relationship was derived from optical (LAI-2000 and hemispheric
photos) and historical field measurements (litter traps) of vegetation density in the Coweeta basin [Hwang
et al,, 2009]. Vegetation phenology was prescribed in the model as a function of topographic factors, including
elevation, aspect, and topographic wetness index, following Hwang et al. [2011]. Landscape phenology models
for leaf green-up and senescence were developed at 250 m scale within the study site from 10 year Moderate
Resolution Imaging Spectroradiometer NDVI data (2001-2010). The seasonal vegetation dynamics were
determined by maximum and minimum LAI values (30 m resolution) and green-up and senescence timing
(250 m resolution) without interannual variation.

2.7. Canopy Height Information From Lidar

We use two sources of airborne lidar data in this study, North Carolina statewide lidar (http://www.
ncfloodmaps.com) and NCALM (National Center for Airborne Laser Mapping; http://www.ncalm.cive.uh.edu/)
lidar data. The North Carolina lidar was used for estimation of canopy structure (tree height) and topographic
(bare-earth) information. The state lidar data were collected in 2005 before green-up, to measure bare-earth
elevation accurately, provided as a 6.1 m (20 feet) grid format with validations. As the data were collected during
a leaf-off period, we used a leaf-on high-resolution NCALM lidar to validate and correct the estimated canopy
height map. NCALM lidar data were only available at the Coweeta basin (http://www.opentopography.org),
acquired in July 2009, and were used to produce a 1 m resolution canopy height. The NC state lidar bare-earth
data at 10 m horizontal resolution are used to delineate the watershed boundaries.

The original data of both state and NCALM lidar included xyz coordinates for multiple returns from different parts
of the canopy and ground surface. We used LAStools (http://www.cs.unc.edu/~isenburg/lastools/) to postprocess
the original lidar data. We produced the canopy top elevation map from the first return (or maximum) elevation
value within a single 6.1 m pixel, excluding data points classified as building and noise returns. Canopy height
was then calculated from the difference between canopy top and bare-earth elevations. The effective count map
was also produced as a quality check of this map. However, this method essentially overestimates canopy height
because it selects the maximum values within a 6.1 m pixel. The leaf-on canopy heights, derived from NCALM
lidar data with the same method, were further compared with those from state lidar data for bias correction. We
also related the canopy height information averaged at different window sizes (1 x 1 to 7 x 7 m) with observed
(or estimated) total belowground biomass values from soil pits (n =27). A summer IKONOS NDVI map (1 June
2003) was also used to correlate with belowground biomass values for the comparison. As developed above, in
addition to the belowground biomass, estimates of characteristic root tensile strength (T,) and density (p,) were
then used to generate total root cohesion (C,) with equation (5).

2.8. Soil Type and Land Cover

Soil depth estimates, required for calculation of the slope stability factor of safety (equation (6)), were extrapolated
from depth to refusal measurements at 108 points within the Coweeta Hydrologic Laboratory (Figure S1).

Soil depth patterns were estimated with a tree regression model (Figure S4), developed by Band et al. [2012].
The estimated soil map may underestimate depths in deeper soils based on the probe length. However,
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different species (LITU, L. tulipifera; QURU, Q. rubra; and RHMA, R. maximum) and at different topographic positions (COVE,
hollow; SIDE, side slope; and NOSE, nose).
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reconnaissance in the study area suggests
that landslide trigger zones are typically
o in shallower soils at the very head of
hollows. A mean root depth of 0.75 m for
tree-based biome types was based on the
pit excavations [Hales et al., 2009], as
insufficient data exist to generate a
spatially variable model. The model also
incorporated additional GIS information,
such as vegetation type, impervious
percent, and land use from NLCD
(National Land Cover Database), as well as
soil type from Soil Survey Geographic
Database (Figure S5). The original data
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for the July 2007 to February 2009 time
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40 beginning of simulation, which allows soil
water state variables to equilibrate in
the model. The Nash-Sutcliffe efficiency
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Figure 4. (a) Evaluation of belowground biomass per unit ground area

(9 mfz) between measured values and estimated from vertical root of daily log streamflow data [Nash and
area distributions at nine soil pits in WS28 and (b) exponential allometric ~ Sutcliffe, 1970] was used as an objective
relationships between 3 x 3 m averaged canopy heights from NCALM function to identify optimal parameter

lidar and belowground biomass values, with (only WS28; n = 12; black
solid line) and without (WS28 and WS36; n = 27; gray dotted line)
estimated values. Horizontal bars represent the standard deviations
of 1 m canopy height values within 3 x 3 m windows. curve uncertainty. Following calibration,
the model was run for a 2 year spin-up, and
then for the 2004 period of Hurricanes Frances (7 September) and Ivan (16 and 17 September) and a set of

unnamed storms.

sets for each watershed as observed peak
flows may be unreliable due to rating

RHESSysCalibrator (https://github.com/selimnairb/RHESSysCalibrator) was used to automate the Monte Carlo
simulation process. RHESSysCalibrator manages (1) generating model parameter sets for each simulation,
(2) running simulations using local or high-throughput computing resources, and (3) postprocessing model
results to calculate model fitness parameters. Other species-specific ecophysiological parameters were
estimated from historical measurements within the Coweeta Hydrologic Laboratory. Details of
parameterization are available in Hwang et al. [2009, 2012].

2.10. Model Simulation and Evaluation Under Different Root Cohesion Dynamics

A factorial design of FS model simulations were carried out to explore impacts of spatial and temporal dynamics
of root cohesion, C,: (1) spatially and temporally constant C, (2) spatially variable and temporally dynamic C,,
and (3) spatially variable and temporally constant C,. Spatially constant C, values are obtained by averaging root
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Canopy Height estimated from State LiDAR (m)

Figure 5. Correlation of canopy heights between averaged 1 m NCALM lidar

Canopy Height estimated from NCALM LiDAR (m)

and estimated from the state lidar at 6.1 m (20 feet) scale.

50

cohesion values based on Wu method
(21.6 kPa) developed by Hales et al.
[2009]. We also included newly
developed estimates of root cohesion
incorporating transient adjustment to
ambient soil water conditions for
temporally dynamic C, [Hales et al.,
2013], providing temporal as well as
spatial variability to root strength.
Temporally constant C, for (1) and (3)
were calculated assuming near-
saturated conditions in time as
short-term saturation conditions. Note
that the pore pressure levels simulated
with the hydrological model were

not changed across different root
cohesion models.

Rather than attempting to simulate
the location of individual slope
failures, this study predicts landslides
within small subcatchments that
would contribute to downstream

runout zones, where most damage and hazard are experienced. The presence or absence of failures in a
catchment of specified sizes is the prediction target, aggregating over multiple hillslope and hollow features
composing the drainage area. To do this, another set of smaller subcatchments was identified with a
minimum drainage area of 3 ha (Figure 1; n = 1388), which were large enough to identify common potential
landslide runout zones over a set of potential initiation sites. Within each subcatchment, the minimum

and mean factor of safety (FS) below the 0.5 percentile was obtained at the end of two hurricane events in
2004. Each of these two metrics, the subcatchment event hazard (SEH; SEH,,;, and SEH,., respectively),
effectively represents the lower tail of the FS distributions and potential initiation points of shallow landslides
within each subcatchment. These subcatchments were subsequently sorted by these metrics and plotted as

Belowground
Biomass (kg m-2) |

- 7.50

Figure 6. (a) Canopy height (m) from the state lidar and (b) total belowground biomass (kg m_z) using the nonlinear allometric relationship in the study site. The
points indicate observed landslide locations from aerial photos and field survey during the two hurricane events in 2004. Note that the maps were not colored at

equal intervals of the legends for visual purpose.
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Table 4. Nash-Sutcliffe (N-S) Efficiency of Simulated Log and Normal Daily Streamflow for Optimal Simulations at Four
Gauged Subwatersheds

Watershed Wayah Creek Poplar Cove Creek Allison Creek Jones Creek

N-S efficiency for 0.643 0.305 0.638 0.628
log daily streamflow

N-S efficiency 0.569 0.332 0.560 0.678

for daily streamflow

cumulative distribution functions (CDFs). Each catchment with an observed (mapped) landslide was tagged
in the CDF to determine occurrence with the SEH metrics below 1 (predicted failure). This subcatchment-
based validation provides an efficient analytical and graphical assessment for landslide predictions
generated with different spatial and temporal variability of root cohesion.

3. Results

3.1. Root Vertical Distributions

Vertical root area distributions at 10 cm intervals in 15 soil pits within WS36 declined exponentially with soil
depth (Figure 2; P < 0.05). For the pits in WS28 that were arrayed by species and topography, we found that two
parameters of the exponential model (A, and b; equation (1)) did not differ significantly by topographic
positions (hollow or nose) or species (L. tulipifera or B. lenta; not shown here). The Ay parameter represents the
absolute total area of roots, while the b parameter is related to the shape of the fitted curve, with higher values
representing faster decline of root area with depth.
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Figure 7. Observed (Qqps) and simulated (Qsjn,) daily streamflow at the four subwatersheds (Table 1 and Figure 1) in the
study site during the calibration period (July 2007 to December 2008). N-S represents the Nash-Sutcliffe efficiency
between log-transformed observed and simulated daily streamflow.
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Figure 8. (a) Simulated water table depth (m), (b) root zone saturation percent (%), and (c) calculated factor of safety (FS) on 17 September 2004 immediately after
the second hurricane event (lvan). Windowed regions for FS are located in two squares. Points and polygons indicate observed landslide locations and tracks from
aerial photos and field survey during the two hurricane events (Frances and Ivan) in 2004. Note that the maps are not colored with equal intervals within legends for

visual purpose.

3.2. Total Belowground Biomass and Root Properties From Soil Pits

Observed total belowground biomass values by topography and species are shown in Table 2. The number
of observations (n=12) was not large enough to discern statistical differences among different groups
(topography and species). Root volume and mass were linearly related (R*=0.90), where the slope

(4353 kg m ™) effectively represents the average density of roots in the study site (Figure 3). Root density
among the three different species (L. tulipifera, Q. rubra, and R. maximum) at different topographic positions
(nose, side slope, and hollows) did not differ, supporting the use of a constant root density for conversion of root
volume to biomass in equation (3). We also found good agreement between total belowground biomass values
estimated from equation (3) and vertical root distribution at the nine WS28 pits (Figure 4a; R*=0.84).

3.3. Canopy Height and Belowground Biomass Maps From Lidar

Taller trees had exponentially more belowground biomass than shorter trees (Figure 4b). The nonlinear
relationship was strongest when a 3 x 3 m lidar resolution was used to estimate canopy height (R*>=0.62;
n=12). This suggests that canopy height is a good indicator for canopy growth stage and subsequent
aboveground and belowground biomass [Lefsky et al., 2002, 2005]. While the 6.1 m scale canopy heights
from the state lidar were strongly correlated with average values of the 1 m heights from NCALM lidar
within each 6.1 m pixel (R? = 0.67), they overestimated height by ~24% (Figure 5). We used a bias correction
of the canopy height estimates from the state lidar to produce a canopy height map at the 6.1 m scale
(Figure 6a). The final canopy heights were well within the ranges of field-observed canopy height values in
the study site (less than about 40 m) [Dietze et al., 2008; Henning and Radtke, 2006]. Canopy height was
usually higher in midslopes compared to ridge tops and valley bottoms. We then produced a total
belowground biomass map (Figure 6b) and a root cohesion map using equation (5). The effective counts of
point lidar measurements within a single 6.1 m spatial scale showed strong patterns with elevation (not
shown here), suggesting that the sensor retrieved more effective returns at high elevations. Note that the
larger effective counts in higher elevation regions improved the accuracy of the derived canopy
information for the regions susceptible to landslides.

3.4. Hydrological Model Performance

We found fairly good agreement between observed and simulated daily streamflow on seasonal and event
scales (Table 4 and Figure 7) although there were large uncertainties in the rating curves and spatial
precipitation inputs within the mountainous study watersheds. The model produced the poorest result at
Poplar Cove Creek where there was no nearby climate station (Figure 1). Simulated water table depths and
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Figure 9. Cumulative distribution functions of the minimum (SEH,,,in) and the mean below 0.5 percentile (SEH,q\,) of the
factor of safety (FS) at the subcatchment scale (n = 1388). (a and d) Constant root cohesion (C,) in space and time, (b and e)
dynamic root C, in space and time, and (c and f) spatially variable and temporally constant C, under the near-saturation
assumption. Vertical lines and red dots at the cross sections represent the subcatchments (n = 24), where landslide events
were observed during the two hurricane events (Frances and Ivan) in 2004.

root zone saturation at the end of this period on 17 September (Figures 8a and 8b) were substituted into
equation (6) along with all other soil and root strength information to solve for factor of safety (FS) at 10m
spatial resolution (Figure 8c).

3.5. Prediction for Slope Failures Within Subcatchments

The model predicted low FS (and high hazard, FS < 1) around the actual initiation points and their tracks
following the second hurricane event (17 September 2004; see Figure 8c insets). Cumulative distribution
functions (CDFs) of the two subcatchment event hazard metrics, SEH i, and SEH o\, over all subcatchments
(n=1388) are presented in Figure 9 along with observed failures. Localization of predicted event landslide
hazard to small subcatchment areas minimizes the number of recorded subcatchment events with SEH > 1
(errors of omission), maximizing the number of events with SEH < 1. An even distribution of events above
and below SEH =1 would indicate no skill in prediction. Under the assumption of constant C, of 22 kPa, no
subcatchment was predicted to produce min values of SEH < 1 at the end of two hurricane events (Figure 9a),
indicating that a constant C, poorly predicted the relative distribution of actual landslide events. Sensitivity
analysis to different constant C, values showed similar results, only shifting the CDF line vertically (trading
errors of omission for errors of commission). With a constant C, landslides still occurred at the 60th percentile
of SEH i, at the subcatchment scale, meaning that 60% of the subcatchments would be predicted and
mapped with high event hazard to include all observed landslides.

The spatiotemporal dynamics of root cohesion strongly affects the predicted hazard, both in terms of the
number and the percentage of high event hazard subcatchments (SEH,i, < 1; Figure 9b). However, the
best prediction results occurred when only the spatial variation of root cohesion was incorporated in FS
calculations with a minimum root tensile strength (near-saturated conditions; Figure 9¢). The model
predicted most of the landslides that occurred in 2004 with less than 25% of the subcatchments rated

at SEHin < 1 to include all observed landslides. This model provided the best result, not only improving
the absolute proportion of the subcatchments that was predicted to be failure prone but also reducing
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significantly the proportion of the subcatchments that would have a minimum FS < 1 to include all of
the 2004 landslides. Similar results were also produced using the SEH,,, metric (Figures 9d-9f).

4. Discussion
4.1. Belowground Root Information for Spatial Landslide Modeling

Although there have been several studies to model spatial patterns of root cohesion at tree [Roering et al.,
2003; Sakals and Sidle, 2004] and landscape scales [Ji et al., 2012; Mao et al., 2012], there are few that
characterize regional-scale root cohesion patterns using remote sensing data. Typically, uniform or random
distributions of root cohesion are applied to soil erosion or landslide models. The magnitude of these
parameters can then be calibrated using existing landslide data sets. For our initial runs, we applied an
average root cohesion based on the application of Wu method for 15 soil pits in North Carolina [Hales et al.,
2009]. Using this value, no landslides were predicted: evidently, the cohesion value was too high. Numerous
studies suggest that the Wu method overestimates the magnitude of root reinforcement and that the fiber
bundle method produces more physically meaningful representations of root cohesion [Pollen-Bankhead and
Simon, 2009; Schwarz et al., 2010]. However, if we reduced the magnitude of root cohesion and apply it
uniformly across the landscape, there would be considerable overestimation of the potential areas of failure.
In our simulation results, to fit most or all of the extant landslides, it would require a cohesion value that
would result in 50-60% of the subcatchments having minimum FS < 1 (Figures 9a and 9d), a considerable
over exaggeration which could lead to significant error in hazard prediction.

For the spatially variable and temporally constant C, model (Figures 9c and 9f), we applied the Wu method of
root cohesion based on spatially distributed root biomass and assigned the weakest root tensile strengths,
essentially assuming that the shallow soil column was saturated everywhere. Allowing root cohesion to vary
in time as a function of simulated soil moisture did not improve the model accuracy (Figures 9b and 9e). This
suggests that the distribution of root biomass exerts a greater control on root cohesion than root tensile
strength. While the direct simulations of pore pressures with spatially variable C, showed greater predictive
skill than with spatially constant C,, there were more errors of omission of unstable conditions compared to
model runs with the saturation assumption. This also suggests that the distributed ecohydrological model
effectively simulated the spatial patterns of shallow subsurface flows during the event, but that the model
may not have captured short-term near-saturation conditions in shallow soils due to coarse precipitation
inputs (daily) and vertical soil representation.

4.2. Remote Sensing of Aboveground Vegetation

Remote sensing of spectral information has significantly improved the estimation of aboveground
vegetation information, including leaf area index, canopy cover, and aboveground biomass [e.g., Lu, 2005;
Tucker, 1979]. However, these optical canopy properties are less reliable for the estimation of aboveground
biomass [e.g., Sellers, 1985]. Kobayashi et al. [2012] reported that NDVI even decreased with forest growth
(after 2-3 years), possibly related to backscattering and shading effect with increasing tree heights.
Traditionally, forest inventory data, such as diameter at breast height (DBH), tree height, crown size, or tree
ages, are more accurate predictors for aboveground biomass information using allometric equations,
especially in mature forested ecosystems [e.g., Martin et al., 1998]. For this reason, many researchers have
used supplementary forest inventory data to estimate aboveground biomass with spectral remote sensing
data [Hall et al., 2006; Muukkonen and Heiskanen, 2005, 2007; Powell et al., 2010; Zheng et al., 2004].

Lidar systems provide more direct measurements of canopy structure, compared to traditional passive
remote sensing imagery. Vegetation height is typically positively correlated with tree age and thus closely
associated with forest growth stage. Therefore, older trees have more belowground biomass (and resulting
root cohesion) than younger trees. This study effectively showed that landslide probability should decrease
with tree age. Several studies in the Pacific Northwest also report higher landslide density in younger,
compared to older, forests [Turner et al., 2010]. Recently, Milodowski et al. [2015] found that erosion rates in
Sierra Nevada Mountains increased with lower aboveground biomass values, estimated from lidar-derived
vegetation height. In this sense, extension of aboveground canopy information to subsurface biomass and
erosion rates holds the potential for another major advance in distributed modeling for landslide hazards.
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4.3. Allocation Dynamics in Space and Time

Allocation ratio sets the amount of predicted belowground biomass and resulting root properties for a given
aboveground biomass. However, the proportional belowground allocation typically increases with fewer
belowground resources available [Cromer and Jarvis, 1990; Gedroc et al., 1996; McConnaughay and Coleman, 1999].
Therefore, allocation ratios may vary in space and time with topographic positions, species, ages, and
vegetation growth. Note that the data in our study site included different topographic positions and species
(Table 2), which may explain some of the scatter from the regression line between canopy height and
belowground biomass (Figure 4b). In addition, the relation between tree height and belowground biomass
was generated at a landscape level (not at the individual tree level) and did not consider differences in stem
density (Figure S2).

The exponential relationship between canopy height and belowground biomass corresponds to the
allometric relationships between diameters at breast height (DBH), canopy height, and aboveground
biomass in the study site [Henning and Radtke, 2006; Martin et al., 1998; Vieilledent et al., 2010]. This potential
nonlinearity between aboveground and belowground biomass might also be related to the decline in
aboveground allocation with stand age after canopy closure. This phenomenon is usually called “ontogenic
drift” [McConnaughay and Coleman, 1999], which indicates that the fraction of gross primary production
partitioned to belowground biomass increases with stand age [e.g., Ryan et al., 2004]. How we incorporate
these dynamic allocation schemes, based on optimality and ontogeny, may be a big challenge in accurate
estimation of root properties from remotely sensed aboveground vegetation information.

4.4. Increased Landslide Vulnerability in the Southern Appalachians

Potential of increased vulnerability to landslides can be outlined for the southern Appalachians (and other
regions) over the near to long term: mountain roads, nonrandom species loss or expansion, and climate
change. First, over the past two decades, there has been a large expansion of the high-elevation road
network, commonly as private drives, as a function of second home development. Altered drainage and
steepening of slopes tend to concentrate surface and shallow subsurface flow, as roadcuts intercept upslope
flow and drain flow through culverts. These locally affect both pore pressures and slope forces in equation (6),
and many landslides are associated with road development. Second, rhododendron is an evergreen shrub
with shallow roots that has responded to disturbances by expanding its spatial distribution [Elliott and Vose, 2012]
and growth rate [Ford et al., 2012]. Rhododendron transpires less water than other hardwood tree species,
potentially providing wetter antecedent conditions and less root cohesive strength [Brantley et al., 2014;
Nilsen, 1985]. Lastly, there is good evidence that there is an increase in the frequency of intense precipitation
events in the recent past, which is consistent with the expectations of a warming climate and increased
hydroclimate variability [Huntington, 2006; Seager et al., 2009]. The combination of these trends requires
methods to incorporate fine-scale hydrologic flow routing for road systems and the ability to measure
canopy composition and structure and directly incorporate these measurements as physiologic differences in
plant water use and rooting depths and sufficiently resolve space and time precipitation variability into
localized saturation events. While the current results point to specific improvements in landslide hazard
forecasting, ongoing research is targeting all three of these areas of increased vulnerability.

4.5. Future Landslide Hazard Forecasting

The methods we have incorporated into the ecohydrologic and landslide modeling are simplified for large-
scale application, which assume shallow slope parallel flow and use of a single, composite cohesive strength
derived from root tensile strength. Recent research has also emphasized more detailed, three-dimensional
modeling of hydrologic contributions and root cohesion to pore pressure development. Montgomery et al.
[2009], using detailed measurements of flow patterns within hillslopes resulting in an observed slope failure,
found that explanation and derivation of the pore pressure prior to failure required both a much greater
amount of information on subsurface structure and more detailed modeling than the simple two-dimension
plane parallel assumptions commonly used. Mao et al. [2014] also compared the effect of root traits, such as
orientation, position, type, and normal pressure, using two numerical modeling approaches and suggested
that the existing root reinforcement models tended to overestimate root cohesion. Although detailed lidar
data can generate stem-level vegetation information, such as crown size and stem density, our data available
for the Cartoogechaye watershed did not have the resolution fine enough for those analyses. More
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sophisticated three-dimensional root structural modeling linked to detailed aboveground vegetation
information would help to improve this relationship for future studies.

Another key variable to improve landslide prediction is precipitation. Improvements in quantitative
precipitation estimation (QPE) and short-term quantitative precipitation forecasting (QPF), in addition to
informatics necessary to bring together the spatial data required for these modeling approaches are being
further explored for increased landslide prediction skill. Improvements in QPE and QPF in mountainous areas
are a current emphasis of meteorological instrumentation and modeling in the southern Appalachians and
have the potential to significantly improve the spatial and temporal resolution of landslide forecasting
(http://hmt.noaa.gov/field_programs/hmt-se/). We used a period of repeated, large subtropical storms in the
southern Appalachians, with low return period. September of 2004 had repeated hurricanes and other storms
in quick succession in late summer, including Hurricanes Frances and Ivan, which caused numerous
landslides. For these conditions, saturation events may be experienced due to high antecedent moisture
conditions and very localized, high-precipitation cells embedded in the overall storm and boosted by
orographic effects. Measurement of spatial variation in precipitation is sparse in this area, such that the
highest rates are likely underestimated.

5. Conclusions

In this study, we used forest ecophysiological measurements, modeling, and field investigations to develop
estimates of belowground biomass patterns to generate root strength parameters. We developed a simple
analytical solution to predict the spatial distribution of root cohesive strength from lidar-derived canopy
information with a sample of measured root distributions and compared the ability to localize landslide
occurrence for a specific set of storm events to small subcatchments with methods that assume spatially
uniform or variable root strength. This study suggests that canopy height information from lidar can be
effectively used to derive spatial patterns of belowground biomass and root cohesion, with consequent
improvement of predictive skill for forecasting of shallow landslides in forested catchments. The factor of
safety (FS) simulations between spatially constant and variable root cohesion showed that topography alone
(e.g., upslope contributing area and surface slope) was not sufficient to model landslide occurrence
accurately in this area and that by allowing root cohesion to vary spatially, landslide prediction

improved significantly.

For the objectives posed in the study: we report that (1) recent development of lidar remote sensing is
effective in estimating spatial root cohesion patterns and (2) incorporation of the spatial covariance between
topography, soils, and vegetation belowground information improves skill for slope stability mapping and
prediction. This study was designed to develop methods of estimating vegetation aboveground and
belowground canopy contributions to root cohesive strength and transient hydrologic conditions, integrated
into a distributed simulation framework coupling the ecosystem patterns and processes with the production
of runoff, soil moisture, shallow groundwater, and pore pressure patterns. As a coupled modeling approach,
the methods presented have the capacity to estimate multiple ecosystem services under a unified modeling
framework, including freshwater availability, forest carbon sequestration, and the regulation of landslides,
flooding, and erosion. In terms of prediction scales, our approach strikes a compromise between large-area,
long-term assessment of landslide hazard zones and site-specific prediction of landslide potential to
specific events.
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