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Abstract

Uncertainty is inherent in model-based 
forecasts of ecological invasions. In this 
chapter, we explore how the perceptions 
of that uncertainty can be incorporated 
into the pest risk assessment process. 
Uncertainty changes a decision maker’s 
perceptions of risk; therefore, the direct 
incorporation of uncertainty may provide a 
more appropriate depiction of risk. Our 
methodology borrows basic concepts from 
portfolio valuation theory that were 
originally developed for the allocation of 
fi nancial investments under uncertainty. In 
our case, we treat the model-based estimates 
of a pest invasion at individual geographical 
locations as analogous to a set of individual 
investment asset types that constitute a 
‘portfolio’. We then estimate the highest 
levels of pest invasion risk by fi nding the 

subset of geographical locations with the 
‘worst’ combinations of a high likelihood of 
invasion and/or high uncertainty in the 
likelihood estimate. We illustrate the 
technique using a case study that applies a 
spatial pest transmission model to assess 
the likelihood that Canadian municipalities 
will receive invasive forest insects with 
commercial freight transported via trucks. 
Th e approach provides a viable strategy for 
dealing with the typical lack of knowledge 
about the behaviour of new invasive species 
and generally high uncertainty in model-
based forecasts of ecological invasions. 
Th e technique is especially useful for 
under taking comparative risk assessments 
such as identifi cation of geographical hot 
spots of pest invasion risk in large 
landscapes, or assessments for multiple 
species and alternative pest management 
options.
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Uncertainty in Biological Invasions

Probabilistic spatial models have been used 
to assess the potential for, and impacts 
from, ecological invasions (Rafoss, 2003; 
Koch et al., 2009; Pitt et al., 2009; Yemshanov 
et al., 2009a,b; Prasad et al., 2010; Venette et 
al. 2010; Koch and Yemshanov, Chapter 13 
in this volume). Such models off er the 
capacity to depict fi ne-scale variations in key 
environmental and biological parameters 
that may infl uence the dynamics of invasive 
alien species in a landscape. However, 
parameters in these models require certain 
statistical assumptions, so when these 
models are extrapolated in geographical 
space, uncertainty that is associated with 
underlying model structure, parameters and 
data is propagated into pest risk forecasts 
and maps.

Description of the invasion process in 
probabilistic terms provides a technical 
means to represent uncertainties in the 
events that lead to invasion. Probabilistic 
invasion models commonly include random-
ization algorithms to represent the uncertain 
course of an invasion. For example, forecasts 
of where an invasive alien organism might be 
introduced and subsequently spread may 
include random elements. Alternatively, 
randomization algorithms can be used to 
draw plausible values repeatedly from 
statistical distributions of model inputs to 
measure the resultant variation in model 
outputs. Th is approach is known more 
generally as Monte Carlo analysis. Numerous 
randomized simulations of the invasion 
process provide a set of possible invasion 
outcomes (Koch et al., 2009; Pitt et al., 2009; 
Yemshanov et al., 2009a). Th e model outputs 
(e.g. an invasive alien species’ presence/
absence or density at a site by a specifi ed 
time) can be analysed statistically to deter-
mine an expected outcome or the extent of 
variation among outcomes. Th ese statistics 
can, for example, provide important insights 
about managing an invasion in the face of 
uncertainty or targeting research to alleviate 
some of the uncertainty.

In this chapter, we focus on relatively 
simple techniques that help incorporate the 
uncertainty that is typically generated by 

probabilistic spatial models into the output 
risk estimates (i.e. risk maps) for invasive 
alien pests. Note that the ‘risk’ we are 
modelling in this example is the likelihood 
of the arrival of wood- and bark-boring 
insects without considering the level of 
impact. Conceptually, our approach would 
apply to other aspects of ecological 
invasions. Because our approach is from a 
decision maker’s perspective, the fi nal 
estimates should also refl ect how the 
uncertainty in the invasion forecasts might 
change a decision maker’s expectations of 
invasion outcomes.

Perceptions of Uncertainty in Model-
based Pest Risk Assessments

Uncertainty is an inevitable component of 
invasion forecasts but can be challenging for 
pest risk managers (i.e. biosecurity pro-
fessionals and others tasked with managing 
pest incursions) to factor into their decision-
making processes. One of the biggest 
impediments has been the lack of techniques 
to directly incorporate uncertainty into the 
prioritization of risks for decision makers. 
Notably, human perceptions of ‘more 
certain’ versus ‘less certain’ outcomes are 
diff  erent in a decision-making context 
(Kahneman and Tversky, 1979; Kahneman 
et al., 1982); a decision maker’s perception 
of uncertainty embedded in a forecast of 
pest risk could change his or her priorities 
for action. Perceptions of uncertainty diff er 
among people. For example, given a choice 
between two alternative scenarios with the 
same estimated probabilities of pest arrival, 
a cautious risk manager would assign higher 
priority for action to the scenario with more 
certainly estimated values. Th is type of 
behaviour is commonly called ‘risk-averse’ in 
economic literature: risk-averse individuals 
always prefer the more certain option from 
alternative choices with the same expected 
outcome (Arrow, 1971; Gigerenzer, 2002; 
Shefrin and Belotti, 2007). For example, the 
risk-averse investor would prefer a stock 
with a 3 ± 0.5% annual return on investment 
over the stock with a 3 ± 4% annual return. 
Conversely, ‘risk-tolerant’ or ‘risk-seeking’ 
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investors would prefer the more variable 
stock because this stock has a greater 
potential to outperform its historical 
average return in the short term than the 
more consistent stock.

Th e meaning of ‘risk’ in investments is 
diff erent from how it is typically understood 
in pest risk modelling (i.e. as shorthand for 
the likelihood of arrival, establishment and 
spread, and the magnitude of impacts). 
Indeed, risk aversion might be better 
characterized as aversion to uncertainty in 
the elements of the invasion being modelled. 
Th is terminology is admittedly ambiguous, 
but ‘risk aversion’ also implies that a pest 
risk manager would generally assign lower 
priority for action to estimates of pest 
invasion risk that are comparatively more 
uncertain. However, for information-
gathering purposes, decision makers may 
reverse their priorities and become more 
risk-tolerant. For example, a pest risk model 
to plan a pest survey in a heterogeneous 
landscape may show two locations where the 
presence of an invasive alien species is 
equally probable but the estimate for one 
location is more uncertain than for the 
other. For the risk-tolerant manager, 
locations with more uncertain risk estimates 
would be assigned a higher priority for 
survey (Yemshanov et al., 2010) because 
these locations would provide more 
knowledge-gaining opportunities. Results 
from surveys in these locations also could 
help to reduce some of the uncertainty 
associated with the model parameters or 
inputs.

Ideally, the risk assessor would use an 
algorithm to consistently adjust outputs 
from a probabilistic invasion model to 
support decision making. Th e adjustment 
would depend on the amount of uncertainty 
in the outputs and a basic understanding of 
the decision maker’s perceptions of 
uncertainty. Potential adjustments can be 
visualized by plotting the model-based 
estimates of risk in two dimensions: the 
mean likelihood of invasion (i.e. across all 
model replications) against the uncertainty 
of that likelihood estimate. For example, a 
pest’s estimated mean arrival rate for each 

location of interest is plotted against the 
variance in Fig. 14.1a.

When uncertainty is ignored and the 
action priorities (e.g. selection of sites for 
surveillance) are based solely on the mean 
invasion likelihood values, the dividing 
boundaries between high- and low-priority 
locations can be depicted in the mean–
variance space as lines with constant mean 
likelihood values parallel to the x-axis (Fig. 
14.1b). In this case, the amount of variance 
in the likelihoods of pest invasion does not 
aff ect the decision-making choice. If decision 
makers assign higher priorities to more 
certain estimates of pest invasion likelihood 
(i.e. are ‘risk-averse’), the lines that delineate 
action priority levels will be curved relative 
to the x-axis (Fig. 14.1c), so the locations 
with more certainly defi ned estimates of 
invasion likelihood would receive higher 
relative priority and vice versa. Alternatively, 
when a decision maker’s objective is to gain 
more information about an invader’s 
behaviour, or when uncertainty in the 
invasion likelihood values is believed to 
increase the overall level of decision-making 
priority (i.e. the decision maker is ‘risk-
seeking’), the locations with higher variance 
will be assigned a higher priority. In this 
case, the lines delimiting the priority levels 
would be curved relative to the x-axis in an 
opposite direction (Fig. 14.1d).

Portfolio Valuation Techniques and 
Pest Risk Assessment

Th e concepts depicted in Fig. 14.1 are 
strikingly similar to the fi nancial asset 
valuation process which has been studied in 
detail and has produced a corresponding 
analytical framework (Arrow, 1971; Elton 
and Gruber, 1995). To illustrate how this 
framework may be translated to invasive 
species modelling, consider a hypothetical 
example of a geographical assessment of 
pest invasion likelihood, where a spatial 
invasion model has forecast the potential 
spread of a newly documented pest. 
Knowledge about the invader’s behaviour in 
its new environment remains limited, so the 
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spatial model represents key parameters 
that characterize the species’ expected 
behaviour in distributional form. Multiple 
randomized simulations generate, for each 
location (i.e. individual map cells, in this 
example), a multitude of estimated pest 
arrival rates within a specifi ed time. For each 
location, the invader’s estimated mean 
arrival rate and the uncertainty of that 
estimate (i.e. the variance of the simulated 
mean) can be calculated. Results for multiple 
locations can be plotted on a mean–variance 
graph (Fig. 14.1). Plots generally show the 
points as an amorphous cluster termed a 
‘cloud’ (Fig. 14.1a).

Locations for resource deployment (e.g. 
to monitor the ongoing spread of the 
invader) are prioritized by fi nding the 
locations that have the ‘most extreme’ 
combinations of mean arrival rates and 
associated uncertainties. What constitutes 
‘most extreme’ depends on the decision 
maker’s perception of uncertainty. For 
example, uncertainty might increase (Fig. 
14.1c) or decrease (Fig. 14.1d) the priority 
for action at a location. Regardless, the 
combinations of mean arrival rate and 
uncertainty characterize locations within 
the mean–variance cloud. For instance, a 
relatively low arrival rate that is highly 
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Fig. 14.1. Delineation of decision-making priorities with respect to mean pest arrival rate and uncertainty: 
(a) depicting individual geographical locations (i.e. map cells) as points in the dimensions of mean pest 
arrival rate and variance; (b) decision making is based solely on the mean values regardless of the 
amount of variance in the arrival rate estimates (points above the ‘high’ line are a high priority, those 
below the ‘low’ line a low priority and points between the lines are a medium priority); (c) decision making 
assigns higher priority to estimates with higher variance; (d) decision making is risk-averse, so more 
certain estimates of the pest arrival rate receive higher priority.
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uncertain would place a location on the 
outer (i.e. most extreme) boundary of the 
point cloud. Notably, this combination is 
analogous to fi nding the ‘non-dominant’ 
portfolio set in fi nancial asset allocation 
when considering mean net fi nancial returns 
and their volatilities (i.e. the variances of the 
net return values). In our case, the likelihood 
that the threatening pest will arrive at a 
previously pest-free location is analogous to 
the concept of ‘net return’, while the 
uncertainty of that likelihood estimate is 
analogous to ‘volatility’ (Arrow, 1971; Elton 
and Gruber, 1995).

In pest risk modelling, a set of individual 
geographical locations (e.g. map cells or 
polygons) within a region is analogous to a 
set of individual ‘portfolios’, where each 
‘portfolio’ is characterized by an associated 
distribution of estimated net returns (i.e. 
analogous to model-based likelihoods of 
pest arrival). Commonly, we rank these 
locations so the highest rank would denote 
the most extreme combination of arrival 
rate and uncertainty. As we perceive the 
process, decision makers will continue to 
select the most highly ranked sites until a 
budget limit is reached. Lines that 
distinguish high-priority locations (i.e. 
those that need immediate management 
action) from lower-priority locations (i.e. 
where action could be deferred) can be 
drawn through the mean–variance cloud. 
Th ese limits are represented as convex lines 
(i.e. ‘frontiers’) at user-defi ned boundaries 
within the mean–variance clouds. Figure 
14.1c illustrates the general shape of these 
lines when the decision maker is risk-averse 
and Fig. 14.1d illustrates the general shape 
when the decision maker is risk-tolerant.

In portfolio allocation, the usual 
objective is to select a few portfolio com-
binations from a theoretically infi nite set 
that have the desired trade-off s between net 
returns and their volatilities (Elton and 
Gruber, 1995). In our invasion risk modelling 
scenario, each portfolio represents a single 
geographical location, so their total number 
is fi nite. Under classical portfolio theory, 
allocation usually aims to defi ne a single 
best-performing set of portfolios in fi nancial 

terms (Ingersoll, 1987; Elton and Gruber, 
1995). A single set is suffi  cient because it is 
assumed that any investment amount can 
be allocated simply in specifi ed proportions 
to the set of portfolios. In geographical 
assessments of pest invasions, fi nding a 
single best-performing portfolio set would 
be analogous to identifying a small portion 
of the geographical region that combined 
the highest likelihoods of invasion and the 
highest variances of these estimates (or 
lowest, depending on decision-making 
goals).

In order to evaluate the rest of the map 
locations, we must subsequently defi ne a 
hierarchy of best- to worst-performing 
portfolio sets for all map locations in a study 
area. To do this, the distribution of arrival 
rates for each of the n locations (i.e. square 
cells) in the map is evaluated to fi nd a subset, 
1, of locations with the most extreme 
combinations of arrival rate and associated 
uncertainty. In fi nancial terminology, this 
subset is often called the ‘non-dominant’ or 
‘effi  cient’ set. Once the non-dominant set 
1 is found, it is assigned the highest 
priority rank of 1 and removed from set n 
temporarily. Next, a second non-dominant 
subset, 2, is determined from the rest of 
the map locations, n ‒ 1, assigned a rank 
of 2, and so forth. Th e process is repeated 
until all sets of locations in the area of 
interest have been evaluated and assigned a 
priority rank. Conceptually, this technique 
follows an algorithm for fi nding nested non-
dominant sets (Goldberg, 1989) and multi-
attribute frontiers (Yemshanov et al., 2013).

Finding Non-dominant Frontiers

Finding nested non-dominant sets, or 
effi  cient frontiers, represents the most 
critical step in the analysis because the set 
limits must simultaneously account for a 
decision maker’s perceptions of uncertainty 
and the amount of variation in the data, and 
yet be computationally tractable. In this 
chapter, we demonstrate two relatively 
simple approaches based on the mean–
variance frontier concept and the stochastic 
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dominance rule. We continue to draw upon 
the example that we established earlier. To 
briefl y recap, an area of interest is divided 
into n grid cells (i.e. locations). A Monte 
Carlo simulation generates multiple 
estimates of the arrival rate of an invasive 
alien species into each cell. For each cell, we 
have an estimate of the mean arrival rate 
(i.e. the mean of all simulated values for that 
cell) and uncertainty in the arrival rate (i.e. 
the variance or standard deviation about the 
mean and the frequency distribution of 
arrival rates). Our goal is to help the decision 
maker select particular locations for action 
(e.g. conduct a survey for the invasive alien 
species).

Mean–variance frontier concept

Th e mean–variance frontier (MVF) concept 
is a visually appealing and simple technique. 
Th e mean arrival rate, –j, for a location j is 
plotted against the standard deviation of 
the arrival rate, (j), which serves as a 
measure of uncertainty (Fig. 14.2a). All 
geographical locations are plotted on the 
same graph. Instead of using variance as the 
measure of uncertainty, we use the standard 
deviation because it increases monotonically 
with the variance, spreads points along the 
uncertainty axis more uniformly and 
facilitates frontier identifi cation. Ultimately, 
the classifi cation and ranking of locations is 

Fig. 14.2. The concepts of nested mean–variance frontiers and stochastic dominance: (a) ranking risk of 
invasion via nested frontiers in dimensions of mean risk and its standard deviation (i.e. risk-seeking 
preferences); (b) second-degree stochastic dominance rule. In (b), f(ψj) and g(ψj) are example 
distributions of pest arrival rates at two corresponding map locations, f and g; F(ψj) and G(ψj) are the 
cumulative distribution functions (CDFs) of f(ψj) and g(ψj); ( )d
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similar whether the variance or standard 
deviation is used. Th e point, and 
corresponding map location, in the outer 
boundary of the cloud (i.e. the furthest from 
the origin) are assigned a priority rank of 1, 
the highest decision-making priority. Points 
that are an equivalent distance from the 
origin are also given a rank of 1. Th is set of 
priority 1 locations is removed from the 
mean–variance cloud, and the next set of 
points that are most distant from the origin 
in the new cloud are found and assigned 
rank 2, and so on. Each frontier represents a 
layer that has one-point width. Th e 
estimation of frontiers proceeds inwards 
one by one, like peeling an onion, as depicted 
in Fig. 14.2a, until all points are evaluated 
and assigned a corresponding priority rank. 
For the risk-seeking decision maker, the 
highest-priority locations are in the upper-
outermost convex frontier of the mean–
variance cloud (Fig. 14.2a). For risk-averse 
decision makers, the highest-priority 
locations are in the upper-innermost convex 
boundary where points exhibit extreme 
combinations of low variance and/or high 
mean values (Arrow, 1971; Elton and 
Gruber, 1995).

Stochastic dominance

Another popular technique to identify best-
performing sets of portfolios is based on the 
second-degree stochastic dominance (SSD) 
rule. Th e SSD is a pair-wise ordering rule for 
distributions of observations. Th e SSD rule 
compares two distributions based on their 
cumulative distribution functions or CDFs 
(Fishburn and Vickson, 1978; Whitemore 
and Findlay, 1978; Levy, 1998). In our case, 
we compare two geographical locations, f 
and g. For each location, the assemblage of 
model-based invasion outcomes (i.e. across 
all of the model simulations) is described by 
the distribution, f(j) or g(j), of the pest 
arrival rate j, which can vary within an 
interval of values [a; b]. For simplicity, we 
consider a range of j values between 0 and 
1, the absolute minimum and maximum 
values possible for this variable (Fig. 14.2b), 
but acknowledge that the range a–b can be 

broader if other metrics for pest risk are 
used. Th e SSD rule compares the 
distributions of f and g as represented by the 
integrals of their respective cumulative 
distribution functions:

 

where

 

Location g dominates the alternative f by 
second-degree stochastic dominance if
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in Eqn 14.1 fail). After the fi rst non-
dominant subset 1 was found, assigned a 
risk rank of 1 and removed from set n, the 
next non-dominant subset, 2, was found, 
assigned a risk rank of 2 and so on until all 
elements of n that represented the map 
locations were evaluated.

An Example with a Pathway-based 
Pest Invasion Model

We illustrate the portfolio-based method-
ology with a case study involving potential 
invasive alien species in Canadian forests. 
We use a relatively simple probabilistic 
model to estimate the likelihood that 
invasive forest insects may be carried in 
commercial freight transported to major 
Canadian municipalities via the North 
American road network. For simplicity, our 
model does not consider local pest spread by 
biological means or the pests’ population 
dynamics. Th e choice of a particular model is 
not critical in demonstrating the portfolio-
based approach. However, we have chosen a 
pathway-based model over more common 
spatial spread models because of its capacity 
for predicting human-assisted movement of 
invasive pests over long distances, a 
phenomenon that most spread models 
cannot predict well (Andow et al., 1990; 
Buchan and Padilla, 1999; Melbourne and 
Hastings, 2009). Pathway-based models 
describe the spread of a species through a 
network. Th e network is composed of nodes 
(e.g. a set of parks, campgrounds or cities) 
and connections between nodes. Th e 
network analysis prioritizes the degree of 
connectivity between the nodes (e.g. number 
of truck trips) over distance. So, for example, 
if 500 truck trips occur per day between 
cities A and C and only ten truck trips occur 
per day between A and B, a species is more 
likely to be moved from city A to city C than 
to city B even if city B is only 50 km from A 
and city C is 500 km from A. In general, 
pathway-based models can predict low-
probability long-distance dispersal events 
better than common spatial spread models.

In our case, we associated the long-
distance dispersal of invasive alien insect 

pests of forests with the movement of traded 
commodities via trucks on the North 
American road network. Traded commodities 
have been recognized as a reasonable 
predictor of the human-mediated movement 
of invasive species (e.g. Tatem et al., 2006; 
Hulme et al., 2008; Floerl et al., 2009; Hulme, 
2009; Kaluza et al., 2010; Koch et al., 2011). 
We used a Commercial Vehicle Survey (CVS) 
maintained by Transport Canada as our 
primary data source to forecast movement 
of wood-boring forest pests with com-
modities and freight (Yemshanov et al., 
2012a,b). We included commodity categories 
that involve raw wood products or are 
associated with signifi cant quantities of 
wood packing materials (Table 14.1). Th ese 
materials are acknowledged as a potential 
source of invasive alien forest pests, despite 
the implementation of International 
Standard for Phytosanitary Measures No. 
15 (ISPM 15), which stipulates treatment of 
these materials to reduce the risk of pest 
introduction via international trade (USDA 
APHIS, 2000). Th e eff ectiveness of ISPM 15 
has been questioned (Reaser and Waugh, 
2007; Reaser et al., 2008), implying that 
such measures cannot completely eliminate 
risk (Haack and Petrice, 2009; Liebhold, 
2012).

CVS data were collected during a 2005–
2007 survey at truck weigh stations across 
Canada. Each CVS record summarized a 
single shipment route reported by a driver. 
Th e summary included the route origin, 
destination, (if applicable) the location(s) 
where the route crossed the US–Canadian 
border and a description of the cargo (i.e. 
type and tonnage). We selected records from 
the CVS database with commodity types 
that are commonly associated with invasive 
alien forest pests (Table 14.1). We 
reformatted the CVS data into a list of 
‘origin–destination’ network segments so 
the location at the beginning of each 
segment (i.e. a part of a route from the CVS) 
was treated as an ‘origin’ and the location at 
the end of a segment as a ‘destination’ (Fig. 
14.3). Th e network included about 11,000 
individual locations in total.

We used the ‘origin–destination’ net-
work to estimate the rate of transmission of 
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Table 14.1. Commodity categories from the US–Canadian Standard Classifi cation of Transported Goods 
(SCTG) commonly associated with transport of bark- and wood-boring forest insects.

Commodity category (SCTG code)

Monumental or building stone (10)

Logs and other wood in the rough (25)

Wood products (26)

Non-metallic mineral products (31)

Base metal in primary or semi-fi nished forms and in fi nished basic shapes (32)

Articles of base metal (33)

Machinery (34)

Electronic and other electrical equipment and components and offi ce equipment (35)

Motorized and other vehicles, including parts (36)

Transportation equipment, not elsewhere classifi ed (37)

Precision instruments and apparatus (38)

Furniture, mattresses and mattress supports, lamps, lighting fi ttings (39)

Miscellaneous manufactured products (40)

p
322

3

4

1

p
13

p
34

p
12

Locations likely to be infested from 
source node 1 (other nodes, 2, 3, 4,..., n
in the network)

Infested 
area

Infested location (the 
starting point of the 
pathway simulations)  

p
23

p
24

Origin location

Destination locations

Fig. 14.3. Schematic representation of pest 
invasion spread in a network-based pathway 
model. The parameters pij represent the probability 
of movement from location i to location j.

invasive forest pests through an individual 
pathway segment between two given 
locations, i and j, in the network. We fi rst 
summed the tonnages of forest pest-
associated commodities recorded in the CVS 
data with one sum per directional pathway 
between locations i and j, which were 
designated mij and mji (note ij jim m ). For 
each route segment ij, the rate, pij, of a forest 
pest being moved from i to j over the survey 
period (2005–2007) was estimated from the 
total tonnage of freight shipments of forest-
pest-associated commodities from i to j:

 (14.2)

where t is the likelihood of a pest being 
moved with one tonne of relevant 
commodities over the survey period t. 
Essentially, t is a multiplier that converts 
the tonnage value into a rate estimate. Given 
the scope of our case study (i.e. modelling 
the potential human-assisted movement of 
an entire class of forest pests) it is impossible 
to calculate an exact t. However, because 
our primary focus was to prioritize locations 

1 exp( )ij ij tp m   
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in terms of their relative potential to receive 
invasive forest pests from elsewhere (i.e. to 
establish a partial order among geographical 
locations in the transportation network), 
precise knowledge of t was not critical 
(Yemshanov et al., 2012b). We used recent 
records of the spread of the emerald ash 
borer, a signifi cant forest pest, along the 
most prominent vector of its expansion in 
Ontario, Canada (i.e. along the Highway 401 
corridor between Windsor and Toronto), as 
well as the corresponding tonnages of 
relevant commodities moved through this 
corridor, to estimate t (Yemshanov et al., 
2012b). Briefl y, we estimated t via a series 
of iterative pathway model simulations that 
were intended to match the model-estimated 
and known rate of emerald ash borer spread 
along the Highway 401 corridor in southern 
Ontario given relevant trucking statistics.

Essentially, the model was comprised of 
a pathway matrix where each element pij 
estimates the rate of an invasive forest pest 
being moved with commercial truck 
transport from one geographical location, i, 
to another, j. Th e rows of the matrix 
represent the starting points of individual 
pathway segments, while the columns 
represent the segments’ end points. Th e 
matrix also has an extra column that denotes 
the probability, pi0, that the invasive 
organism fails to arrive at any location j 
from location i:

 

  (14.3)

where

 

Th e introduction of the last column was 
required because the transmission prob-
ability values pij in a given row do not always 
sum to 1. Since the CVS data did not 
document the duration of stay at 
intermediate locations during transit, the 
diagonal elements of the matrix, pii, were 
not estimated. We left the pii values at zero 

and instead added a column with the pi0 
values which bring the sum of each row to 1.

We used the pathway matrix to generate 
transmissions of a hypothetical invasive 
forest pest through the transportation 
network. Th e model generated discrete 
transmission pathways via multiple 
iterations. For each iteration, the model 
generated a single pathway route that 
started from an origin location i and passed 
through a number of destination locations 
until a location with no outgoing paths or 
the termination state based on the pi0 value 
was chosen. As depicted in Fig. 14.3, the 
model simulated the movement of the pest 
from each point of ‘origin’ i to other locations 
j by extracting the associated vector of 
probabilities pij (i.e. the row of matrix values 
associated with i) from the pathway matrix 
and using it to select the next pathway point. 
Finally, a rate of pest arrival was estimated 
from the number of times the pest arrived at 
j from i over multiple pathway simulations:

  (14.4)

where Ji is the number of individual pathway 
simulations that started at location i and 
passed through location j. K is the total 
number of individual simulations of pathway 
spread from i. Th e value of K (i.e. 2 × 106 
simulations for each origin point in this 
study) was limited by the available com-
puting capacity.

Th e arrival rates were then rearranged 
so each j ‘destination’ in the transportation 
network was characterized by an empirical 
distribution, j, of pest arrival rates ij from 
all other nodes i, i  j (i.e. n ‒ 1 locations). 
Th is distribution described the location’s 
potential to receive a forest pest with 
commercial freight transported from 
elsewhere. Because each destination had a 
distribution of arrival rates simulated from 
one origin at a time, the level of uncertainty 
associated with each location j depends on 
the connectivity of the pathway network 
and the variation in commodity fl ows along 
the pathway segments. In order to generate 
a geographically continuous coverage, we 
aggregated point-based arrival rates into a 
15 km × 15 km grid map by combining the j 
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values from each location into one common 
distribution. Each map cell was characterized 
by a distribution of j pest arrival rates from 
other map cells in Canada. We then applied 
our portfolio-based techniques, the mean–
variance frontier and the stochastic 
dominance rule, to these distributions of 
arrival rates to rank geographical locations.

While we used portfolio-based tech-
niques in our analyses for all of Canada, we 
only show the region in southern Ontario 
and Quebec with the highest traffi  c fl ows 
and road densities so that patterns can be 
illustrated more clearly (Fig. 14.4; see colour 
plate section). We express the risk ranks, 
j SSD and j MVF , generated with the mean–
variance and stochastic dominance rules, 
relative to the largest rank possible for each 
respective method. We have calculated the 
relative rankings, rj MVF and rj SSD, as:

 (14.5)

where max[j SSD] and max[j MVF] represent 
the maximum rank values in the SSD and 
MVF classifi cations. Th e relative rankings 
have values from 0 to 1, so the relatively 
highest-priority ranks are close to 1 and 
lowest are close to 0. Th ese relative rankings 
are ordinal values and are meant to facilitate 
comparisons of MVF and SSD results.

To explore the geographic patterns of 
risk identifi ed by the ranking methods we 
have further divided the ranks into broad 
classes with the arbitrary ranking thresholds 
of 0.4, 0.6, 0.75, 0.9 and 0.95 (Fig. 14.4; see 
colour plate section). Many of the highest 
ranked cells in eastern Canada (rj MVF , rj SSD > 
0.75) are associated with major transpor -
tation arteries in southern Ontario and 
Quebec, which suggests that these corridors 
could serve as key pathways for new pest 
arrivals. Th e two ranking methods identifi ed 
similar highest-priority areas (Fig. 14.4a and 
b); however, the map based on the SSD rule 
had more high-ranking sites (i.e. rj SSD > 0.9) 
than the map based on MVF. Table 14.2 
illustrates the agreement between the 

priority rankings among the highest-ranked 
locations. (Note that each map cell was 
assigned a location name corresponding to 
the nearest large municipality.)

While the highest-ranked lists generated 
with the MVF and SSD rules are relatively 
close, they diff ered substantially from the 
ranks based only on the mean arrival rates.

We also compared maps of risk ranks 
derived with the MVF and SSD rules with 
the geographical distribution of the standard 
deviation of the arrival rates, (j) (Fig. 
14.4c; see colour plate section). Uncertainty, 
represented by standard deviation, fi gured 
prominently in location characterizations 
based on the MVF and SSD rules (Fig. 14.4a 
and b; see colour plate section); the highest-
ranked locations typically included areas 
with high variability in pest arrival rates.

Th e impact of uncertainty on relative 
priority ranks, rj, is even more evident when 
individual map locations are plotted as 
points on a graph of the mean pest arrival 
rate, –j , against the standard deviation, 
(j) (Fig. 14.5). In Fig. 14.5a, the idealized 
boundaries between these general risk 
classes, as delineated with the MVF rule, are 
tilted at an angle,  > 90°, because the 
frontiers were selected starting with the 
upper-outermost boundary of the mean–
variance cloud. Th is pattern shows that for 
any two locations with equal mean arrival 
rates, the location with higher variability 
would be assigned a higher priority rank, 
just as we had intended.

For delineations based on the SSD rule, 
the tilt angle  of the boundaries between 
the risk classes was below 90 (Fig. 14.5b). 
Th is result implies that for any two locations 
with equal mean arrival rates, the location 
with the more certain estimate (i.e. with 
lower variability) would be assigned a higher 
rank.

In summary, the two approaches 
perform similarly in terms of the highest- 
and lowest-ranked locations, but for 
moderate risk ranks, the methods place 
diff ering levels of emphasis on certainty in 
the arrival rate estimate (i.e. the MVF 
approach emphasizes areas of high 
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Table 14.2. Location rankings for Canadian cities based on mean arrival rate, mean–variance frontiers (MVF) and second-degree stochastic dominance 
(SSD) methods. A ranking based only on the locations’ mean arrival rate values is included for comparison.

Location namea

Ranking method

Location name
(continued)

Ranking method

Mean arrival 
rate MVF SSD

Mean arrival 
rate MVF SSD


i (

×
 1

0–5
)

r jb R
an

k

r j R
an

k

r j 
i (

×
 1

0–5
)

r j R
an

k

r j R
an

k

r j

Cornwall, ON 15.9 145* 1 1  16* 1 Gananoque, ON 35.0 2 20 0.91 32 0.94
Toronto, ON 65.3 1 2 0.995  1 1 Ottawa, ON 7.7 38 32 0.88 18 0.96
Windsor, ON 29.8 3 4 0.98  1 1 Calgary, AB 21.4 8 14 0.94 56 0.9 
Kitchener, ON 21.2 9 3 0.99  6 0.99 Oshawa, ON 23.9 5 26 0.89 31 0.94
Drummondville, QC 7.6 39 5 0.98 11 0.98 Nobleton, ON 2.3 80 45 0.86 15 0.96
Trois-Rivieres, QC 8.9 30 7 0.97  7 0.99 Sorel, QC 2.0 89 41 0.86 20 0.96
Iroquois, ON 6.0 45 8 0.96  5 0.99 White Rock, BC 22.6 7 21 0.91 60 0.89
Moncton, NB 9.1 28 6 0.97 10 0.98 Niagara Falls, ON 5.5 13 33 0.87 34 0.93
Ste Madeleine, QC 11.1 22 10 0.95  8 0.99 Abbotsford, BC 19.9 11 23 0.91 68 0.88
Quebec, QC 8.3 34 15 0.93  1 1 Kingston, ON 13.8 18 31 0.88 47 0.91
Montreal, QC 15.8 15 9 0.95  9 0.98 Sault Ste Marie, ON 12.5 20 40 0.86 42 0.92
Sarnia, ON 23.4 6 13 0.94 14 0.97 Orono, ON 14.0 17 50 0.85 44 0.92
Lacolle, QC 4.8 52 11 0.94 12 0.97 Sparwood, BC 10.4 24 25 0.9 76 0.86
London, ON 26.8 4 12 0.94 19 0.96 Ingersoll, ON 19.8 12 36 0.87 63 0.89
Hamilton, ON 14.8 16 18 0.92 13 0.97 Thunder Bay, ON 9.1 27 44 0.86 140 0.79
St Georges, QC 2.6 73 16 0.93 16 0.96 Halifax, NS 1.6 102 42 0.86 36 0.93
Napanee, ON 21.0 10 17 0.92 23 0.95 Winnipeg, MB 8.4 32 30 0.88 49 0.91
Windsor, QC 7.3 42 22 0.91 17 0.96 Edmonton, AB 8.2 35 54 0.84 87 0.85
North Bay, ON 13.5 19 19 0.92 24 0.95 Vancouver, BC 6.4 43 57 0.83 96 0.84

The list is sorted by the sum of rj MVF and rj SSD values.
aLocation name based on nearest large municipality at 15 km spatial resolution: AB, Alberta; BC, British Columbia; MB, Manitoba; NB, New Brunswick; NS, Nova Scotia; ON, 
Ontario; QC, Quebec.
brj, relative rank denotes the location’s rank order relative to the total number of ranks for that metric. Values nearest 1.0 are the highest priority.
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uncertainty more). Th is distinctive be -
haviour occurs because the delineation of 
the non-dominant sets in the MVF and SSD 
classifi cations eff ectively starts from the 
opposite sides of the mean–variance cloud 
and thus the two methods off er diff erent 
treatments of uncertainty.

Assessing the Utility of Portfolio-
based Techniques for Pest Risk 

Assessment

Historically, the adoption of portfolio-based 
techniques in economic studies was driven 
by the need to fi nd the best possible 
allocation of fi nancial assets in the context 
of uncertain returns (Levy and Markowitz, 
1979; Götze et al., 2008). Th e idea of 
incorporating decision-making priorities as 
a component of fi nancial predictive models 
applies well to other decisions that have to 
be made under uncertainty. In our model-
based assessment of the likelihood of pest 
arrival, portfolio-based approaches provided 
a tractable way to incorporate uncertainty 
into quantitative assessments of the relative 
risk of pest arrival among several sites that 
is consistent with decision-making priorities 
and to communicate those diff erences in a 

single decision support product (i.e. a map 
of relative priority ranks in our study).

In economics, if the objective is to fi nd 
the smallest set of best-performing 
investment portfolios, the SSD and MVF 
approaches have been criticized as too 
coarse to be practical (Hardaker et al., 2004; 
Hardaker and Lien, 2010). However, we 
found the discriminatory power of SSD and 
MVF rules to be suffi  cient for our pest risk 
modelling case. Since our study required 
ranking of all geographic locations in the 
map and the total number of locations was 
large, SSD and MVF rules were suffi  cient to 
identify geographical hot spots as small as a 
few adjacent map cells. Also, the magnitude 
of the variation in the pest arrival rate values 
was considerably larger than the typical 
volatility associated with investment 
analyses; hence diff erences between the CDF 
integrals in the case of the SSD rule and 
convex mean–variance frontiers in the case 
of the MVF approach were more discernible.

In our example, we demonstrated how 
the incorporation of uncertainty via the 
MVF and SSD methods can change the 
interpretation of geographical estimates of 
the pest arrival risk. Th e output pest arrival 
risk was a dimensionless priority rank aimed 
to assist decision makers with allocations of 

Fig. 14.5. Relative pest risk ranks, rj, for each location, j, plotted with respect to mean pest arrival rate, 
 j , and its standard deviation, (j).  denotes the tilt angle between the idealized boundaries of 
coarsely defi ned risk classes in the mean–variance cloud and the line indicating constant mean arrival 
rate ( j  = const). Different symbols delineate broad classes of the risk ranks and dashed lines depict 
idealized boundaries between broad classes of risk ranks.
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resources for pest surveillance and control. 
Maps of risk ranks can be used as inputs for 
further economic assessments of survey 
costs which may include optimization of 
resources for survey and pest control eff orts. 
Th e methodology might be used with a cost-
based metric that estimates potential 
benefi ts of successful detections or manage-
ment actions in response to an outbreak, 
culminating in an optimal cost allocation 
study.

Th e capacity of the portfolio-based 
techniques to account for uncertainty also 
improves the utility of stochastic invasion 
models (Demeritt et al., 2007) as risk 
assessment and decision support tools. We 
illustrated the methods with a relatively 
simple invasion model, but the approach can 
be linked to more complex, probabilistic 
models where uncertainty in model 
predictions is expected to be high. Similarly, 
the approach could be used with spatial 
models to generate plausible invasion 
outcomes at multiple geographical locations. 
For example, stochastic cellular automata 
and gravity models (e.g. Haynes and 
Fotheringham, 1984; Muirhead et al., 2006; 
Pitt et al., 2009; Yemshanov et al., 2009a) 
could generate multiple maps, each rep-
resenting a possible outcome of the invasion 
process. Multiple maps can be rearranged so 
each geographical location is characterized 
by a distribution of invasion likelihoods or 
impact metrics which could be used with one 
of the portfolio-based techniques presented 
here.

Incorporating decision makers’ 
perceptions of uncertainty

Th e MVF and the SSD techniques can 
address decision-making strategies where 
uncertainty is treated diff erently. Th e MVF 
approach, as implemented in this study, may 
be suitable when the uncertainty about a 
pest is a factor that might increase the 
priority for decision makers. In particular, 
the MVF concept is useful when both the 
central tendency (i.e. the mean) and 
variability (e.g. the standard deviation) of 
the risk metric represent critical decision-

making variables. For instance, the MVF 
approach could be applied in model-based 
assessments for early detection of invasive 
organisms, when the need to gain more 
information and reduce uncertainty about 
the invader’s presence or absence is 
paramount. In such cases, the model-based 
rate of pest arrival may not suffi  ciently 
characterize information gains from 
unexpected events such as detections of a 
pest in low-probability locations. Conse-
quently, the uncertainty of the arrival rate 
estimate becomes a distinctly important 
variable, so the prioritization should include 
arrival rate and its variance. Alternatively, 
delineation based on the SSD rule may be 
more suitable for assessments that support 
costly and irreversible decisions such as 
restricting trade or imposing a regulation, or 
when decision makers are risk-averse.

Ultimately, the applicability of a 
particular portfolio-based method can be 
aff ected by the type of pest invasion model 
and the nature of the model output used in 
the assessment. One analytical strategy that 
may be worth considering is to estimate the 
priority ranks with more than one algorithm 
and then undertake an extra analysis step of 
aggregating the multiple sets of output 
ranks into a single-dimensional decision 
priority metric using multi-criteria aggre-
gation techniques that do not require prior 
setting of the criteria weights (e.g. the multi-
attribute frontier aggregation described in 
Yemshanov et al., 2013).

Computational remarks

Both the MVF and SSD techniques perform 
a delineation of nested effi  cient frontiers for 
a particular map (i.e. a particular set of 
spatial elements), which means they only 
rank those elements relative to one another. 
In order to compare the maps of multiple 
scenarios or diff erent geographical regions, 
the priority ranks would need to be 
remapped to a new common scale. Th e 
simplest approach would be to combine all 
geographical sets or scenarios into a single 
superset that includes all alternative maps 
or scenario data sets, and then assign the 
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priority ranks with respect to all possible 
invasion outcomes and scenarios that could 
be found in this superset.

Th e MVF and SSD techniques use 
somewhat diff erent approaches to generate 
the rank values. Th e MVF approach 
essentially ‘peels’ the mean–variance cloud 
of points, starting from the outermost layer. 
Alternatively, the stochastic dominance 
approach ranks the geographical locations 
via multiple pair-wise SSD tests. As a 
consequence, the two techniques typically 
yield diff erent numbers of locations at the 
highest ranks. For example, Table 14.2 lists 
eight locations with priority ranks above 
0.95 for the MVF-based classifi cation versus 
20 locations for the SSD-based approach. 
Th e allocation of the frontiers in the MVF 
approach can also be infl uenced by local 
variations of the point density in the mean–
variance space: more frontiers can be 
delineated in regions of the mean–variance 
space with higher point density. Also note 
that the MVF rule assumes that the mean 
values and the variance provide an adequate 
representation of the distribution as a whole 
(Gandhi and Saunders, 1981). Alternatively, 
the stochastic dominance approach 
evaluates the entire cumulative distribution 
of expected outcomes and does not require 
prior evaluation of the distribution shape 
(Fishburn and Vickson, 1978).

Th e application of either the SSD or 
MVF approach to large geographical data 
sets, such as high-resolution outputs of 
invasion and dispersal models with a large 
number of spatial elements (i.e. map cells or 
polygons), is computationally demanding1. 
For example, the SSD test has a com-
putational complexity on the order of 
n(n ‒ 1)/2 and the most basic algorithm to 
fi nd two-dimensional convex MVF frontiers 
has a complexity on the order of n2. For very 
large data sets, further reduction of the 
computing time is possible by implementing 
more effi  cient convex frontier delineation 
algorithms (Porter et al., 1973; Kung et al., 
1975; Rhee et al., 1995; Papadias et al., 
2003).
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