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Abstract

Pest risk maps can provide helpful decision 
support for invasive alien species 
management, but often fail to address 
adequately the uncertainty associated with 
their predicted risk values. Th is chapter 
explores how increased uncertainty in a risk 
model’s numeric assumptions (i.e. its 
principal parameters) might aff ect the 
resulting risk map. We used a spatial 
stochastic model, integrating components 
for entry, establishment and spread, to 
estimate the risks of invasion and their 
variation across a two-dimensional gridded 
landscape for Sirex noctilio, a non-native 
woodwasp detected in eastern North 
America in 2004. Historically, S. noctilio has 
been a major pest of pine (Pinus spp.) 
plantations in the southern hemisphere. We 
present a sensitivity analysis of the mapped 
risk estimates to variation in six key model 
parameters: (i) the annual probabilities of 
new S. noctilio entries at US and Canadian 
ports; (ii) the S. noctilio population-carrying 
capacity at a given location; (iii) the 
maximum annual spread distance; (iv) the 
probability of local dispersal (i.e. at a 
distance of 1 km); (v) the susceptibility of 
the host resource; and (vi) the growth rate 
of the host trees. We used Monte Carlo 

simulation to sample values from symmetric 
uniform distributions defi ned by a series of 
nested variability bounds around each 
parameter’s initial values (i.e. ±5%, …, 
±50%). Th e results show that maximum 
annual spread distance, which governs long-
distance dispersal, was the most sensitive of 
the tested parameters. At ±15% uncertainty 
in this parameter, mapped risk values 
shifted notably. No other parameter had a 
major eff ect, even at wider bounds of 
variation. Th e methods presented in this 
chapter are generic and can be used to assess 
the impact of uncertainties on the stability 
of pest risk maps or to identify any 
geographic areas for which management 
decisions can be made confi dently, 
regardless of uncertainty.

Introduction to Uncertainty Analysis

Th is chapter describes methods for analysing 
uncertainty in key parameters of a spatial 
stochastic model used to estimate invasion 
risk. Th e model was applied to forecast the 
likely geographic pattern of invasion of a 
recently arrived forest pest, the sirex 
woodwasp (Sirex noctilio Fabricius), in 
eastern North America (Yemshanov et al., 
2009a). One primary benefi t of a spatial 
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stochastic modelling approach is that the 
various stages of an invasion – its arrival, 
spread and establishment components – 
can be depicted within a single modelling 
framework (Yemshanov et al., 2009c). 
Unlike other risk modelling methods that 
focus only on a single stage of invasion (e.g. 
environmental niche models, which are 
aimed primarily at characterizing risk of 
successful establishment), the approach is 
relatively data-intensive; in particular, it 
requires estimation of aspects of a pest’s 
population or meta-population dynamics, 
its host distribution and its general dispersal 
behaviour. Nonetheless, by adopting an 
approach of repeated stochastic model 
simulations, it is possible to quantify the 
risk of invasion as a numeric probability 
(Rossi et al., 1993; Rafoss, 2003) for each 
geographic location (i.e. map cell) 
comprising the model’s spatial domain (i.e. 
the study area). Th e approach also allows 
one to calculate the variation of the risk 
estimates. Th us, spatial stochastic simu-
lation provides, for each geographic 
location, an estimate of both the invasion 
risk and the uncertainty associated with 
that risk estimate (Yemshanov et al., 
2009a). In this case, uncertainty is 
synonymous with variability in model 
inputs (i.e. parametric uncertainty) and 
outputs. Uncertainties resulting from the 
use of imprecise terms or lack of knowledge 
are not addressed explicitly.

Importantly, the uncertainties associ-
ated with model outputs represent 
cumulative measures of uncertainties that 
may arise from a variety of sources; in 
particular, uncertainty associated with a 
model’s parameters, its input data and 
possibly its structure or formulation may all 
contribute to the output uncertainty (Elith 
et al., 2002; Regan et al., 2002; Walker et al., 
2003; Refsgaard et al., 2007). Additional 
analytical techniques are necessary to 
explore how uncertainty in any of these 
particular model elements might be 
infl uencing the outputs. Th e focus of this 
chapter is on a practical approach, fi rst 
outlined in Koch et al. (2009), to examine 
specifi cally the impact of model parametric 
uncertainty. We use a Monte Carlo 

simulation approach to sensitivity analysis 
to do this. Monte Carlo methods involve 
repeated random sampling from a range of 
possible input values (e.g. from a probability 
distribution associated with a model 
parameter). When model simulations are 
completed with these randomly sampled 
input values, the simulation results can be 
compiled to obtain estimates of a 
phenomenon of interest.

Th e primary objective of sensitivity 
analysis in this context is to determine the 
relative contribution of individual model 
parameters to the uncertainty in the 
resulting outputs (Helton et al., 2006). Th e 
application of sensitivity analysis to 
analysing parametric uncertainty is not 
novel (Morgan and Henrion, 1990; Li and 
Wu, 2006). What makes our analysis unique 
is that it is applied in a spatial domain. Th e 
analysis of uncertainty is uncommon in risk 
maps, probably because of the perceived 
diffi  culty (Morgan and Henrion, 1990; 
Andrews et al., 2004; Cook et al., 2007). 
However, we believe that it is critical because 
invasions are spatial, or more precisely, 
spatiotemporal, processes and so it is logical 
to analyse the associated uncertainties from 
a map-based perspective.

A variety of mathematical, statistical 
and graphical methods have been utilized 
for sensitivity analysis (Frey and Patil, 
2002). For a spatial stochastic model such as 
ours, with its capacity to generate many 
diff erent realizations of the invasion process, 
a basic Monte Carlo approach off ers a 
straightforward way to examine model 
parameter sensitivities. We begin by per-
forming repeated simulations with the 
invasion model in order to get a mapped set 
of risk estimates based on the parameters’ 
initial values (i.e. based on our best 
estimates for these values, which we deter-
mined either analytically or by consulting 
experts prior to running the model). Th e 
resulting set of risk estimates constitutes a 
baseline scenario for later comparison to 
the sensitivity analysis results. Because the 
model is stochastic, the baseline estimate 
for each map cell includes both the primary 
risk metric, P, which is a numeric probability 
indicating the pro portion of simulation 
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runs where successful invasion occurs, and a 
measure of uncertainty in that estimate, 
(P), the standard deviation of P. Next, we 
identify key model parameters and vary 
their values within a specifi ed set of nested 
bounds (±5%, ±10%, …, ±50%), which alters 
the pattern of output variation. Using these 
nested bounds, we complete many additional 
simulation runs so that we can compare the 
parameters with one another in terms of the 
relative impact of uncertainty (e.g. which 
parameters are most sensitive at ±15% 
variation in their baseline values).

Th e analytical approach has three main 
objectives: (i) to identify any parameters 
that are highly infl uential and thus should 
be thoroughly scrutinized with respect to 
the consequences of uncertainty; (ii) for any 
infl uential parameters, to fi nd the level(s) of 
uncertainty in inputs that dramatically 
change output maps (i.e. the output risk and 
uncertainty estimates) and so aff ect the 
maps’ utility for end users (i.e. decision 
makers); and (iii) to determine if, even with 
added uncertainty, any portions of an 
output map remain stable enough in the 
presence of parametric uncertainty for an 
end user to utilize the map for decision 
support, regardless of the uncertainty.

Sensitivity analysis has a few important 
limitations. For instance, as applied, the 
approach does not address sources of 
uncertainty in the input data (i.e. the spatial 
uncertainty in particular), although a similar 
Monte Carlo approach can be used to vary 
input data for the purposes of sensitivity/
uncertainty analysis (Crosetto et al., 2000; 
Crosetto and Tarantola, 2001). In theory, 
Monte Carlo techniques could also be used 
to compare the sensitivity of diff erent model 
formulations (i.e. model formulation 
uncertainty) but would require signifi cant 
time for computations.

Furthermore, Monte Carlo sensitivity 
analysis does not deal well with severe 
uncertainty. For models involving invasive 
alien species, especially recently discovered 
invaders, large empirical knowledge gaps 
may exist regarding the most important 
invasion drivers. Th is lack of knowledge 
makes it diffi  cult to identify meaningful 
bounds in which to vary parameter values. 

In our case, we used a hierarchical set of 
percentage bounds (up to ±50%) around the 
values of the parameters we analysed, but in 
theory a parameter (e.g. the annual 
probability of new entries) may be off  by a 
factor of 100, 1000 or more. Consequently, 
the analytical approach described here 
should be seen only as a local or restricted 
analysis of parametric uncertainty. We 
believe it is appropriate for the pest 
highlighted in this chapter (S. noctilio 
Fabricius) because the biology and behaviour 
of S. noctilio have been reasonably well 
documented in portions of both its native 
and invaded ranges. Other analytical frame-
works, such as info-gap decision theory 
(Ben-Haim, 2006), may be better for severe 
parametric uncertainty.

Monte Carlo sensitivity analysis also 
assumes that the correct parameters to 
include in the model and for which to 
perform sensitivity/uncertainty analysis 
have been identifi ed. If a model is missing 
key parameters or includes unnecessary or 
deleterious parameters, the accuracy of the 
output risk estimates is likely to be aff ected. 
Th ese inaccuracies are most likely to be 
revealed during some sort of validation or 
cross-validation process with empirical data. 
Such data are often hard to acquire for 
invasive alien species. However, whether the 
correct set of parameters has been included 
in a model is really a question of model 
formulation uncertainty.

Because the model described in this 
chapter was implemented as a risk fore-
casting approach with essentially no 
opportunity for validation (i.e. S. noctilio was 
not widely distributed in North America 
when we performed this work), the 
sensitivity analysis results should be 
interpreted only as an assessment of the 
relative, and not absolute, relationships 
between model parameters and outputs. 
Th is is a critical point: the approach does 
not address the accuracy of the risk 
predictions, but does allow the analyst to 
get a basic sense of the robustness of model 
outputs to parametric uncertainty. Th us, 
while we cannot always verify or validate 
the accuracy of a given risk model, we can 
determine whether model results have any 
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reliable decision-making value in the face of 
uncertainty. For instance, the technique 
described here allows us to identify in -
fl uential parameters and, just as importantly, 
determine when uncertainty in a parameter 
starts to have a signifi cant impact on the 
output risk estimates (i.e. changes a risk 
estimate from a relatively high value to a 
comparatively lower value).

Case Study: Invasion of S. noctilio

We modelled the potential invasion of the 
woodwasp species S. noctilio in eastern 
North American forests. Native to Europe, 
western Asia and northern Africa, S. noctilio 
has been introduced in many parts of the 
world and is considered an important pest of 
pine (Pinus spp.) plantations in the southern 
hemisphere (Carnegie et al., 2006; Corley et 
al., 2007). Th e insect has particularly 
impacted plantations in eastern Australia, 
New Zealand, South Africa and several 
South American countries including Brazil, 
Chile and Argentina. Given the insect’s wide 
bioclimatic tolerance (Carnegie et al., 2006) 
and an abundance of potential hosts, S. 
noctilio was viewed as a major invasion 
threat to North America for several years 
before it was found in upstate New York in 
2004 (Hoebeke et al., 2005) and southern 
Ontario in 2005 (de Groot et al., 2006). 
Essentially, it is expected to persist through-
out temperate pine forests of the USA and 
southern Canada, although it may require 2 
or 3 years to complete a generation at higher 
latitudes (i.e. cooler climates; Borchert et al., 
2007). Pine density in the initially invaded 
region is comparatively low; as a result, the 
pest might fi nd greater success were it to 
spread into the southern USA.

At the time of our analysis, S. noctilio 
had been found in more than 20 counties in 
New York, several counties in north-central 
Pennsylvania, and individual counties in 
Michigan and Vermont. Th e woodwasp had 
also been discovered throughout much of 
southern Ontario. Since that time, this 
insect has been discovered in additional 
counties in the states named above, as well 
as one county each in Ohio, New Jersey and 

Connecticut, and in western Quebec 
(National Agricultural Pest Information 
System, 2013).

With respect to hosts, S. noctilio has 
caused the greatest impacts in plantations 
of loblolly (Pinus taeda) and Monterey pine 
(Pinus radiata) in the southern hemisphere. 
In North America, S. noctilio has been 
confi rmed as a pest on several native pines: 
red pine (Pinus resinosa), eastern white pine 
(Pinus strobus) and jack pine (Pinus 
banksiana) (Dodds et al., 2007). Th is insect is 
also found on Scots pine (Pinus sylvestris) in 
managed and unmanaged Christmas tree 
farms (Dodds et al., 2010). Scots pine is 
known as a host in the pest’s native region. 
Evidence suggests that a number of pine 
species in eastern North America are 
suitable, if not preferred hosts. Th e 
geographic distributions of these pine 
species overlap and facilitate the natural 
spread of the insect.

S. noctilio can disperse naturally by adult 
fl ight or through human activities (e.g. 
movement of infested logs). It is generally 
known as a strong fl ier, but few empirical 
studies have been performed to quantify its 
dispersal capabilities (but see Corley et al., 
2007). Regardless, the initial introduction of 
S. noctilio into North America was almost 
certainly human-mediated, likely in raw 
wood or solid-wood packing materials 
associated with international trade 
(Hoebeke et al., 2005).

Model and Data Sources

We used a spatially explicit, raster-based 
modelling framework to perform the 
simulations for this study. As a dynamic 
spatiotemporal model (Gibson and Austin, 
1996; Fuentes and Kuperman, 1999), it 
departs from deterministic risk modelling 
approaches, which typically adopt the 
simplifying assumption that an invader’s 
potential distribution is already in equi-
librium with its environment.

Th e model was programmed in C++. 
Although the model code is not available for 
public use, the uncertainty analysis tech-
niques described in this chapter can be 
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applied to any spatial stochastic model with 
a similar structure. Th e primary requirement 
is that each model run yields a binary map 
that documents the absence (0) or 
occurrence (1) of some event. In our case, we 
simulated the annual spread and survival of 
S. noctilio over 30 years, such that each 
simulation run yielded a binary raster map 
indicating where in eastern North America 
the insect would have viable populations at 
the end of the specifi ed time horizon. Th ese 
maps are then compiled to compute a 
numeric probability of the event (i.e. for 
each map location, j, the proportion of 
model runs in which the event occurred, Pj) 
and the associated uncertainty (i.e. standard 
deviation of P j, (Pj)) for each map location 
(i.e. each raster map cell). Each grid cell in 
the model was 5 km × 5 km, which we 
selected for practicality. Th e coarser 
resolution allowed us to reduce the 
computation time for individual simulation 
runs, a large number of which were necessary 
to analyse a set of sensitivity analysis 
scenarios.

In general terms, the model simulates 
forest growth, new arrivals, spread and 
survival of S. noctilio across eastern North 
America in discrete time steps (Yemshanov 
et al., 2009b). Th e model is simple with 
limited data requirements. Some model 
elements, particularly those related to 
dispersal, were developed from expert 
knowledge because empirical data were 
unavailable. We believe this limitation is 
common for many invasive alien species. For 
advice about eliciting expert estimates in 
lieu of data and then incorporating them 
into a model, see Morgan and Henrion 
(1990) and Yamada et al. (2003).

Th e model simulates three events for 
S. noctilio: (i) new arrivals at US and Canadian 
ports; (ii) spread across eastern North 
America; and (iii) establishment in suitable 
locations. Details for these simulations 
appear in the online supplement to Chapter 
13. Additionally, Table 13.1 provides a brief 
summary of the main parameters and their 
roles within the model. Notably, we 
performed sensitivity analyses only for six 
model parameters: (i) Wx(t), the annual 
probabilities of new local entries of S. noctilio 

at individual US and Canadian ports; (ii) 
dmax, the maximum annual spread distance; 
(iii) p0, the local dispersal probability; (iv) sv, 
the susceptibility of the host resource; (v) k, 
the carrying capacity for a population of S. 
noctilio at a given location; and (vi) gv, the 
growth rate of the host trees. We chose this 
particular subset of parameters after initial 
model testing to limit computation time. 
Th e sensitivity analysis approach described 
here could certainly be applied to all of a 
model’s parameters, but we felt total analysis 
was unnecessary to demonstrate the 
methodology. Furthermore, many models 
include parameters that are related to or 
dependent on one another in some way. For 
the sake of computational effi  ciency, it may 
make sense to choose one representative 
parameter out of related sets of parameters. 
However, this choice may only be practical if 
the analyst is familiar with a model’s 
structure and outputs.

Although we used C++ for model 
development, similar models could be 
created in a software package like r or 
matlab that can accommodate spatial data. 
Both of these packages can store the map 
data as matrices and can implement basic 
statistical, mathematical and stochastic 
functions (e.g. testing model-derived 
probabilities against values from a uniform 
random distribution). Th e biggest constraint 
is likely to be computation time; packages 
like r are unlikely to be as computationally 
effi  cient as optimized code in C++, Java or 
similar programming languages. Because of 
the large number of simulation runs required 
for this sort of exercise, spreadsheet-based 
Monte Carlo software packages, such as 
@Risk or Crystal Ball, would probably be 
unsuitable except at very coarse spatial 
scales or for small spatial areas.

Analyses

Baseline scenario

We initially used the model for a baseline 
scenario of S. noctilio spread in eastern North 
America over a 30-year time horizon (from 
2006 to 2036). Under this baseline scenario, 
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model parameter values were left as originally 
specifi ed during model development (i.e. as 
determined analytically or from expert 
estimates; see the online supplement to 
Chapter 13 for additional details). We 
initialized the model with a map of known S. 
noctilio infestations as of 2006, the fi rst year 
when systematic fi eld detection surveys were 
performed in the USA and Canada.

We generated two output metrics for 
this baseline scenario that we also utilized in 
our subsequent sensitivity analyses. Th e 
fi rst was Pj, the probability that S. noctilio 
invades map cell j at the end of the forecast 
horizon. Th is served as our primary metric 
of invasion risk. Th e value of Pj for each map 
cell was calculated from the repeated model 
simulations:

Table 13.1. Parameters for components of the Sirex noctilio invasion model. The six parameters tested 
via sensitivity analysis are highlighted in bold.

Parameter Description

All components
t Annual time step for the model
T 30-year time horizon for summarizing the model results (2006–2036)
New arrivals
t0 Used in calculating F(t); corresponds to earliest year for which summary import data 

were available for the USA and Canada
Tentry Used in calculating F(t); corresponds to the presumed year that S. noctilio arrived in 

eastern North America
F(t) Function describing the yearly fl ow of marine imports to the USA and Canada through 

time
p(t) Total probability of successful S. noctilio entry into North America in year t; derived from 

F(t)
x Individual port of entry that receives commodities associated with S. noctilio; total 

number of ports = 148
vx(t) (Vx(t)) Tonnage of S. noctilio-associated cargo received at port x in year t; converted to a 

proportion, Vx(t), of the total S. noctilio tonnage for the region that was received at that 
particular port x

Wx(t) Vector of the local probabilities of S. noctilio entry at each port x in year t; derived from 
Vx(t)

Spread
b(d) Colonization rate (i.e. rate of successful dispersal) as a function of the distance, d, from 

the nearest location with an established S. noctilio population; infl uenced by p0 and 
dmax

p0 Local dispersal probability (i.e. probability of dispersal at a distance of 1 km)
dmax Maximum distance at which dispersing S. noctilio populations become established
Establishment
Nj(t); Nj(t+1) S. noctilio population densities in grid cell j at years t and t + 1
R Annual S. noctilio population growth rate
k Carrying capacity that constrains maximum population size
�j(t) Maximum volume of pine killed by S. noctilio in year t; depends on μ
μ Minimum volume of pine required to support a single population unit
gv Function describing the age-dependent rate of host (pine) stand growth
sv Function describing the age- and species-dependent level of host (pine) susceptibility; 

infl uenced by aj, a0, amax and smax

aj Host stand age in years (i.e. the average stand age in a map cell)
a0 Age of host stand closure (20 years)
amax Age when host stand reaches its maximum level of susceptibility
smax Maximum susceptibility value for ageing host stands

Please see the online supplement to Chapter 13 for more information about the model components.
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 (13.1)

where j,u,T is a binary variable indicating 
presence or absence of S. noctilio in cell j at 
time horizon T for a single model replication 
u and U is the total number of replications 
for the scenario. Less than 500 replications 
were required for the baseline scenario to 
stabilize (see subsection ‘Sensitivity analysis 
scenarios’ below for further discussion 
about stabilization). In addition, the 
variation of the Pj values was characterized 
with a map of (Pj), the standard deviation 
of P for each cell, which was our primary 
metric of the output uncertainty. Th e 
standard deviation is a commonly used 
metric of the uncertainty in an estimate, but 
it has some limitations, perhaps most 
notably that it can be sensitive to extreme 
observations. We adopted (Pj) as our 
uncertainty metric for the sake of 
computational simplicity, but other 
uncertainty metrics such as binary entropy 
(MacKay, 2003) could be applied in the 
analyses described here.

From the maps we generated for the 
baseline scenario (Fig. 13.1; see colour plate 
section), we can make several broad forecasts 
regarding the expected path of the S. noctilio 
invasion in eastern North America. First, 
the risk of invasion (i.e. Pj; Fig. 13.1a) is 
expected to be high (Pj > 0.75) throughout 
the north-eastern USA, southern Ontario 
and Quebec, which is unsurprising because 
the pest is already established in this region. 
Th e area of relatively high risk also extends 
into the northern portion of the south-
eastern USA; indeed, the southern edge of 
the main invasion front is expected to be 
near the Virginia–North Carolina border 
and the western edge along the eastern 
shore of Lake Superior in 2036. Output 
uncertainty (i.e. (Pj); Fig. 13.1b) is generally 
highest near this predicted main front. 
Beyond the main front, the south-eastern 
USA contains extensive areas of medium-
level (0.25  Pj  0.75) risk near the Atlantic 
and Gulf coasts (i.e. near possible ports of 
entry). Notably, this region contains large 
areas of pine forest, most of which is 
dominated by loblolly pine, a species 

understood to be highly susceptible to 
S. noctilio (see Table S13.3 in the online 
supplement to Chapter 13). Th e output 
uncertainty tends to be high here because 
the probability of a new S. noctilio entry at 
any port, and its subsequent spread and 
establishment, is relatively moderate 
compared with the probability of expansion 
in northern areas near existing infestations. 
Notably, areas of the south-eastern USA that 
are further inland (i.e. non-coastal) exhibit 
both low risk and low uncertainty, which 
refl ects less abundant hosts and greater 
distance from possible sources of invaders, 
either ports of entry or the advancing main 
front.

Sensitivity analysis scenarios

We analysed the sensitivity of the invasion 
risk estimates using a Monte Carlo approach 
with four general steps: (i) defi ning a 
probability distribution for each parameter 
of interest; (ii) sampling from this 
distribution to select a value; (iii) running 
multiple simulations of the risk model with 
the parameter values sampled from the 
distributions; and (iv) summarizing the 
results from repeated realizations of 
this process. As acknowledged earlier, a 
parameter may be poorly specifi ed due to 
lack of data, so its associated distribution 
may have to be approximated. In some cases, 
information about the parameter may be 
insuffi  cient to characterize even the primary 
moments (i.e. the mean and variance) of a 
probability distribution. In other cases, a 
parameter’s empirical distribution may be 
reasonably well fi t by one of the many 
commonly used theoretical distribution 
functions (e.g. the normal, exponential or 
Cauchy distributions). Regardless, a simpler 
solution may be to assume a uniform 
distribution for each parameter (Morgan 
and Henrion, 1990). In our case, we 
employed a nested set of variability bounds 
around each tested parameter: ±5%, ±10% 
and so on up to ±50%. Each pair of ‘plus–
minus’ bounds defi ned the end points for a 
symmetric uniform distribution from which 
we sampled values randomly. A benefi t of 
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applying the same percentage increments to 
all parameters (i.e. rather than changing 
each parameter according to an independent 
scale) is that comparisons of their degree of 
sensitivity become more straightforward.

For the sensitivity analysis, we varied 
one parameter at a time, while leaving all 
other parameters unchanged. To verify the 
relative impact of specifi c parameters, we 
also used the alternative approach of varying 
all tested parameters but one, which was 
kept at the baseline. Because sv and gv were 
represented as tables of values (Table 13.1; 
online supplement to Chapter 13), when 
varying either or both of these parameters, 
all values in the table(s) were altered identi-
cally based on the value sampled randomly 
from the associated uniform distribution. 
We must emphasize that our sampling 
choices (i.e. utilizing uniform distributions 
and sampling in ±5% increments to a 
maximum of ±50%) were somewhat 
arbitrary, although informed by our previous 
experience with initial testing of the model 
and an awareness of what would be com-
putationally practical. In our case, these 
particular choices permitted us to perform a 
fairly comprehensive analysis of parametric 
uncertainty, but they may not work well for a 
diff erent model applied to a diff erent pest.

Analysts who intend to complete similar 
analyses should consider at least two things. 
First, they should decide if it is reasonable to 
approximate the distributions of tested 
parameters with something other than the 
uniform distribution. Certain statistical 
tests (e.g. Kolmogorov–Smirnov test, chi-
squared test) can help determine whether a 
set of data are consistent with the normal 
distribution or some other proposed 
distribution, but this assumes the data for a 
parameter of interest are suffi  cient for valid 
testing (Morgan and Henrion, 1990). 
Second, as alluded to earlier in the chapter, 
the analysts must also identify levels of 
variation that will yield meaningful and 
interpretable results regarding the param-
eter sensitivities. Unfortunately, this can be 
a lengthy iterative process and may not be 
possible for species that lack even basic 
information for parameterizing an invasion 
model.

Sensitivity tests and metrics

For complex stochastic simulation models, 
hundreds or even thousands of replications 
may be necessary to stabilize the outputs 
(i.e. to minimize the variation in the output 
values that can arise simply from completing 
too few replications). Th is is especially true 
when a large amount of variability (i.e. 
uncertainty) is added to model parameters, 
as was the case in our sensitivity scenarios. 
One metric that can be used to determine 
the minimum number of model replications 
required for output map stability is SXY, the 
s um of the squared diff erences in Pj map 
values between two trials incorporating 
consecutively increasing numbers of 
replications:

 (13.2)

where M is the total number of map cells 
covering eastern North America (~156,000 
cells) and PjX and PjY are the invasion 
probabilities for map cell j in trials using X 
and Y number of replications, X > Y. When 
SXY is plotted against the number of 
replications Y, it depicts a declining curve; 
when this curve begins to fl atten rather than 
decline, this indicates that the model has 
stabilized. We found that most of the 
sensitivity scenarios converged after 2400–
2700 replications (Fig. 13.2), so we generated 
maps of Pj and (Pj) based on 3000 model 
replications for each scenario. As Fig. 13.2 
also suggests, other metrics, such as the 
square root of the total map area where Pj or 
(Pj) is below some specifi ed threshold, can 
be used to assess model stability, but they 
may not be as easily interpretable as SXY. In 
our case, these latter two metrics both 
appear as gradually increasing curves, where 
the fl attening that indicates model stability 
is not as immediately obvious as with the SXY 
metric (Fig. 13.2).

To evaluate the eff ect of introduced 
parametric uncertainty on the output un -
certainty of the risk maps (i.e. on the (Pj) 
values), we calculated ‘uncertainty ratios’ for 
each sensitivity scenario. For any given map 
cell, the uncertainty ratio is the value of 
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(Pj) for the scenario of interest divided by 
(Pj) for the baseline scenario. An un -
certainty ratio value close to 1 indicates that 
varying the parameter value at the specifi ed 

level does not substantially change the 
variability (i.e. uncertainty) of the output 
risk estimate. Ratio values approaching 0 
indicate decreasing uncertainty in the 
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Fig. 13.2. Convergence metric values versus number of replications, at ±40% parametric uncertainty. 
Tested parameters: (a) local probabilities of entry at marine ports, Wx(t); (b) population carrying capacity, 
k; (c) maximum annual spread distance, dmax; (d) local dispersal probability, p0; (e) host susceptibility, sv; 
(f) host growth rate, gv.
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output risk estimates, while as values 
progress above 1, they indicate increasing 
uncertainty in these estimates. Although 
the uncertainty ratio is a relatively simple 
metric, it can be mapped such that it enables 
straightforward visual comparison of the 
results of the diff erent sensitivity scenarios, 
even when the compared parameters are 
widely diff erent in scale or structure.

Visualizations of Uncertainty

Figure 13.3 (see colour plate section) shows 
uncertainty ratio maps for several of the 
model parameters at ±40% uncertainty. In 
the one-parameter-at-a-time sensitivity 
scenarios, changes to the maximum annual 
spread distance, dmax, increased uncertainty 
ratios across a large portion of the map area 
(Fig. 13.3a). In particular, high uncertainty 
ratios appeared in a broad band just beyond 
the estimated invasion front and in a few 
areas inside the front, such as coastal New 
England. Th ese latter areas exhibited high 
risk, yet low uncertainty, under the baseline 
scenario. Changes to the local dispersal 
probability, p0 (Fig. 13.3b), also elevated 
uncertainty ratio values in these locations, 
but to a lesser degree than observed for dmax. 
Furthermore, unlike for dmax, the uncertainty 
ratios for p0 were < 1 in the north-western 
portion of our study area (i.e. the western 
Great Lakes region). We believe that 
increased uncertainty in p0 permitted more 
invasion nuclei to develop in this remote 
area through time, which raised the invasion 
risk estimates, but at the same time 
stabilized the output uncertainties at a 
lower level than under the baseline scenario. 
Th is phenomenon also occurred with the 
other parameters besides dmax, as exemplifi ed 
by the ratio map for the port entry 
probabilities parameter, Wx(t) (Fig. 13.3c). 
Additionally, the map for Wx(t) shows 
another phenomenon we observed for all 
parameters except dmax and p0: high 
uncertainty ratios in only a small proportion 
of the study area, mostly near the edge of 
the host range (i.e. near the invasion’s 
biological limits).

Essentially, the uncertainty ratio maps 
for the all-but-one sensitivity scenarios (Fig. 
13.3d–f; see colour plate section) show the 
opposite of the one-at-a-time scenarios. 
When dmax (Fig. 13.3d) was the only 
parameter left fi xed at its baseline value, and 
all other parameters were varied uniformly 
within a ±40% bound, the uncertainty ratios 
were low to moderate throughout most of 
the study area. In contrast, when any other 
single parameter was left fi xed, such as the 
population carrying capacity, k (Fig. 13.3e), 
or the host growth rate, gv (Fig. 13.3f), the 
uncertainty ratio values increased sub-
stantially across most of the study area. Th is 
pattern appears to confi rm that dmax was the 
most infl uential parameter on the model 
outputs.

Although the uncertainty ratio maps 
facilitate visual comparison, they do not 
really quantify the diff erences between the 
sensitivity scenarios. It is possible to 
calculate this diff erence by using the SXY 
metric (Eqn 13.2) in a second way: to 
compare the maps of Pj and (Pj) for each 
sensitivity scenario, X, with the matching 
maps from the baseline scenario, Y. In this 
case, SXY is calculated as the sum of the 
cumulative diff erences between the sensi-
tivity scenario’s Pj or (Pj) map and the 
corresponding baseline scenario map of Pj or 
(Pj). Th us, SXY in this context depicts 
cumulative changes in the S. noctilio risk 
map due to the introduction of parametric 
uncertainty.

We cross-tabulated the SXY diff erences 
for eastern North America as well as three 
smaller focus regions: eastern Canada, the 
north-eastern USA and the south-eastern 
USA. Figure 13.4 shows the results for all 
regions at ±25% and ±40% parametric 
uncertainty. For the entire study area, and 
whether calculated from the Pj or (Pj) maps, 
the cross-tabulation results indicate that 
dmax was by far the most sensitive of the 
tested model parameters. Th e graphs of SXY 
for Pj (Fig. 13.4a and c) suggest that p0 was 
the second most-sensitive parameter when 
considering the entire study area. Both of 
these observations were also true for eastern 
Canada and the north-eastern USA. In 
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contrast, the results for the south-eastern 
USA suggest relatively less importance for 
dmax, and greater importance for gv, which 
was nearly as important as dmax at ±40% 
uncertainty (Fig. 13.4c and d). Indeed, gv 
also showed moderately high sensitivity for 
the entire study area at ±40% uncertainty 
(Fig. 13.4c and d). We believe this outcome is 
explained by the fact that the south-eastern 
US region is host-rich but relatively far from 
currently infested locations, such that 
successful invasions would likely only 
develop from rare, and thus uncertain, new 
entries. In this context, a parameter 
governing susceptible host abundance could 
be nearly as important as one shaping the 
rate of spread.

In a fi nal set of tests for each sensitivity 
scenario, we plotted the regions where 

introducing parametric uncertainty changed 
the mapped risk estimates considerably. We 
partitioned cells in the map of Pj for the 
baseline scenario into three broad classes, 
‘low’, ‘medium’ and ‘high’ risk, corresponding 
to the intervals 0–0.25, 0.25–0.75 and 0.75–
1, respectively. We then determined, for 
each sensitivity scenario, the percentage of 
the map area (i.e. the percentage of map 
cells) that moved from one risk class to 
another when compared with the baseline 
scenarios. Th ese shifts can be portrayed in a 
classifi ed map that highlights geographic 
locations with considerable changes in 
infestation risk. Th is classifi ed map can also 
be used to determine if any geographic 
regions remained largely unchanged despite 
the introduction of parametric uncertainty 
at a specifi ed level. Note that our choice of 
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Fig. 13.4. Regional summaries of the SXY metric for the sensitivity analyses. Results from one-parameter-
at-a-time sensitivity analyses are presented at two variability increments: (a) for Pj at ±25% parametric 
uncertainty; (b) for (Pj) at ±25%; (c) for Pj at ±40%; (d) for (Pj) at ±40% parametric uncertainty.



200 Frank H. Koch and Denys Yemshanov

breakpoints for these risk classes was 
arbitrary. Certainly, other analysts might 
fi nd diff erent sets of breakpoints more 
meaningful or opt to use more than three 
risk classes. Th e tests described here should 
remain applicable, regardless of such choices.

Table 13.2 shows the percentages of the 
map area that shifted from one risk class to 
another in one-parameter-at-a-time sensi-
tivity scenarios. Results are displayed 
for scenarios at small (±10%), moderate 
(±25%) and high (±40%) levels of intro-
duced parametric uncertainty. At ±10% un -
certainty, the sensiti vity scenarios typically 
exhibited only modest shifts in risk class 
(i.e. <5% of the map area relative to the 
baseline scenario), except for the local 
probability of entry, Wx(t), which showed a 
relatively large shift of 8.3% of the map area 
between the medium and low risk classes. 
We believe this shift is a consequence of the 
phenomenon we noted previously: added 
variability in Wx(t) caused more invasion 
nuclei to enter geographically remote 
portions of our study area through time, 
increasing the invasion risk, Pj, but 
stabilizing the output uncertainty, (Pj). 
Th is phenomenon likely explains similar 
shifts between medium and low risk for Wx(t) 

(8.1% of the map area) and between high 
and medium risk for p0 (8.1%) at ±40% 
uncertainty, as well as many of the other 
observed changes in risk class due to 
introduced parametric uncertainty. Th e 
greatest map-area shifts occurred with dmax, 
which exhibited 17.4% and 27.7% shifts 
from high to medium risk at ±25% and ±40% 
uncertainty, respectively. In addition, the 
results for dmax from the full sequence of 
one-at-a-time sensitivity scenarios (Table 
13.3) show a 9.8% map-area shift between 
high and medium risk at ±15% uncertainty. 
Th is is larger than any shift observed for the 
other fi ve parameters, at any variability 
bound increment. Th ere was also an 8.1% 
map-area shift between medium and low 
risk at ±15% uncertainty for dmax.

Th e geographic distribution of these 
shifts is important. Figure 13.5 (see colour 
plate section) shows risk-class shifts for 
eastern North America for the scenarios 
with ±15% and ±50% uncertainty in dmax. At 
±15% uncertainty (Fig. 13.5a), most areas 
within the main invasion front at the 
30-year time horizon (see Fig. 13.1 and the 
earlier description of the baseline scenario 
results) did not exhibit a change in risk 
class, although clusters of map cells with 

Table 13.2. The percentage of the map area shifting from one risk class to another when varying one 
parameter at a time within three different symmetric uniform ranges: ±10%, ±25% and ± 40%. 
Percentages are relative to the class area totals for the baseline scenario.

Model parameter

Shift in risk class Wx(t) k dmax p0 sv gv

10% added parametric uncertainty
Low  mediuma 0.5 4.3 3.0 1.0 1.3 1.7
Medium  low 8.3 1.2 3.5 5.4 4.4 2.6
High  medium 1.0 0.9 4.9 1.1 1.0 0.9
Medium  high 0.7 0.6 0.2 0.6 0.5 0.8
25% added parametric uncertainty
Low  medium 2.2 2.8 3.5 2.3 2.6 2.5
Medium  low 1.7 1.3 6.6 2.0 1.6 3.7
High  medium 1.3 1.0 17.4 4.6 1.1 0.9
Medium  high 0.6 0.7 0.1 0.2 0.7 0.6
40% added parametric uncertainty
Low  medium 0.6 3.7 4.4 1.4 2.1 5.8
Medium  low 8.1 2.2 5.7 5.5 3.5 1.1
High  medium 1.2 1.3 27.7 8.1 1.1 1.1
Medium  high 0.6 0.6 0.0 0.1 0.6 0.6

aLow risk, Pj < 0.25; medium risk, 0.25  Pj  0.75, high risk: Pj > 0.75.
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high-to-medium risk shifts did appear near 
the front’s southern and north-western 
edges. In the south-eastern USA, beyond the 
main front, shifts from medium to low risk, 
and vice versa, occurred primarily in coastal 
areas. Th is result likely refl ects a high degree 
of variability in the patterns of expansion of 
new S. noctilio entries at the region’s marine 
ports under an uncertain dmax, despite the 
fact that the region is relatively host-rich. 
Similar geographic patterns occurred at 
±50% uncertainty (Fig. 13.5b), although 
more map cells were aff ected. Still, even at 
this high level of uncertainty in dmax, sizeable 
areas within and beyond the main invasion 
front did not display a change in risk class. 
In short, across much of eastern North 
America, the risk estimates appeared to be 
fairly robust to uncertainty in this highly 
infl uential parameter.

Conclusions

What did we learn about our S. noctilio 
invasion model from these analyses? 
Foremost, the sequence of sensitivity 
scenarios demonstrated that the maximum 
annual spread distance, dmax, was the most 
sensitive of the tested model parameters, 
followed to a somewhat lesser degree by p0, 
the local dispersal probability. In hindsight, 
this result is unsurprising, since for many 
mechanistic models of invasion processes, 
model aspects governing dispersal, par-
ticularly long-distance dispersal, are the 
most infl uential and uncertain. (Parameters 
related to the invader’s demography may 
also be infl uential and uncertain; see 

Neubert and Caswell, 2000 and Buckley et 
al., 2005.) Indeed, were this or a similar 
modelling approach applied to another 
invasive pest, we could expect dispersal to 
fi gure prominently in subsequent sensitivity 
analyses. Of course, the results for those 
other models and species of interest may not 
be as obvious as seen here. Th ose results 
would depend substantially on the amount 
of interplay between the model parameters 
given the specifi c circumstances (e.g. region 
of interest, dispersal behaviour and 
population dynamics) being modelled. In 
our case, we modelled an invasive alien pest 
that is a strong fl ier and has hosts that are 
widely distributed and fairly abundant in 
the region of concern; hence, minimal 
functional connectivity between host areas 
may be necessary for range expansion 
(Minor et al., 2009; Vogt et al., 2009). 
Another species may be more constrained in 
a practical sense by the geographic 
distribution of its host(s), so uncertainty in 
this constrained distribution (i.e. in host-
related model parameters) could have a 
signifi cant impact on model projections. 
Nevertheless, we believe that the small suite 
of tests and metrics we outlined here should 
facilitate similar model-based analyses of 
invasion risks and uncertainties, even if the 
results end up being somewhat ambiguous. 
We attempted to develop a toolbox that 
provides analysts with a capacity to measure 
uncertainty quantitatively and to portray 
those results geographically. We believe the 
spatial assessment of models for alien 
species is critical because invasions 
unquestionably play out over time and 
space.

Table 13.3. The percentage of total map area shifting from one risk class to another when varying only 
the dmax parameter. Reported percentages are relative to the class area totals for the baseline scenario.

Uniform variation of dmax, percentage of the baseline value

Shift in risk class ±5% ±10% ±15% ±20% ±25% ±30% ±35% ±40% ±50%

Low  mediuma 1.6 3.0 2.9  3.5  3.5  3.4  4.1  4.4  6.4
Medium  low 3.8 3.5 8.1  7.4  6.6  5.1  4.8  5.7  7.8
High  medium 3.4 4.9 9.8 12.1 17.4 20.6 25.2 27.7 34.9
Medium  high 

(×10)
2.8 2.2 1.3  1.1  0.8  0.8  0.4  0.3  0.3

aLow risk, Pj < 0.25; medium risk, 0.25  Pj  0.75; high risk, Pj > 0.75.
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A particular fi nding of our study is that 
with the addition of a small degree of 
uncertainty for the dmax parameter (i.e. 
±15%), a sizeable proportion of the map 
area displayed a drop in risk class, either 
from high to medium or from medium to 
low. Small uncertainty eff ects have critical 
implications were we to use the S. noctilio 
model to portray the forecasted invasion 
risks to decision makers. Th e most important 
implication is that risk estimates from the 
model must be interpreted cautiously, 
because we do not have to be very wrong 
about our primary dispersal assumptions 
before we may begin to misestimate the 
invasion risk, which could lead to incorrect 
risk management decisions. Fortunately, 
other model parameters that we tested only 
begin to aff ect model results when the level 
of uncertainty is high. We can be more 
confi dent that our risk projections are 
reasonably robust to uncertainty in these 
parameters (although see discussion below 
regarding the possibility of severe parametric 
uncertainties).

Given the known sensitivity of the 
model to estimates of dmax, how might we 
best proceed operationally? Two possible 
directions emerge from these fi ndings. First, 
as Fig. 13.5 (see colour plate section) 
suggests, even when dmax is treated as highly 
uncertain (±50%), the risk estimates for 
much of the study area are fairly robust (i.e. 
no appreciable change occurs in the coarse, 
high-, medium- or low-risk rankings). In 
turn, these unchanged portions of the map 
could probably be used confi dently for some 
decision-making tasks, such as prioritizing 
locations for the allocation of resources for 
monitoring and/or management.

Nevertheless, a decision maker may be 
reluctant to use a risk map if a signifi cant 
portion of it has apparently been com-
promised by uncertainty. Th is predilection 
may just be a matter of decision makers’ 
personal discretion or, more precisely, her or 
his degree of aversion to uncertainty. We 
accept this line of thinking. If this is the 
case, the sensitivity results suggest a second 
direction in which to proceed: determining 
how to resolve the lack of information about 

dispersal. Th is information gap could 
probably be achieved through additional 
research on important dispersal mechanisms 
of the pest of interest. Indeed, this is one of 
the reasons why our own research has 
increasingly focused on dispersal mech-
anisms related to human-mediated, long-
distance dispersal – such as international 
and domestic trade (Koch et al., 2011; 
Yemshanov et al., 2012) – which are 
widely acknowledged as being pivotal to 
biological invasions yet poorly characterized. 
Alternatively, the dispersal modelling 
component for the pest of interest might 
also be improved via fi eld study of its 
dispersal behaviour. For instance, now that 
S. noctilio is established in eastern North 
America, it might be possible to develop an 
appropriate dispersal function based on the 
invasive populations rather than the more 
indirect source of distributional observations 
in its native or previously invaded range. If 
additional research is not feasible, further 
review of existing literature – perhaps with 
guidance from experts – might uncover a 
species that can serve as a reasonable, if 
imperfect, proxy for the pest of interest 
when defi ning dispersal or other model 
parameters (e.g. Venette and Cohen, 2006).

In any case, our study has demonstrated 
that the use of sensitivity analysis techniques 
can reveal important sources of uncertainty 
(i.e. parametric uncertainty in this case) in 
pest risk maps and their underlying models. 
Still, the approach remains limited in terms 
of its ability to diagnose when those 
uncertainties might start to alter decision-
making priorities. For example, while we 
were able to quantify when uncertainty in 
dmax began to impact the S. noctilio model’s 
output risk estimates, what if we were 
drastically wrong about one or more of our 
other parameter estimates? In fact, what if 
one of our parameter estimates was off  by a 
factor of 10 or more? Consequently, 
evaluating the parameter in question at 
±50% uncertainty might generate an 
undeservedly optimistic impression of its 
robustness to uncertainty. As a possible 
solution, an analyst might opt to implement 
sensitivity scenarios with much wider 
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uncertainty bounds (e.g. ±1000%), but for 
relatively fi ne-scale stochastic simulation 
models, the computation time required to 
complete a comprehensive analysis with 
very wide uncertainty bounds may make 
this an impractical option. Th is would be 
especially true if the analyst deemed it 
necessary to evaluate the sensitivity of a 
large number of model parameters. Sampling 
techniques such as Latin hypercube sampling 
could reduce the required number of 
replications (Helton and Davis, 2002; Xu et 
al., 2005) and thus the computation time. 
Yet, the best way to achieve effi  ciency in the 
face of possibly severe uncertainty may be to 
adopt the perspective that the impact of 
uncertainty is best evaluated in the context 
of a small set of discrete choices about how 
the model results will be implemented. For 
instance, if the results will be used to support 
a long-term surveillance scheme, it might be 
wise to lay out a few diff erent hypothetical 
surveillance schemes and perform a cursory 
examination of how each scheme responds 
to various amounts of introduced parametric 
uncertainty. At the least, working from this 
perspective might help the analyst narrow 
down the model parameters that require 
particular focus, and the uncertainty bounds 
that should be implemented, in order to 
identify the most robust choice.

Ultimately, we would like to see 
sensitivity-based analyses of uncertainty 
become standard practice in pest risk 
modelling and mapping. Despite limitations 
with the approach, it can be instructive to 
analysts when judging the value of their 
outputs for decision support. For example, 
maps depicting shifts in risk class at various 
levels of added uncertainty (such as in Fig. 
13.5; see colour plate section) may be paired 
with the ‘baseline scenario’ risk map outputs 
to communicate the potential impact of 
parametric uncertainty for decision making. 
Furthermore, while the approach does not 
facilitate direct incorporation of measured 
uncertainties into output risk products, it 
might possibly be used in concert with other 
analytical approaches that do provide this 
option (see Yemshanov et al., Chapter 14 in 
this volume).
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