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Abstract. Strategic fire and fuel management planning benefits from detailed understanding of how wildfire

occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence
given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of
spatial point process (SPP) models with a model averaging approach. We then predicted human- and lightning-caused

wildfire occurrence over the 2010–2100 period in the Lake Tahoe Basin, a forested watershed in the western US with an
extensive wildland–urban interface. The purpose of our research was threefold, including (1) to quantify the influence of
biophysical and anthropogenic explanatory variables on spatial patterns of wildfire occurrence, (2) to model current and
future spatial distribution of wildfire occurrence under two carbon emission scenarios (A2 and B1), and (3) to assess

prediction uncertainty due to model selection. We found that climate variables exerted stronger influences on lightning-
caused fires, with climatic water deficit the most important climatic variable for both human- and lightning-caused fires.
The recent spatial distribution of wildfire hotspots was mainly constrained by anthropogenic factors because most

wildfires were human-caused. The future distribution of hotspots (i.e. places with high fire occurrence density), however,
was predicted to shift to higher elevations and ridge tops due to amore rapid increase of lightning-caused fires. Landscape-
scale mean fire occurrence density, averaged from our top SPP models with similar empirical support, was predicted to

increase by 210% and 70% of the current level under the A2 and B1 scenarios. However, individual top SPPmodels could
lead to substantially different predictions including a small decrease, a moderate increase, and a very large increase,
demonstrating the critical need to account for model uncertainty.

Additional Keywords: climatic water deficit, model uncertainty, multi-model inference, predictive modelling, spatial

point process.
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Introduction

Wildfire activity has increased considerably across many ter-
restrial ecosystems in recent decades, partly due to climate
warming (e.g. Flannigan et al. 2009; Kelly et al. 2013). It has

been demonstrated that warming temperatures and earlier spring
seasons are associated with a 4-fold increase in frequency of

large forest wildfires in the western United States since 1986,

compared with the period from 1970 to 1986 (Westerling et al.

2006). The increasing wildfire activity can cause degradation of
ecosystem functions, create hazards for people and increase fire

suppression costs (Stephens and Ruth 2005; Syphard et al.

2008). In order to effectively manage fuels and to reduce the risk
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of large, severe fires, it is important to understand how wildfire
occurrence and its spatial distribution may respond to ongoing
climate change in the near future.

Many studies have found that the spatial distribution of
wildfire occurrence is strongly patterned at landscape to
regional scales (Bar Massada et al. 2011; Finney et al. 2011).

It is determined by both top-down drivers reflecting broad-scale
spatial variability of climate, and vegetation type and bottom-up
drivers reflecting fine-scale spatial variability of fuel, topo-

graphy and proximity to human ignition sources (Parisien and
Moritz 2009). Comprehensive studies that examine how various
controls influence wildfire occurrence are often conducted at
regional or global scales with coarse spatial resolutions

(e.g. Krawchuk et al. 2009; Wotton et al. 2010). However,
planning of fuel treatments and modelling of fuel treatment
effectiveness for reducing undesired fire behaviour and effects

are often conducted at fine (1–10 ha) spatial resolutions
(Finney 2007). Therefore, spatially explicit analysis of wild-
fire occurrence and its response to climate change at fine

scales is warranted for assisting landscape-level fire and fuel
management.

Spatial point process (SPP) modelling (Stoyan and Penttinen

2000) provides a promising approach for investigating wildfire
occurrences at landscape scales (e.g. Podur et al. 2003; Yang
et al. 2007; Juan et al. 2012). A SPP is any stochasticmechanism
that generates the spatial point data – a collection of event

(e.g. species presence, volcano eruption, fire occurrence) loca-
tions in a bounded region (Diggle 1983). The pattern of event
locations often results from a mixture of both first-order and

second-order effects. First-order effects (e.g. global spatial
trends) are related to variation in the point intensity (i.e. mean
number of events per unit area) of the spatial process; whereas

second-order effects often result from local point interactions
(Bailey and Gatrell 1995). SPP modelling involves fitting the
location data to a spatial point process (e.g. Poisson, Cox) with
two components, one quantifying first-order spatial covariate

effects on the variation in the point intensity (e.g. Liu et al. 2012)
and the other representing second-order point interaction effects
(Baddeley andTurner 2000). SPPmodelling offers a statistically

rigorous framework formodelling presence-only data, as well as
a set of tools for estimating likelihood function, choosing
appropriate spatial resolution, and assessing goodness of fit

(Diggle 1983;Warton and Aarts 2013). In the special case of the
Poisson point process, SPP modelling is equivalent to MaxENT
and logistic regression on randomly chosen pseudo-absences,

but provides greater flexibility (Warton and Shepherd 2010;
Renner and Warton 2013).

Early SPP applications of wildfire occurrences were explor-
atory, seeking mainly to discern spatial patterns such as regu-

larity, clustering and randomness (e.g. Podur et al. 2003).
Recently, SPP modelling has been used to quantify influences
of various controls that drive these spatial patterns (e.g. Yang

et al. 2007; Juan et al. 2012; Mundo et al. 2013) and to predict
the response of wildfire occurrence to future climate conditions
(e.g. Liu et al. 2012). Most SPP applications use a stepwise

model selection approach to find a single best model. Due to
reliance on a single model, parameter estimates and predictions
of future responses lack consideration of model uncertainty
(Whittingham et al. 2006). Multi-model inference approaches,

often involving model averaging, can be more informative than
the traditional stepwise modelling approach in that several
models can be ranked and weighted to provide a quantitative
measure of relative support for each competing model (Grueber

et al. 2011).Model averaging, which can provide a robustmeans
of obtaining parameter estimates andmaking predictions, is now
increasingly used in the analysis of ecological data when

coupled with generalised linear models (GLM; Burnham and
Anderson 2002). However, model averaging has not been
applied in the SPP analysis of wildfire occurrences.

In this study, we integrated SPP within a model averaging
approach to examine the drivers and responses of wildfire
occurrences to potential climate change in the LTB, a western

US forest watershed with an extensive wildland–urban interface
(WUI) where the threat of catastrophic wildfire to human lives
and structures, as well as to natural resources is a major concern.
Our study used SPP modelling to address the following ques-

tions: (1) What are the environmental influences on wildfire
occurrence patterns in the LTB? (2) What is the potential
response of wildfire occurrence to climate change? and (3) To

what extent can model averaging be used to bracket prediction
uncertainty?

Methods

Study area

The Lake Tahoe Basin (LTB; 398401200N, 120800000W) is located
in the northern Sierra Nevada of California and Nevada, USA
(Fig. 1). The LTB consists of 49 600 ha of Lake Tahoe itself and

83 000 ha of terrestrial habitats and urban areas. More than 75%
of LTB land is managed by the Lake Tahoe Basin Management
Unit (LTBMU) of the US Forest Service. The climate in LTB is
characterised by warm dry summers and cold wet winters. Most

(80%) precipitation falls as snow during the winter. Mean
monthly temperatures at South Lake Tahoe (elevation 1820 m)
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Fig. 1. Study area of the Lake Tahoe Basin with reported human- and

lightning-caused fires greater than 0.1 ha in size between 1986 and 2009. The

four largest fires (Angora, Gondola, Showers and Royal), all of which were

human-caused, are shown in large circles.
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range from �18C in January to 198C in July, and mean annual
precipitation is 784 mm. The terrain is complex and steep, with
elevation ranging from less than 1800 m to 3315 m. Natural

vegetation in the LTB is dominated by coniferous forest, with
Jeffrey pine (Pinus jeffreyi)–white fir (Abies concolor), red
fir (A. magnifica)–western white pine (P. monticola), and lod-

gepole pine (P. contorta var. murrayana)–whitebark pine
(P. albicaulis) forests respectively dominating at lowermontane
(1900–2000 m), upper montane (2000–2300 m) and subalpine

(.2300 m) zones (Taylor 2004).
Prior to European settlement, fires in the LTB were ignited

by lightning or byNativeAmericans of theWashoe tribe (Taylor
and Beaty 2005). The fire return interval (FRI) during the pre-

settlement period (1650–1850) varied throughout the entire
Basin, but fire return intervals were mostly short (5–20 years)
in Jeffrey pine-dominated forests widely distributed at the

lowest elevations around the lake and in the south (Taylor and
Beaty 2005). The modern (1850–2000) fire regime has changed
from one dominated by frequent low-intensity fires to infrequent

high-intensity fires due to strong fire suppression and fuel build-
up after massive logging that occurred between 1873 and 1900
(Taylor 2004). Active fire exclusion since the beginning of the

20th century has nearly eliminated wildfires in the LTB, with
less than 20% of the LTB forests having burned since 1910
(Safford et al. 2009).

Fire data

Historical fire occurrence data (1949–2009) were acquired
from the US Forest Service (USFS) Region 5 Geospatial Data

Portal (http://www.fs.usda.gov/detail/r5/landmanagement/gis/?
cid=STELPRDB5327833, accessed 19 June 2012). The fire
occurrence data contained information on fire start location,

cause, date of occurrence and fire size. Although the database
contained fires reported as early as 1949 in LTB, we chose year
1986 as the early cut-off date because this is when many
agencies began reporting fire start location as points (latitude–

longitude) rather than as within an area (township, range
section). After removing a small proportion (5%) of erroneous
records due to duplicates and inaccurate locations, we obtained

1340 fire occurrence records in LTB reported between 1986 and
2009. Fire season typically starts in May and ends in November
with peaks in July and August. Among those fires, only 142 had

a fire size greater than 0.25 acres (0.10 ha), a commonly used
threshold for excluding small fires from further statistical
analysis in theUSFS (e.g.Miranda et al. 2012). Those extremely

small fires that were often suppressed on initial attack were
excluded from our analysis because they not only contributed
little in total area burned, but also adversely affected our SPP
modelling performance as we lacked GIS variables with

adequately high spatial resolution to capture such fine-scale
influences of fire suppression activity on the landscape. Of the
142 fires used in our analysis, ,76% were human-caused and

24% were lightning-caused. Only four fires (Fig. 1) were larger
than 100 ha: theAngora Fire (burned in late June 2007; 1250 ha),
the Gondola Fire (early July 2002; 272 ha), the Showers Fire

(mid-August 2002; 119 ha) and the Royal Fire (mid-November
2003; 109 ha). These were all human caused and primarily
burned in conifer forest dominated by Jeffrey pine and white fir
at lower elevations (Safford et al. 2009).

Guiding hypotheses and predictor variables

Spatial patterns of wildfire occurrence over large landscapes
and long periods are driven by ignition sources and availability
of suitable biophysical conditions, including topography,

vegetation and climate (Krawchuk and Moritz 2011). For
lightning-caused wildfire, we hypothesised that lightning strike
density was a major determinant of ignition source and posi-

tively associated with wildfire occurrence. For human-caused
wildfire, we hypothesised that spatial distribution of roadways
and population, which determines human accessibility to the

LTB forest, was a major influence on wildfire occurrence.
However, because human accessibility could also facilitate fire
suppression efforts, we expected that its influences on wildfire
occurrence would not be monotonically positive.

We obtained a GIS database of lightning strike density for
1990–2009 from the National Lightning Detection Network
(Vaisala Global Atmospherics 2012) to model the effects of

lightning strike distribution on spatial patterns of lightning-
caused wildfire occurrence (Fig. 2). We included distance to
nearest road, road density and population density as predictor

variables to represent human accessibility effects on ignition
source (Table 1). Both road network and human population data
were obtained from 2000 US Topologically Integrated Geo-

graphic Encoding and Referencing system (TIGER) Line files
(US Census 2000, available at https://www.census.gov/geo/
maps-data/data/tiger-line.html, verified 31 October 2014) and
then processed using a GIS.

Wehypothesised that topography influences the likelihood of
fire occurrence because it can directly constrain human accessi-
bility and lightning distribution, affect local climate, provide fire

breaks, and indirectly affect fuel moisture, vegetation distribu-
tion and relative humidity (Rothermel 1983; Syphard et al.

2008). In addition to commonly used terrain variables such as

elevation and slope, we included the Heat Load Index (HLI),
Topographical Position Index (TPI) and Vector Ruggedness
Measure (VRM). HLI describes potential heat load based on

latitude, slope steepness and aspect (McCune and Keon 2002).
VRM is a topographical roughness index that measures the
three-dimensional dispersions of vectors orthogonal to the land
surface (Sappington et al. 2007) and for purposes of our study is

an indicator of human accessibility. VRM values in the output
raster can range from 0 (no terrain variation) to 1 (maximum
terrain variation). The TPI determines the relative position of a

grid cell compared with its neighbours (Weiss 2001) and can be
used to determine whether a cell is more likely to be located
along a ridge (high TPI values) or in a valley bottom (low TPI

values). TPI is dependent on the neighbourhood search radius;
and we calculated TPI using a 1-km neighbourhood search
radius after a preliminary comparison of explanatory power
across systematically varying neighbourhood sizes.

Vegetation was also hypothesised to be an important control
because different vegetation types can be related to different fuel
types.Weused a categorical vegetationmap to represent different

fuel types in LTB based on the USFS Fuel Characteristic
Classification System (FCCC, http://www.fs.fed.us/pnw/fera/
fccs/, accessed 19 October 2012). FCCC describes fuel beds in

six strata including canopy, shrubs, nonwoody fuels,woody fuels,
litter–lichen–moss and ground fuels (litter and duff). To represent
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broad-scale influences of vegetation on fire occurrence, we
aggregated 74 fine-scale fuel types for the LTB into five vegeta-
tion types: conifer forest, deciduous forest, meadow, shrubland

and miscellaneous vegetation. We also tried a finer aggregation
scheme that divided conifer forest into several sub-types based on
the fact that Jeffrey pine at lower elevations tends to be more

readily available to burn than lodgepole pine at higher elevations.
But in the end we still chose the broad scheme in themodelling to
alleviate multicollinearity influences as the finer classification
scheme was strongly correlated with elevation.

We used PRISM 30-year (1971–2000) average July maxi-
mum temperature, average January minimum temperature,
mean July precipitation andmean January precipitation (PRISM

2007) to represent the effect of climate on vegetation produc-
tivity, rate of fuel accumulation and fuel moisture content
(Whelan 1995). The 30-year means were used instead of annual

climatic variables because the spatial patterns of fire occurrence
were modelled for the entire 24-year period from 1984 to
2009, not on an annual basis. We chose climatic variables

from January and July because these two months were clima-
tologically important for vegetation phenology and fire season-
ality in the LTB, where the wildfire season peaks in July. In

addition, a water balance metric – annual climatic water deficit
(Stephenson 1998; Lutz et al. 2010) –was computed to represent
water stress that vegetation might experience and considered an
indirect proxy for fuel moisture. Climatic water deficit was

calculated as the difference between potential and actual evapo-
transpiration. Actual evapotranspiration was calculated using a
Thornthwaite approach (Thornthwaite and Mather 1955) in

which temperature and precipitation were the primary climatic
drivers. The effect of topographywas incorporated by usingHLI
(McCune and Keon 2002; Lutz et al. 2010) as a modifier to
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Fig. 2. Road density (a), lightning density (b), elevation (c), average January minimum temperature (d ), average July

maximum temperature (e), and annual water deficit ( f ) in the Lake Tahoe Basin.
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potential evapotranspiration. Following the approach of Lutz

et al. (2010), a snowpack component and a soil moisture
component were included in the model to account for storage
of water that would occur during the winter and spring months.

Climatic water deficit can be an important predictor of plant
distributions (Stephenson 1998) and wildfire probability
(Parisien et al. 2012).

All model predictor variables describing ignition source,
topography, vegetation and climate patterns were only included
if their pairwise Pearson correlations weremoderate (|r|,0.6) in
order to avoid potential multicollinearity effects. In addition,

these variables were projected and scaled to 100-m resolution
GIS raster data with the same geographic extent, for the purpose
of SPP modelling.

Spatial point process modelling

Wemodelled human- and lightning-causedwildfire occurrences
separately using the SPPmodelling technique. The point process

models fitted to the data are often formulated in terms of their
Papangelou conditional density l(u; x), which may be loosely
interpreted as the conditional probability of having an event at

a point u given that the rest of the point process coincides with x
(Baddeley and Turner 2000).

We modelled our wildfire occurrence data using an inhomo-

geneous Poisson point process, in which the conditional density
function is the same as the density function l(u; x)¼ l(u)
because spatial locations are independent of one another and
so their interactions are not considered. The intensity function

(often called density function in SPP applications) of a Poisson

point process is specified through a log–linear regression model
as follows:

lðuÞ ¼ expðy0 þ y1
�V1 þ . . .þ yn

�VnÞ ð1Þ

where l(u) is density at point u, which may be interpreted as the
number of events that occurred per spatio–temporal unit. The
V1yVn are spatial covariates (i.e. predictor variables), and y is
the parameter vector (y0, y1, y, yn) to be estimated for the

spatial covariates. The density l(u) will depend on y to reflect
anisotropy (‘spatial trend’, the change in density across the
region of observation) or dependence on a covariate. The

parameter vector y was estimated via a maximum likelihood
algorithm (Baddeley and Turner 2000) implemented in the ppm
function of the ‘Spatstat’ package in the statistical computing

software R.

Model averaging

Instead of finding a single best SPP model, we employed a
model averaging approach that accounted for model selection

uncertainty in order to obtain robust estimates of parameters (y)
and model predictions (Johnson and Omland 2004). We
included all predictor variables (Table 1) in the trend term of the

log–linear regression model. The included continuous variables
were transformed with a polynomial function (up to a power of
two) to capture curvilinear effects. We then used all combina-

tions of the predictor variables and their transformations to

Table 1. Predictor variable datasets and sources

Variable Abbreviation Data source Units

Ignition sources

Distance to nearest roady Dist_Rd Derived from TIGER street map

(https://www.census.gov/geo/maps-data/data/tiger-line.html,

verified 31 October 2014)

metre

Road densityy Rd_Den Derived from TIGER street map

(https://www.census.gov/geo/maps-data/data/tiger-line.html,

verified 30 October 2014)

km km�2

Population densityy Pop_Den people km�2

Lightning densityz Lgt_Den National Lightning Detection Network

(http://www.vaisala.com/en/products/thunderstormandlightning

detectionsystems/Pages/NLDN.aspx, verified 30 October 2014)

strikes km�2

Topography and vegetation

Elevation Elev USGS National Elevation Dataset

(http://ned.usgs.gov/, verified 03 October 2014)

metre

Slope Slope Derived from elevation degree

Heat Load Index HLI McCune and Keon (2002) unitless

Topographic Position Index TPI Weiss (2001) metre

Vector Ruggedness Measure VRM Sappington et al. (2007) unitless

Vegetation type Veg USFS Fuel Characteristic Classification System

(http://www.fs.fed.us/pnw/fera/fccs/, verified 30 October 2014)

Categorical

Climate

Maximum July temperature Tmax07 PRISM (2007) 8C

Minimum January temperature Tmin01 PRISM (2007) 8C

Mean July precipitation Prep07 PRISM (2007) mm

Mean January precipitation Prep01 PRISM (2007) mm

Annual climatic water deficit Wat_Def Stephenson (1998); Lutz et al. (2010) mm

yExcluded from the modelling of lightning-caused wildfire occurrence.
zExcluded from the modelling of human-caused wildfire occurrence.
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construct awide set of alternativemodels. Eachmodel was fitted
to the data and its Akaike Information Criterion (AIC) score was
computed. The model with the smallest AIC score was used as

a reference model, and the difference in AIC scores between
each model and the reference model was also computed as the
delta AIC (D). A subset of fitted models with delta AIC,4 – a

moderate threshold value recommended by Burnham and
Anderson (2002) –was identified as including the best candidate
models to be used in further model averaging steps.

For each candidate model, its Akaike weight was calculated
as follows:

Wi ¼ exp �1=2Dið Þ
PR

j¼1 exp �1=2Dj

� �

where Wi is the Akaike weight of the ith candidate model, R is
the total number of candidate models used in the model averag-

ing and D is the delta AIC. The Akaike weight describes the
relative likelihood of the model given the data and is thus an
explicit measure of model support. The Akaike weight was used

to compute the weighted average of parameter estimates and
model predictions.

To quantify the relative importance of predictor variables,

the sumof theAkaikeweights over all of themodels inwhich the
parameter of interest appears was computed for each predictor
variable (Johnson and Omland 2004). This measure was further

normalised so that the sum of all predictor variables’ relative
importance was a mathematical unity. We also computed the
weighted average of parameter estimates for each predictor
variable and plotted a response function against the full range

of the predictor variable based on such parameter estimates to
quantify its partial influences on wildfire occurrence.

Predicting wildfire occurrence distribution

Predicting wildfire occurrence distribution included two steps:
(1) for each candidate SPP model, computing wildfire occur-
rence density at each raster cell based on the corresponding

parameters and values of predictor variables; and (2) calculating
Akaike weight-based average density across all candidate SPP
models. Because such prediction across all cells was computa-

tionally intensive, we only selected the top 30 candidate SPP
models for estimating predictive fire occurrence density maps.
The differences in AICs among the top 30 SPP models for both
lightning-caused and human-caused wildfire cases were around

2, which is often used as a strict threshold for choosing a subset
of candidate models in the model averaging framework
(Burnham and Anderson 2002).

We adopted the above approach in estimating separate maps
for human- and lightning-caused wildfire occurrence density,
and then summed the two maps to obtain a total wildfire density

map. All maps had a spatial resolution of 100 m, which is
consistent with the predictor GIS raster data, with a standardised
unit of wildfire count per 100 km2 per decade. In this study, we

predicted historical and future wildfire occurrence distribution
by holding all other predictor variables (i.e. ignition source,
topography and vegetation) constant and allowing changes in
climatic variables (i.e. temperature, precipitation and climatic

water deficit) derived from future climate data under various
climate change scenarios.

Future climate data were based on the projections of the
CCCMA (Canadian Centre for Climate Modelling and Analy-
sis) under both the A2 and B1 Special Report on Emissions

Scenarios (SRES) AR4 carbon emission scenarios. The A2
scenario represents high CO2 concentration (,850 ppm at the
end of 21st century) due to high population size and slow

technological adaptations, whereas the B1 scenario represents
a less extreme CO2 increase (,550 ppm) due to global integra-
tion of climate adaptations and introduction of resource-

efficient technologies. Future climate data were also rescaled
to 100-m spatial resolution using a bias correction delta down-
scale approach (Maurer 2007). Because the climatic variables
used in the model-building process were obtained from the

30-year average PRISM data, we also computed 30-year aver-
age climatic variables from the future climatic data to predict
wildfire occurrence over four periods (1981–2010, 2011–2040,

2041–2070 and 2071–2100). The predicted historical and future
wildfire occurrence distributions were compared in terms of
landscape-level total wildfire occurrence density, proportion of

lightning-caused wildfire occurrences and spatial patterns.

Results

The relative importance of spatial controls of lightning- and

human-caused wildfire occurrences in LTB varied greatly. The
six most important predictor variables of lightning-caused
wildfires, in decreasing order, were annual water deficit, ele-

vation, lightning density, January minimum temperature,
topographic position index and January precipitation. Topo-
graphy and ignition agents contributed three of the top six

important variables, as did climate variables. In contrast, vari-
ables describing human ignition agents (road density, popula-
tion density and distance to road) and topography (HLI and

VRM) contributed five of the top six important variables for
human-caused fires. Only one climate variable (annual water
deficit) was identified as a top variable for human-caused
wildfires (Fig. 3).

Climatic water deficit exerted strong positive effects on both
lightning- and human-caused wildfire occurrence, suggesting
higher wildfire occurrence density in dry areas and periods.

With other important influences held constant, lightning-caused
wildfire occurrence density generally increased with elevation,
but then gradually decreased after reaching an optimal elevation

band, partly due to cooler temperatures andmoister conditions at
higher elevations. Lightning-caused wildfires were often found
at ridge tops with high TPI values and in places with high

lightning strike density (Fig. 3a). Human-caused wildfire den-
sity exhibited a positive association with road density, as higher
road density indicates greater accessibility by humans. How-
ever, our modelling showed that other measures of human

accessibility could exert curvilinear or even negative effects
through their influences on fire suppression success rate and
forest fire management policies. For example, human-caused

wildfire occurrence density was initially higher in places closer
to roads, decreased with increasing distance to road as human-
caused ignitions became less likely, but then increased in places

further away from roads that were more difficult to detect and
access for fire suppression (Fig. 3b).

Predictions of mean fire occurrence density by the end of the
21st century varied greatly among the top 30 SPP models

Uncertainty in predicting wildfire occurrence Int. J. Wildland Fire 385
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Abbreviations of predictor variables and their corresponding full names are described in Table 1.
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(Fig. 4), as predictor variables identified in each model and their
corresponding parameters differed greatly (details in Table S1
and Table S2 in the Supplementary Material available online
only at http://www.publish.csiro.au/?act=view_file&file_id=

WF14001_AC.pdf). For lightning-caused wildfires, the pre-
dicted fire occurrence density at year 2100 under the SRES
A2 scenario could reach as high as 28 fires per 106 ha per decade

(,16 times the current level of 1.7 fires per 100 km2 per decade)
or as low as 70% of the current level (Fig. 4a). Although the top
30 models were within 4 AIC units of each other, indicating

similar weights of evidence, the range of their predictions was
very large (70–1600% of the current level), suggesting high
uncertainty when using a model selection approach to choose a

single best model for predicting future conditions. The model
averaging approach produced a more robust lightning-caused
fire occurrence density at year 2100 under A2 scenario at 8.2
fires per 100 km2 per decade, ,480% of the current level.

The range of predictions for human-caused fires at year 2100
was also large, varying from 140 to 720% of its current density.
However, such uncertainty was much less than for predicted

lightning-caused fires. The mean human-caused fire density at
year 2100 under the A2 scenario was 14.8 fires per 100 km2 per
decade,,260%of the current level (Fig. 4c). Both the range and

mean of predicted fire occurrence density under the B1 scenario
were lower than that under the A2 scenario in modelling
lightning-caused (Fig. 4b) and human-caused (Fig. 4d ) fires.

The predicted total fire occurrence density was then calcu-
lated as the sum of the predicted model-averaged human- and
lightning-caused fires. Themean landscape total fire occurrence

density was forecasted to increase to 170% of the current level
under the B1 scenario and 310% under the A2 scenario. Further,
the relative increase of lightning-caused fires was much greater

than for human-caused fires. The proportion of lightning-caused
fire occurrences was predicted to increase by 24–36% under the
A2 scenario (Fig. 5). Consequently, the spatial patterns of fire

occurrence hotspots (i.e. places with high fire occurrence
density) under future climate scenarios were more influenced
by the topographical variables (e.g. land form, elevation) that

had stronger effects on lightning-caused fires. For example,
areas that currently have a smaller fire risk, such as the north
shore, east shore and higher ridge lines on the west shore of the
LTB, might become fire occurrence hotspots in the future

(Fig. 6) due to the predicted increase of lightning-caused fires.

Discussion

Environmental influences on wildfire occurrence
patterns in LTB

Occurrence probability of any wildfire is a function of ignition

source, topography, vegetation and climate. However, our study
showed that the relative importance and influences of these
spatial controls on wildfire occurrence differed between human-

and lightning-caused fires (Fig. 3). Human-caused wildfires
occurred with greater probability in places with high population
density (e.g. South Lake Tahoe) and close to roads that are
characterised by abundant human ignition sources and easy

accessibility. Importance values and effect sizes for climatic
variables were lower than for anthropogenic variables. This
finding is in accordance with studies of human-caused wildfires

in other regions (e.g. Yang et al. 2007; Syphard et al. 2008).
Lightning-caused wildfires in LTB were more probable in

high elevation (high ridge lines of west) and relatively dry areas

(e.g. west shore) with ample lightning strikes (Fig. 2). Many
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forest landscapes of the western US experience frequent light-
ning strikes. Whether or not these lightning strikes can turn
into wildfire occurrences depends on fuel conditions (e.g. fuel

moisture) and the amount of precipitation that comes with the
thunderstorms. Storms that produce lightning-caused fires are
associated with greater instability and higher dew point depres-

sion (drier air) than storms that produce the most lightning
strikes (Rorig and Ferguson 1999; Skinner et al. 2006). Topo-
graphy can play an important role in determining convection

process and precipitation patterns. The interaction of atmo-
spheric processes and topography has strongly influenced
spatial patterns of lightning-caused wildfires in LTB.

Potential response of wildfire occurrence
to climate change

Although both human- and lightning-caused fire frequencies

were predicted to increase in warmer and drier future climate
conditions, our SPP modelling showed a higher proportion of
lightning-caused wildfire occurrences compared with human-

causedwildfire occurrences in the predicted future LTB (Fig. 5).
This was mainly because modelled climatic variables (e.g. cli-
matic water deficit) were more strongly associated with light-

ning- than human-caused wildfires. Because lightning strikes
are well distributed throughout the LTB, future warming and
drying climate could greatly increase lightning-caused wild-
fires. In contrast, human-caused fires, even if they would

increase in number, are mostly confined to the places where
people are – mainly in urban areas and along roads with easy
access. The significance of the change in spatial patterns is the

occurrence of lightning-caused wildfires in places without easy
access.

Our modelling approach used only 30-year average climates

to represent climatic effects and did not incorporate key atmo-
spheric processes that operate over shorter periods. Therefore,
model outputs are most useful for describing potential trends
and should not be interpreted as precise predictions. For exam-

ple, increasing temperature may lead to changes in lightning
density or to increased frequency of dry lightning, which would
influence our predictions in ways that our model cannot account

for. In addition, because we excluded the majority of small
(10 ha) wildfires from the analysis, the model may under-
estimate future wildfire probability even for large wildfires,

because of the potential for more fires that would remain small
in today’s climatic regime to become large in the future climate
regime due to warmer climate and greater fuel availability.

The predicted climate change effects on spatial patterns of
wildfire occurrence may be further altered by anthropogenic
processes such as increasing recreation around the study area, as
well as the active fuel management and fire suppression. In

addition, wildfiresmay become self-limiting due to reduced fuel
loads. Other modelling limitations include (1) assuming
constant human infrastructures (e.g. roads and towns) and

population densities over time, (2) lack of consideration for
howwildfiresmay change landscape patterns of fuels by shifting
dominant vegetation types and how such changes could alter fire

regimes, and (3) lack of consideration for how other natural
disturbances such as insect outbreaks could interact with
wildfire in a climate change context (Kulakowski et al. 2013).
These limitations are commonly acknowledged in studies that

use statistical modelling of fire occurrences to make inferences
of future spatial patterns (e.g. Krawchuk et al. 2009). Despite
these limitations, our predictions can still provide a baseline to

understand response of wildfire occurrence to climate change in
LTB, as its overall trend (direction and magnitude) is consistent
with other large-scale wildfire occurrence modelling studies,

even though most of those studies used GLM rather than SPP
models (e.g. Syphard et al. 2008; Miranda et al. 2012).

Uncertainty in SPP modelling and prediction

To our knowledge, this study is the first attempt to conduct SPP
data analysis within a model averaging framework for model-
ling spatial distribution of fire occurrences. SPP modelling has
been increasingly applied for predicting responses of wildfire

occurrences to climate change (e.g. Liu et al. 2012), but little is
known about how the choice of model selection could affect
prediction uncertainty. In this study, we found that multiple SPP

models with similar model support led to substantially different
predictions (Fig. 4). Such high levels of model uncertainty
demonstrate the need to employ multi-model inference

approaches when analysing historical wildfire occurrence data
and predicting future fire occurrence in response to climate
change.

Although integrating SPP with a model averaging approach

is promising for obtaining the range and variation of predicted
wildfire occurrence response to climate change, there are other
sources of uncertainty such as choice of different model types

(e.g. GLM v. SPP v. MaxENT), spatial accuracy of occurrence
locations and lack of agreement in future climate conditions
predicted by different climate models under various carbon

emission scenarios. Our results indicate large differences of
predicted landscape-level mean wildfire occurrence density
between SRES A2 and B1 scenarios (Fig. 4), suggesting carbon

emission scenarios and global climate models may exert greater
influences on prediction uncertainty than SPP models. There-
fore, comprehensive uncertainty analysis is warranted in future
studies to better estimate wildfire occurrence changes over

time in order to evaluate long-term effectiveness of fuel man-
agement plans.

Management implications

It has been increasingly recognised that strategic planning of
fuel management should be based on burn probability and fire
risk assessment (Finney 2005; Miller et al. 2008; Liu et al.

2013). Recent studies on the effectiveness of fuel breaks in
controlling large wildfires have demonstrated that a substantial
proportion of the fuel breaks never intersected a fire over a long
period (Syphard et al. 2011a). Therefore, mapping where fires

are most likely to burn on the landscape could be part of the
planning process to increase efficiency of new construction of
fuel breaks. Spatial variability of wildfire occurrence plays an

important role in burn probability mapping (Yang et al. 2008;
Parisien et al. 2011). However, such spatial variability may be
altered over time due to climate change. This change in distri-

bution of wildfire occurrence hotspots poses a serious challenge
to predicting the effectiveness of fuel treatment plans because
the realised effectiveness of fuel treatment ultimately depends
on the likelihood of a wildfire burning into treated areas
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(Syphard et al. 2011b). It is important to incorporate such hot-
spot information in long-term fuel treatment planning.

Fuel treatment in LTB has been mainly conducted in the

WUI, where human-caused wildfires are pervasive. However,
our study showed that wildfire occurrence hotspots in future
LTB could shift to higher elevations and ridge tops (Fig. 6) as a

result of faster increase in lightning-caused fires. Therefore,
future fuel treatment may become necessary in those areas.
Long-term fuel treatment planning should consider not only

current landscape patterns of wildfire occurrence but also future
patterns. Several studies have used forest landscape succession
and disturbance simulation models such as LANDSUM and
LANDIS-II to evaluate alternative long-term fuel treatment

plans (e.g. Keane et al. 2011; Loudermilk et al. 2013). Those
simulation modelling applications have begun to integrate both
current and future spatial variability of fire occurrences in

simulating dynamic fire regimes and its interaction with forest
succession. Such integration further highlights the research
needed to better predict fire occurrence distribution given both

current and future climate conditions.
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