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Recent upward trends in acres irrigated have been linked to increasing near-surface
moisture. Unfortunately, stations with dew point data for monitoring near-surface
moisture are sparse. Thus, models that estimate dew points from more readily
observed data sources are useful. Daily average dew temperatures were estimated
and evaluated at 14 stations in Southwest Georgia using linear regression models
and artificial neural networks (ANN). Estimation methods were drawn from simple
and readily available meteorological observations, therefore only temperature and
precipitation were considered as input variables. In total, three linear regression
models and 27 ANN were analyzed. The two methods were evaluated using root
mean square error (RMSE), mean absolute error (MAE), and other model evaluation
techniques to assess the skill of the estimation methods. Both methods produced
adequate estimates of daily averaged dew point temperatures, with the ANN display-
ing the best overall skill. The optimal performance of both models was during the
warm season. Both methods had higher error associated with colder dew points,
potentially due to the lack of observed values at those ranges. On average, the ANN
reduced RMSE by 6.86% and MAE by 8.30% when compared to the best perform-
ing linear regression model.

Keywords: artificial neural network; dew point temperature; irrigation; land-use
change; linear regression

Introduction

Changing land cover can have important effects on local climate (Mahmood et al.,
2014; Marshall, Pielke, Steyaert, & Willard, 2004; Pielke et al., 2002; Shepherd, Pierce,
& Negri, 2002). The state of the land cover directly influences how incoming solar
radiation is partitioned into other energy budget terms, such as sensible and latent heat.
Agriculture is a predominant form of land cover with croplands accounting for nearly
15 million km2 (Ramankutty, Evan, Monfreda, & Foley, 2008), or roughly 40% of the
global land cover when combined with pastures (Foley, 2005). Agricultural land cover
is expected to increase with projected rises in population and the growing demand for
biofuel production (Evans & Cohen, 2009). While some agricultural landscapes rely on
natural precipitation for irrigation, there has been rapid growth toward artificially
irrigated landscapes (Harrison, 2001; Tilman, 2001). This introduction of water at the
surface has the ability to change the near-surface moisture content (Ferguson &
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Maxwell, 2011). Changnon, Sandstrom, and Schaffer (2003) stated that recent short
duration heat events in the Chicago region have experienced higher dew points than
those that occurred earlier in the period of record. Their research attributed these
changes to changes in agricultural practices that increased evapotranspiration (ET) rates
in the region. They noted the importance that small scale, local land cover changes can
have on regional climate variability. Hot humid weather can cause heat stress in
humans (Gaffen & Ross, 1998), increasing their chances of experiencing heat-related
morbidity or mortality (Bentley & Stallins, 2008, Lippmann, Fuhrmann, Waller, &
Richardson, 2013). It is difficult to assess these postulated changes in moisture content
at local scales because of the lack of sufficient data outside of first-order observation
stations. Thus, there is a need to model and estimate near-surface moisture from readily
available meteorological data.

Early methods for estimating near-surface moisture involved using daily minimum
temperature as a proxy for dew point temperature (Td). This assumption is not always
valid if there are large diurnal variations in Td and if minimum temperature stays well
above Td (Kimball, Running, & Nemani, 1997). Kimball et al. (1997) used annual pre-
cipitation, potential ET, mean daily net solar radiation, as well as temperature (maxi-
mum, minimum, and mean) to produce a more accurate assessment of daily Td across
the United States and Alaska, primarily at first-order observation stations. Hubbard,
Mahmood, and Carlson (2003) expanded on the efforts of Kimball and evaluated an
additional four regression equations for the Northern Great Plains in the United States.
The goal of their study was to produce a Td estimation method that required less com-
plex input data than Kimball et al. (1997). They wanted to take advantage of meteoro-
logical data provided by the National Weather Service Cooperative (NWS Coop)
weather stations. Their analysis found that a combination of maximum (Tx), minimum
(Tn), and mean (Tm) temperature are the best estimators for daily Td. An alternative
method for estimating near-surface moisture is through artificial neural networks
(ANN). Jain, Nayak, and Sudheer (2008) estimated ET using an ANN from limited
input variables. Their estimation model included hourly temperature, dew point, sun-
shine radiation, wind speed, and humidity in Reynolds Creek Experimental Watershed.
Shank, McClendon, Paz, and Hoogenboom (2008) developed ANN models to predict
Td at 2-h intervals, up to 12 h in advance. Their methods incorporated Td, relative
humidity, vapor pressure, wind speed, and solar radiation from the Georgia Automated
Environmental Monitoring Network (GAEMN) to develop and train the ANN.

The purpose of this study is to estimate daily Td using linear regression models and
an ANN for portions of Southwest Georgia using daily meteorological data, an under-
studied area that has undergone rapid agricultural expansion since the 1970s (Harrison,
2001). This study aims to give insight into which meteorological variables sufficiently
estimate Td in the analysis region. A secondary objective is to evaluate the performance
of the linear regression models in an area outside of the Great Plains to determine
whether there are any differences in the variables needed to successfully estimate dew
point temperature. Southwest Georgia experiences a higher amount of annual precipita-
tion than the Great Plains and two major climate controls, latitude and continentality,
are different between the two regions (Rohli & Vega, 2008). Precipitation could be an
important factor in estimating daily dew point, as the highest dew point ever recorded
in the United States was partly caused by heavy rains the morning of the event
(Webmaster, 2008). Shank et al. (2008) gave insight as to how an ANN performed in
the region from an error standpoint, but their analysis included observed dew point
temperatures as an input variable. This study analyzes a different geographic location
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from that of Hubbard et al. (2003) and focuses on a smaller spatial extent than that
used by Kimball et al. (1997). The ANN analysis is not aided by the inclusion of dew
point temperature or any moisture parameter because the focus is on producing a daily
estimate vs. a prediction. Qualitative comparisons of the performance of the two esti-
mation techniques are assessed from an error standpoint. The development of a valid
estimation technique is a vital step in the goal of characterizing the influence of irriga-
tion on climate in the study region. This region has experienced rapid growth in acres
irrigated (Harrison, 2001), but little is known about the influence of irrigation on the
climate in Southwest Georgia. From a hydrological standpoint, Rugel et al. (2012) ana-
lyzed pre- and post-irrigation flow-duration curves for two sites in southwestern
Georgia. Their research found significant reductions in 1-, 7-, and 14-day low flows.
Also, the relationship between winter and summer flows that existed prior to irrigation
was not present in the post-irrigation period. They attributed these changes to intensifi-
cation of agricultural irrigation because they found no discernible changes in drought
frequency or precipitation patterns during pre- and post-irrigation regimes. This
research aims to develop a valid estimation technique for dew point in the analysis
region that ultimately could be used to measure the influence of irrigation on climate.

Data and methodology

Data

The data-set used in this study is the Georgia Automated Environmental Monitoring
Network (GAEMN; Hoogenboom, 2000). The GAEMN is maintained by the Univer-
sity of Georgia and has a 1-s temporal resolution that is aggregated into 15-min aver-
ages or totals. There are over 75 stations in the network throughout Georgia that record
weather variables including air temperature, relative humidity, vapor pressure, wind
speed and direction, and solar radiation. Dew point temperature is calculated from the
collected variables. This study uses daily aggregates of maximum and minimum tem-
perature, precipitation, and dew point.

Linear regression

The regression equations are adapted from Hubbard et al. (2003). The analysis herein
employed three out of the five total regression equations developed by Hubbard et al.
(2003). The equations used are as follows:

Hubbard et al. (2003) Method 1:

Td ¼ aT n þ bðTx � T nÞ þ c (1)

Hubbard et al. (2003) Method 3:

Td ¼ aTm þ bðTnÞ þ cðTx � TnÞ þ k (2)

Hubbard et al. (2003) Method 4:

Td ¼ aTn þ bðTx � T nÞ þ cðPdailyÞ þ k (3)

where Td, Tx, Tn, Tm, and Pdaily are the daily dew point temperature; maximum, mini-
mum, and mean daily temperature; and daily precipitation, respectively. The coefficients
of the regression equations are represented by ∝, β, and λ. Figure 1 shows the GEAMN
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stations used in this study. The circles represent the stations used in the development of
the regression models and the squares represent the independent stations. Method 1
(Equation (1)) uses minimum temperature and the diurnal temperature range (DTR) to
estimate dew point. Method 3 (Equation (2)) includes the mean temperature in addition
to the minimum temperature and the DTR. Method 4 (Equation (3)) uses minimum
temperature, DTR, and daily precipitation to estimate daily dew point temperature.

Different configurations of precipitation were also included in Equation (3), in place
of the Pdaily variable, to determine whether there was any improvement in model skill.
The different configurations include 3-, 5-, and 7-day totals and averages. The different
configurations of precipitation showed no improved model skill, so Pdaily is the primary
configuration of precipitation used in the analysis.

To determine the coefficients for the regression models and to evaluate the initial
performance of the regression models, a subset of seven stations with the longest con-
tinuous period of record within the region (Figure 1, circles) are selected. The data
from the seven stations are aggregated to determine the coefficients only, and then each
station is analyzed on an individual basis. The performances of the three models are
evaluated for each station before choosing the best model to perform test on indepen-
dent data not used in model training. The independent stations in the analysis (Figure 1,
squares) are not used in the development of the model coefficients or in the initial esti-
mates of the model performance. The model evaluation parameters presented in this
analysis are selected to ensure a robust viewpoint of possible error and biases, and to

Figure 1. Map of stations used in development of the regression models (circles) and testing of
the regression models (squares).
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avoid solely relying on correlation parameters as high correlations can be achieved by
poor models (Legates & McCabe, 1999). The three models are evaluated using the root
mean square error (RMSE), the mean absolute error (MAE), the Pearson correlation
coefficient (R), the Index of Agreement (d), and the Coefficient of Efficiency (E). Read-
ers are encouraged to review Legates and McCabe (1999) for a detailed overview of
the d and E model validation statistics. As previously stated, a single set of coefficients
is developed from a combination of the seven developmental stations. The decision to
merge the data sets is made to ensure the models can adequately estimate dew point
temperatures for varying climatic regimes within the region.

Artificial neural network

The ANN used in this study is a feed-forward multilayer perceptron with one hidden
layer using sigmoid activation functions and trained using back-propagation as imple-
mented in pyBrain version 0.3.1 (Schaul et al., 2010) with python programming lan-
guage version 2.7.3. The basic network design is shown in Figure 2. A number of
potential networks were evaluated. These networks differ in the number of input vari-
ables and the number of processing nodes in the hidden layer. Inputs to the network
include minimum temperature, temperature range, and 0–5 days of antecedent precipita-
tion. A constant bias input node with a value of unity is also included. The number of
nodes in the hidden layer varies from a minimum of two to a maximum equal to the
number of inputs for the network (up to eight). In total, 27 ANNs are evaluated. Data
for ANN training and testing are partitioned in an identical manner to the regression
models.

Figure 2. Basic network design of the ANN. This ANN is a feed-forward multilayer perceptron
with one hidden layer using sigmoid activation functions and trained using back-propagation.
The ANN consists of an input layer, a hidden layer, and an output layer.
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Results and discussion

Linear regression

The three methods performed comparably from an error and model evaluation stand-
point. The RMSE, MAE, R, d, and E values were only separated by hundredths for all
three models for all stations within the training data-set. The Pearson correlation coeffi-
cient (R), d, and E all indicate improved performance when they are closer to unity.
Overall, Equation (3) had the lowest errors and the highest model evaluation statistics.
This was a different result than that obtained by Hubbard et al. (2003), as Equation (2)
in our analysis was their best performing method. As expected, their analysis region
has a different climatic regime from our analysis region. This result shows that daily
precipitation makes a valuable contribution to estimates of daily dew point values. As a
refresher, Equation (3) incorporated minimum temperature, the difference between max-
imum and minimum temperatures, and the addition of daily precipitation. The equation
with included coefficients is as follows:

Td ¼ 1:00681512ðTnÞ þ 0:17912155ðTx � T nÞ þ 0:05591049ðPdailyÞ � 1:789463 (4)

The results of the model evaluation and error statistics are displayed in Table 1. For
most of the stations in the developmental data-set, the R and d statistics were nearly
identical among the three methods, thus were omitted from most of the tables. For most
stations, R ranged from 0.94 to 0.96. The only noticeable variation was in the RMSE,
MAE, and the E statistic. This speaks to the robustness of the equations developed by
Hubbard et al. (2003).

In our study region, we found that minimum temperature, DTR, and precipitation
(Equation (3)) were the best input parameters for estimating dew point temperatures.
The three variables displayed a strong relationship with dew point, with minimum tem-
perature explaining 90% of the variability in dew point, DTR explaining 0.42%, and
precipitation explaining 0.46% of the variability. Physically, minimum temperature pro-
vides a baseline value for the dew point because the minimum temperature can never
be lower than the dew point temperature. As air temperatures approach the saturation
point, condensation will occur that will prevent air temperatures from falling below the
dew point temperature. The DTR is the difference between the daily maximum and
minimum temperature, and is an expression of solar radiation and vapor pressure defi-
cit, which are both related to ET, and rates of ET are indicated by the magnitude of the

Table 1. Error and model evaluation statistics of Equations (1)–(3) for the training stations. The
coefficients for the regression equation are derived from a merged data-set containing data from
all seven stations listed below.

Equation 1 Equation 2 Equation 3

RMSE MAE RSME MAE RSME MAE

Arlington 2.25 1.69 2.24 1.73 2.20 1.65
Attapulgus 2.68 1.99 2.65 1.99 2.62 1.95
Cairo 2.40 1.77 2.38 1.78 2.33 1.72
Dawson 2.80 1.91 2.69 1.93 2.72 1.87
Newton 2.31 1.70 2.31 1.74 2.26 1.67
Sneads 2.57 1.82 2.54 1.81 2.52 1.79
Tifton 2.58 1.94 2.59 1.98 2.52 1.91
Average 2.51 1.83 2.48 1.85 2.45 1.79
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vapor pressure deficit (Rosenberg, 1983). Essentially, DTR yields information about the
mass transfer of moisture toward and away from the surface, which impacts the dew
point temperature Hubbard et al. (2003). A lower DTR indicates a moist air mass
Hubbard et al. (2003), which was the case in our analysis region, as DTR and mean
dew point were negatively correlated. A large DTR is associated with less moisture
because more radiant energy is partitioned into sensible heating during the day or
radiant cooling occurs at night, which would also influence the dew point temperature.
Precipitation is a useful variable because after a rainfall event, near-surface moisture
may increase due to increased ET from the landscape (Rohli & Vega, 2008). The
increased moisture at the surface has the ability to moderate minimum and maximum
temperatures, altering the DTR, which would influence the dew point. Although the
model used in this study is purely a statistical model, the physical underpinnings of the
parameters used and their association with dew point temperatures are evident.

We observed some biases in the models at high and low dew points. This result
was present in all three methods, although only Equation (3) is shown here. This is
captured in the scatter plot of estimated vs. observed minus estimated dew point values
from the Arlington automated weather station (Figure 3). Figure 3 shows a greater ten-
dency for the model to underestimate values on the low end of dew point spectrum.
Arlington is used as a representative station because it has the lowest RMSE and MAE
for the selected method. Other stations are expected to perform comparably to the
Arlington station. There is also a tendency for the overestimation of dew point at the
high end. Even with the discrepancies mentioned above, equation three does an ade-
quate job of capturing the observed variability. The overall performance of the model is
adequate as well, as approximately 85% of the estimated values are within 3 °C of the
observed values (Figure 4).

Since the method that included precipitation performed best, it was a natural inquiry
to see whether different variations of precipitation improved the skill of the model. The

Figure 3. Observed vs. the difference between Estimated and Observed scatter plot for
Arlington GEAMN station. The x-axis and y-axis are shown in degrees Celsius.
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underlying premise of this hypothesis is to analyze whether there is a ‘soil moisture
memory’ component to the estimation of dew point, as modeling studies suggest that
wet soils are thought to influence ET rates, thus influencing the dew point temperature
(Dirmeyer et al., 2012; Dirmeyer, Schlosser, & Brubaker, 2009; Koster & Suarez,
2001). To test this theory, 3-, 5-, and 7-day totals and averages were added in place of
the daily precipitation. It was also required to develop a new set of coefficients for each
variation of precipitation tested. The additional precipitation metric slightly degraded
the model performance when compared to the regression model with daily precipitation
(Table 2).

The model performance was evaluated on an annual basis. This measure was taken
to ensure a robust model performance, capable of handling a wide array of climatic
conditions. Essentially, the model will be applied when irrigation rates are at their high-
est, the growing season (April–September). During the growing season, the model dis-
plays an improved skill and has an optimal performance during this period. This was
tested by developing a set of coefficients for October–November for all years. The
coefficients of the growing season data-set are then applied to the Arlington training
station. The growing season regression model reduced the RMSE and the MAE by
17% (Table 2).

Artificial neural network

The first step in applying an ANN to the problem of estimating dew point temperature
is to determine the combination of inputs and hidden nodes that provide the best

Figure 4. Performance of Equation (3) for the Arlington automated weather station. The x-axis
represents the absolute error in degrees and the y-axis represents the percent of cases associated
with the corresponding error.

Table 2. Error and model evaluation for Arlington during the growing season, daily precipita-
tion, and 3-day precipitation using Equation (3).

RMSE MAE R D E

Growing 1.82 1.37 0.96 0.98 0.91
Daily precipitation 2.20 1.65 0.96 0.98 0.93
3-day precipitation 2.29 1.74 0.96 0.98 0.92
Average 2.10 1.58 0.96 0.98 0.92
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performance. The number of inputs is dependent upon the number of days worth of
precipitation data, we wish to include in the analysis and ranges from zero to five.
Other inputs included in all networks are minimum temperature, temperature range and
a constant bias neuron whose value is always equal to unity. There is no formula for
determining the optimal number of nodes in the hidden layer of a network. It is gener-
ally suggested that the number of hidden nodes should be between the number of
inputs and the number of outputs (Heaton, 2013). For this study, we will test networks
with number of hidden nodes ranging from two to the number of inputs.

Figure 5 shows how number of inputs and hidden nodes affected network perfor-
mance as expressed by mean absolute and RMSEs for 27 different networks. Examin-
ing the figure from left to right, the first network (3_2) relies on only minimum
temperature and temperature range to determine dew point. Addition of an additional
hidden node (3_3) allows the network to better fit the data. Addition of the current
day’s precipitation (4_2) allows for further improvement in the network performance.
Expanding the network beyond four inputs and two hidden nodes did not lead to an
appreciable improvement in network performance. For the remainder of the study, the
ANN architecture used is that of four inputs (minimum temperature, temperature range,
daily precipitation, and a constant) with two hidden nodes.

Overall, the ANN outperformed the regression methods of Hubbard et al. (2003), as
shown in Table 3 for the training data and Table 4 for the validation data. For all
stations, the ANN displayed lower error values and was equal to or better on the other
performance metrics as well. Direct comparison between the ANN and Equation (3)
shows that, on average, the ANN reduced RMSE by 6.86% and MAE by 8.30%
(Table 4). One area where the ANN offered little improvement is for low dew point
temperatures (Figure 6). For dew points in the 20–30 °C range, the ANN has an abso-
lute error within 2 °C of the observed for 90% of the cases, and 60% of the time the
error is 1 °C. However, performance for the lower end of the dew point spectrum drops

Figure 5. Performance comparison of various neural network architectures for dew point
estimation. Network architectures are given on x-axis and are defined by the number of input and
hidden nodes: 3_2 represents a network with three inputs and two hidden nodes.
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off quickly. When the dew points are between 0 and 10 °C, only 50% of cases
are within 2° of the observed dew point and only 24% within 1 °C. Fortunately, the
growing season of Southwest Georgia is characterized by dew point values in the range

Table 3. Error and model evaluation statistics of the ANN for the training stations.

RMSE MAE R D E

Arlington 2.08 1.57 0.97 0.98 0.93
Attapulgus 2.55 1.88 0.95 0.97 0.90
Cairo 2.22 1.59 0.96 0.98 0.92
Dawson 2.36 1.72 0.96 0.98 0.92
Newton 2.13 1.58 0.97 0.98 0.93
Sneads 2.46 1.71 0.95 0.97 0.90
Tifton 2.35 1.77 0.96 0.98 0.92
Average 2.31 1.69 0.96 0.98 0.92

Table 4. Comparison of RMSE and MAE for Equation (3) and the ANN for the independent
stations.

Neural Network Regression Percent Improvement

RMSE MAE RMSE MAE RMSE MAE

Albany 2.70 2.01 2.90 2.21 6.85% 8.92%
Cordele 2.26 1.68 2.46 1.87 8.04% 10.11%
Georgetown 2.24 1.67 2.43 1.83 7.74% 8.61%
Moultrie 2.25 1.67 2.35 1.72 4.24% 2.93%
Sasser 2.27 1.66 2.50 1.86 9.93% 10.79%
Tifton-Bowen 2.32 1.68 2.44 1.83 4.99% 8.44%
Average 2.34 1.73 2.51 1.89 6.86% 8.30%

Figure 6. Performance of the ANN represented as a percentage for varying dew point
temperature ranges. The x-axis represents the absolute error in degrees and the y-axis represents
the percent of cases for the given absolute error.
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where the ANN estimates are most accurate. Note that the ANN was not retrained
using only growing season data as was done for the regression model.

Conclusion

The overarching goal of this study was to develop a daily dew point estimation method
adapted for Southwest Georgia, as dew point is an expression of moisture in the atmo-
sphere. An estimation method is needed because of the poor availability of long-term
dew point observations in the region, as data on most atmospheric humidity parameters
are not as available as data on temperature. With this in mind, it was desired to make
the estimation draw from readily available temperature and precipitation observation
from NWS COOP stations in the region. The linear regression equations developed by
Hubbard et al. (2003) were adapted and applied to our region of interest. Three of the
five methods used by Hubbard et al. (2003) were used here, with Equation (3) perform-
ing the best from an error standpoint. On average, Equation (3) performed equal to, or
better, in all five measures of performance for the training stations (Table 1). It was
shown that the model performs best during the growing season, when irrigation rates
are at their highest, and that additional precipitation information actually degrades
model performance. An ANN is also employed to estimate dew point.

Seven automated weather stations from the GEAMN were selected to train and
validate each the estimation model for each technique. On an annual basis, the ANN
performed best, only bettered by the growing season version of the regression model.
A growing season only version of the ANN was not tested and is something that can
be explored in the future to see whether there is any improvement in the skill of its
estimation. Each technique tested performed adequately for the region and should be
able to assist in a retroactive analysis in dew point estimation in the study region.
Estimating dew point from limited meteorological variables has been successfully
demonstrated in the Great Plains region, and now in Southwest Georgia. This gives
confidence into the validity of dew point estimates derived from other variables, which
can be applied to construct dew point climatology for data poor regions. It was also
demonstrated that the ANN provided a better overall estimate than the regression
method and this result could be applicable to other regions.

A possible future application of this analysis is to study the influence of agricultural
irrigation in the region. Irrigation has increased in Southwest Georgia since the early
1970s (Harrison, 2001). Irrigation is a consumptive form of water use, and most of the
water used to irrigate crops is transpired back into the atmosphere. Irrigation wets the
soil, which partitions more incoming solar radiation into latent heating, resulting in
increased near-surface dew point temperatures (Adegoke, Pielke, Eastman, Mahmood,
& Hubbard, 2003; Harding & Synder, 2012). Data for atmospheric humidity, including
dew point temperature, are not as available as temperature data, thus an adequate
method to model humidity is needed. Our work has analyzed two viable methods to
estimate dew point. Now that an acceptable method has been developed to estimate
dew point temperatures, we have a tool that can potentially capture possible long-term
changes in near-surface humidity caused by changes in agricultural practices. This
method can aid in creating a proxy data-set of long-term dew point temperatures that
would have not otherwise been available, as first-order stations are not representative of
our area of interest.
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