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Summary

1. False positive detections, such as species misidentifications, occur in ecological data, although many models

do not account for them. Consequently, thesemodels are expected to generate biased inference.

2. The main challenge in an analysis of data with false positives is to distinguish false positive and false negative

processes while modelling realistic levels of heterogeneity in occupancy and detection probabilities without

restrictive assumptions about parameter spaces.

3. Building on previous attempts to account for false positive and false negative detections in occupancymodels,

we present hierarchical Bayesianmodels that utilize a subset of data with either confirmed detections of a species’

presence (CPmodel) or both confirmed presences and confirmed absences (CACPmodel). We demonstrate that

our models overcome the challenges associated with false positive data by evaluating model performance in

Monte Carlo simulations of a variety of scenarios. Our models also have the ability to improve inference by

incorporating previous knowledge through informative priors.

4. We describe an example application of the CP model to quantify the relationship between songbird occu-

pancy and residential development, plus we provide instructions for ecologists to use the CACP and CP models

in their own research.

5. Monte Carlo simulation results indicated that, when data contained false positive detections, the CACP and

CP models generated more accurate and precise posterior probability distributions than a model that assumed

data did not have false positive errors. For the scenarios we expect to be most generally applicable, those with

heterogeneity in occupancy and detection, the CACP and CP models generated essentially unbiased posterior

occupancy probabilities. The CACP model with vague priors generated unbiased posterior distributions for

covariate coefficients. The CP model generated unbiased posterior distributions for covariate coefficients with

vague or informative priors, depending on the function relating covariates to occupancy probabilities. We con-

clude that the CACP and CP models generate accurate inference in situations with false positive data for which

previousmodels were not suitable.

Key-words: confirmed detection, detection probability, hierarchical Bayesian model, imperfect

detection, informative prior, Monte Carlo simulation, observation, occupancy model, phantom

species, scenario

Introduction

Many methods of data collection are subject to imperfect

detections, including false negative detections (not detecting a

species when it is present) and false positive detections

(detecting a species when it is not present, which can occur

through species misidentification). Unbiased inference

requires accounting for imperfect detection. Methods to

account for false negative detections have been widely adopted

in occupancy models (MacKenzie et al. 2002) and other eco-

logical models (e.g. mark–recapture, distance estimation and

band recovery models). However, manymethods that estimate

a false negative detection probability assume that false posi-

tives do not occur. But false positive errors can occur in data

collected by citizen scientists (Miller et al. 2013) and non-

experts (Fitzpatrick et al. 2009), as well as by scientists of all

experience levels (Simons et al. 2007; Alldredge et al. 2008;

McClintock et al. 2010a; Miller et al. 2012). Further, Monte

Carlo simulations have demonstrated that if data contain false

positive errors but analyses do not account for them, inference

about occupancy probability and covariate coefficients will be

biased (Royle & Link 2006;McClintock et al. 2010b). Because

false positive detections are unlikely to be eliminated through

study design and because analyses that fail to account for them

generate biased results, it is important to develop and employ

methods that account for both types of imperfect detection.
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Occupancy models accounting for both types of imperfect

detection have been developed in Royle & Link (2006) and

Miller et al. (2011), but, as we will show, the model in Royle &

Link (2006) has limited application by its nature, while the abil-

ity of the model in Miller et al. (2011) to estimate highly

heterogeneous occupancy and detection probabilities has not

been demonstrated yet. There is symmetry in the likelihood of

the model in Royle & Link (2006) (hereafter, the Royle-Link

model) so that there is not a unique set of solutions for parame-

ter values. For example, the following two sets of parameter

values have identical likelihoods under the Royle-Link model:

(i) 75% of sites occupied, 30% true-positive detection rate and

10% false positive detection rate; and (ii) 25% of sites occu-

pied, 10% true-positive detection rate and 30% false positive

detection rate (Royle & Link 2006). To address this problem,

Royle & Link (2006) restricted the parameter space so that the

true-positive detection probability (i – false negative detection

probability) is greater than the false positive detection proba-

bility. However, this assumption has received criticism

(McClintock et al. 2010b). For example, if there is a ‘phantom’

species, a species that is not present in the study area but is

detected, results from the Royle-Link model would suggest

that the ‘phantom’ species is actually present (McClintock

et al. 2010b). The Royle-Link model cannot be used to deter-

mine that the ‘phantom’ species is only detected because of a

false positive error. Additionally, false positive and true-posi-

tive detections cannot be distinguished if there is heterogeneity

in detection probabilities (McClintock et al. 2010b).

It is not possible to distinguish false negative and false posi-

tive detections using standard occupancy data and models

that make few assumptions about parameter values (McClin-

tock et al. 2010b), so Miller et al. (2011) proposed occupancy

models (hereafter, the Miller models) that estimate false nega-

tive and false positive detection probabilities using additional

information about the detection process. In Miller’s multiple

detection state (MDS) model, one detection method is used,

but detections are classified as either detections in which false

positive errors are possible (unconfirmed detections) or detec-

tions in which false positive errors are not possible (confirmed

detections). Through simulations, Miller et al. (2011) demon-

strated that their models generated occupancy probability

estimates that were more accurate and precise than the Royle-

Link model and the MacKenzie et al. (2002) model, which

assumes there are no false positives.

While the Miller models appear to successfully address the

problem of symmetry in the Royle-Link model and avoid

assumptions about the magnitude of the true-positive detec-

tion probability relative to the false positive detection proba-

bility, their ability to identify ‘phantom’ species and explicitly

model heterogeneity among sites and surveys has not been

fully evaluated. Miller et al. (2011) investigated whether esti-

mation of the false positive detection probability would be

affected if data had heterogeneity in the true-positive detec-

tion probability, but none of their models estimated site- or

survey-specific probabilities as functions of covariates. In

Miller et al. (2013), the Miller model was used to model a

small amount of heterogeneity in occupancy probabilities

among sites, but there were no simulations to evaluate and

describe model performance in this application.

The goals of our work were to develop and evaluate an

occupancy model that (i) accounts for false negative and false

positive detections and (ii) models the large amount of hetero-

geneity in occupancy and detection that may be observed in

complex ecological data. Since distinguishing false negative

and false positive detections may be challenging when there is

heterogeneity in occupancy and detection and few assump-

tions about parameter values, we built our models in a Baye-

sian framework (unlike the Royle-Link and Miller models) so

that we could investigate the potential for informative priors

to improve inference. Further, complex models with latent

variables have been highlighted as well suited to a hierarchical

Bayesianmodelling approach inwhich explicit state and detec-

tionmodel components are developed (Link&Barker 2010).

After developing the basic model structure, we used Monte

Carlo simulations with realistic data scenarios to evaluate

model performance using vague or informative priors.We sim-

ulated data using a range of parameter values, and we simu-

lated scenarios where the false positive probability was greater

than the true-positive probability and where there was a ‘phan-

tom’ species. We describe how our models might improve esti-

mator accuracy and inference about the relationship between

environmental or anthropogenic factors and occupancy or

detection probabilities. Several examples of possible applica-

tions are presented, and we describe in detail an application of

our model to study the relationship between migratory song-

bird occupancy and residential development.

Model description

Ecological data are often not free from false positive errors

(McClintock et al. 2010a; Miller et al. 2012), so a model that

can make inference about occupancy and its relationship with

covariates when there are false positive and false negative

errors is needed. Previous work has highlighted some of the

challenges with building such a model: being able to distin-

guish false positive and false negative processes, modelling

heterogeneity in occupancy and detection, and determining

‘phantom species’. In this study, we describe a model that can

handle these challenges and test its performance in a variety

of simulated scenarios. We developed a hierarchical Bayesian

model based on the Miller MDS model that accounts for

heterogeneity in occupancy, false positive detection and false

negative detection probabilities.

DATA

False positive errors are not rare in ecological data, and to

distinguish false positives and false negatives without restric-

tive assumptions about parameter values, additional data in

the form of confirmed observations are needed (McClintock

et al. 2010a,b; Miller et al. 2011, 2012). So the data input for

the model are a detection/non-detection matrix and a con-

firmed/unconfirmed matrix, where the matrices are indexed

by the number of sites and the number of surveys per site. In
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Miller’s MDS model, non-detections were always unconfirmed

(false negative errors were possible), while detections could be

unconfirmed (false positive errors were possible) or confirmed

(false positive errors were not possible). Data of this variety

could be collected in many ecological applications, for example

when species are sampled indirectly (i.e. by vocalization, hair,

faeces) and/or the study organism is cryptic, mobile or resem-

bles other species.

An auditory survey of frog calls or a visual survey of fresh-

water mussels (Shea et al. 2011) could results in data with

false positive and false negative detections. A method to

obtain confirmed presences either could be applied to all sur-

veys or to a subset of surveys. When the primary sampling

method is an auditory survey, researchers could also perform

visual inspections, either through binoculars or by catching

individuals. Species that were detected by sound and sight

would have confirmed presences, and species that were only

detected by sound would have unconfirmed presences. If a

species was detected by sight only, researchers could deter-

mine whether this constituted a confirmed or unconfirmed

presence, depending on how distinguishable the species is and

the quality (duration, distance) of the sighting. Alternatively,

researchers could rely exclusively on auditory detections but

could have multiple independent observers in the field or

could record the survey for inspection by observers in the lab-

oratory. A minimum proportion of observers detecting a spe-

cies could be treated as a threshold to confirm a presence.

This threshold could be identified by having observers iden-

tify the species in the playback of an artificial survey where

all the species are known to the researcher who created the

recording plus simulating how the observed false positive and

false negative detection rates affect model results. To obtain

confirmed presences when the primary sampling method is a

visual survey, researchers could use multiple field observers

as discussed above. For all survey methods, DNA analysis

can also provide confirmed presences.

In other applications, a proportion of the data may have

confirmed absences (false negative errors are not possible) in

addition to confirmed presences. For example, if a distinctive

plant was being studied and a subset of all sites were com-

pletely surveyed (Falster, Murray & Lepschi 2001) or if a test

that effectively determines the presence or absence of a disease

with certainty was used with a subset of the study population

(Feigelson et al. 1994), data with both confirmed absences and

confirmed presences could be obtained. Therefore, we con-

structed occupancy models for circumstances in which there

are confirmed and unconfirmed absences and confirmed and

unconfirmed presences (hereafter, the confirmed absences and

presences model or CACP model) and for applications where

there are only unconfirmed absences but confirmed and

unconfirmed presences (hereafter, the confirmed presences

model or CP model).

MODEL STRUCTURE

As with other occupancy models, our models assume that the

occupancy state does not change within a season and that

detections at each site and atmultiple visits to a site are indepen-

dent. Our models also assume that observation confirmation is

independent across sites and surveys, that is whether an obser-

vation is confirmed or unconfirmed during a survey is indepen-

dent of the confirmation state during previous survey(s).

Each of the i = 1, 2,. . ., R sites is occupied (zi = 1) or not

(zi = 0). Whether a site is occupied can be considered the real-

ization of a Bernoulli trial with probability of occupancy, w
(zi ~ Bern(w)). The occupancy probability can be constant

across sites or vary depending on site-specific covariates, which

are incorporated in themodel through a logit-linearmodel.

At an occupied site, a true-positive detection may occur on

sampling occasion t = 1, 2,. . .,Twith probability P11, or a false

negative detection may occur with probability (1–P11). At an

unoccupied site, a false positive detectionmay occur with prob-

ability P10, or a true negative detection may occur with proba-

bility (1–P10). The true-positive detection probability or false

positive detection probability may be constant across sites and

sampling occasions ormay vary depending on covariates.

We simulated data for the CACP model assuming that the

observation confirmation probability was the same for con-

firmed absences and confirmed presences. This is not

required but served as the starting point for model develop-

ment. A site is known to be occupied when there is a con-

firmed detection. However, when a detection is unconfirmed,

the site’s occupancy state is unknown. To infer the latent

occupancy state, the CP model required a parameter, b, to

describe the probability of a confirmed detection at an occu-

pied site. Then, 1–b is the probability of an unconfirmed

detection at an occupied site. At an unoccupied site, the

probability of a confirmed detection is 0. Whether a detection

was confirmed was modelled as the realization of a Bernoulli

trial with confirmation probability, zi*b. Detections (yit) were

modelled as outcomes of Bernoulli trials (Fig. 1). More

details are discussed in Appendix S1 (Supporting informa-

tion), and code is provided in Appendix S2.

In summary, the unknown latent state is whether the site is

occupied (zi = 1) or not (zi = 0), and unknown parameters

are the occupancy probability (w), true-positive detection

probability (P11), false positive detection probability (P10),

observation confirmation probability (b), and intercepts and

coefficients for any logit-linear models incorporating covari-

ates. The data are whether the species was detected (yit = 1)

zi = 0 zi = 1 
ci = 0 p10 p11 
ci = 1 0 1 

zi = 0 zi = 1 
ci = 0 p10 p11 
ci = 1 Undefined 1 

(a)

(b)

Fig. 1. Probabilities of detections in (a) the confirmed absences and

confirmed presences (CACP) model and (b) the confirmed presences

(CP)model given occupancy (z) and observation confirmation (c) states

at site i and false positive (P10) and true-positive (P11) detection proba-

bilities.
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or not (yit = 0), whether observations were confirmed (cit = 1)

or not (cit = 0), and the values of any covariates in the model.

Simulation study:methods

EVALUATING MODEL PERFORMANCE

To evaluate the performance of the CACP and CP models, we simu-

lated data under a variety of scenarios (Table 1). For each scenario,

100 data sets, each with three visits to 250 sites, were simulated using

the same parameter values. For each data set, we fit an occupancy

model, assessed a parameter’s bias by calculating the absolute error as

the difference between the mean of the parameter’s posterior distribu-

tion and the parameter value used to simulate data and calculated the

width of 95% Bayesian credible intervals (BCIs). For each scenario,

we calculated the number of model runs that converged and the per

cent of converged model runs in which the BCI contained the parame-

ter value used to simulate data.

Data were simulated in R version 2.15.3 (R Development Core

Team 2013), and models were run in OPENBUGS version 3.2.2 using the

R2OPENBUGS package (Sturtz, Ligges & Gelman 2005; Lunn et al.

2009). We ran three Markov Chain Monte Carlo (MCMC) chains

with 100 000 iterations, a burn-in of 50 000 and thinning of one

(Brooks & Gelman 1998; Link & Eaton 2011). Convergence was

assessed with the Gelman–Rubin potential scale reduction factor (R-

hat), and chains were considered converged if R-hat ≤ 1�04 (Brooks

& Gelman 1998).

BASIC SCENARIOS WITHOUT HETEROGENEITY

First, we evaluated the CACP and CP models without hetero-

geneity in occupancy or detection (Table 1). We simulated data

in 12 scenarios with various probabilities (Table 2). The

observation confirmation probability used to generate data

was always 0�03. It may be difficult to confirm observations

in the field, so it is desirable for the models to generate accu-

rate and precise posterior probabilities with a low rate of

observation confirmation.

Priors for the occupancy probability and true-positive detection

probability were always vague: U(0, 1) or Beta(0�5, 0�5), but we

investigated model performance with vague (U(0, 0�5)) and infor-

mative (Beta(1, 9)) priors for the false positive detection probabil-

ity (Appendix S1). Using an informative prior may improve the

precision of posterior distributions and avoid parameter identifia-

bility problems. We constrained the false positive probability to

be <0�5, which suggests that if a site is unoccupied, an observer

is more likely to make a true negative detection than a false

positive detection. This constraint was consistent with the proba-

bility of false positive detections seen in controlled experiments

(Farmer, Leonard & Horn 2012; Miller et al. 2012) and could aid

model convergence. We also considered CP model performance

with vague (U(0, 1) or Beta(0�5, 0�5)) or informative (U(0�01,
0�05) or Beta(10, 300)) priors for the observation confirmation

probability.

SPECIAL CASES WITHOUT HETEROGENEITY

We simulated data with errors in confirmed observations to evaluate

model robustness (Table 1). For the CACP model, there was a 0�006
probability of a confirmed observation error (presence or absence),

which corresponded to a 0�1 probability of an error given a confirmed

observation. For the CP model, there was a 0�005 probability of a con-
firmed presence when the site was actually unoccupied (Appendix S1).

We also evaluated the CACP and CP models in a scenario with a

‘phantom’ species, which had zero probability of occupancy and true-

positive detection but a positive probability of false positive detection

(Table 1).

Table 1. Scenarios that were simulated to evaluate the confirmed absences and confirmed presences (CACP) and confirmed presences (CP) model,

where P10 is the false positive detection probability and b is the observation confirmation probability. CACP and CP model performance was com-

pared to that from a model assuming there were no false positive errors although simulated data always contained false positive errors. Columns in

the table describe the main types of simulated scenarios. Rows in the table describe features of the simulated scenarios. Entries in the table indicate

whether the CACP and/or CP model was applied to the condition described by the respective column and row. For example, the first column indi-

cates that the CACP model was applied to scenarios without heterogeneity that were simulated using 12 parameter value combinations and the

model was evaluatedwith a vague prior forP10 andwith an informative prior forP10

Conditions

No

heterogeneity

Observation

confirmation errors ‘Phantom’ species Heterogeneity

No false

positives

12 parameter

value combinations

CACP, CP CACP, CP CACP, CP

Informative prior forP10 CACP, CP Best prior from

no heterogeneity

scenarios–CACP, CP

Best prior fromno

heterogeneity

scenarios–CACP, CP

CACP, CP

Vague prior forP10 CACP, CP Best prior from

no heterogeneity

scenarios–CACP, CP

Best prior fromno

heterogeneity

scenarios–CACP, CP

CACP, CP

Informative prior for b CP No observation

confirmation errors–CP
Vague prior for b CP CP CP CP

Observation confirmations errors CACP, CP CACP, CP CACP, Vague

prior for b–CP
‘Phantom’ species CACP, CP CACP, CP

Three sets of intercept

and coefficient values

CACP, CP CACP, CP

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1395–1406
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SCENARIOS WITH HETEROGENEITY

We evaluated the CACP and CP models when there was heterogene-

ity in occupancy, true-positive detection and false positive detection

probabilities (Table 1). We simulated data with one explanatory vari-

able (per cent forest cover) affecting occupancy probabilities and one

explanatory variable (temperature) affecting true-positive detection

probabilities. We simulated data using three sets of intercept and coef-

ficient values to represent strong quadratic, weak quadratic and linear

effects of the covariate on occupancy probabilities (Table 3, Fig. S1).

In all three scenarios, there was a linear function relating temperature

to true-positive detection probabilities. We also simulated false posi-

tive detection probabilities that decreased over three time periods, rep-

resenting an observer gaining experience.

Covariate data were standardized to have a mean of zero and vari-

ance of one to aid convergence. Since wemodelled the effects of covari-

ates through a logit-linear equation, all covariate coefficients had a N

(0, 0�368) prior, which is a vague Jeffrey’s prior for a parameter on the

logit scale (Lunn et al. 2012). Intercept terms had vague priors (U(0, 1)

or Beta (0�5, 0�5)) and were logit-transformed before inclusion in the

logit-linear equation.

MODEL ASSUMING NO FALSE POSIT IVE DETECTIONS

We compared the performance of the CACP and CP models to a

Bayesian parameterization of the MacKenzie et al. (2002) model

that assumed false positive detections did not occur (no false

positive model) and assessed improvement in accuracy and preci-

Table 2. Scenarios with no heterogeneity among sites or surveys. Data

with various probabilities of occupancy (w), true-positive detection

(P11) and false positive detection (P10) were simulated to evaluate occu-

pancymodels

Scenario w P11 P10

1 0�7 0�6 0�05
2 0�7 0�6 0�15
3 0�7 0�2 0�05
4 0�7 0�2 0�15
5 0�3 0�6 0�05
6 0�3 0�6 0�15
7 0�3 0�2 0�05
8 0�3 0�2 0�15
9 0�7 0�02 0�05
10 0�7 0�1 0�15
11 0�3 0�02 0�05
12 0�3 0�1 0�15

Table 3. Scenarios where occupancy and detection probabilities exhib-

ited heterogeneity among sites and surveys. Occupancy probabilities

were simulated through a logit-linearmodel with intercept (psiint before

undergoing a logit transformation), coefficient for the linear term (a1)

and coefficient for the quadratic term (a2). True-positive detection

probabilities were simulated through a logit-linearmodel with intercept

(P11int before undergoing a logit transformation) and coefficient for the

linear term (c1). False positive detection probabilities were simulated

for three time periods (P10t1, P10t2, P10t3), and the observation confir-

mation probability was b

Strong quadratic Weak quadratic Linear

psiint 0�7 0�7 0�7
a1 1�5 2�6 3�2
a2 �1�8 �0�4 NA

p11int 0�5 0�5 0�5
c1 �2 �1�2 �2�5
P10t1 0�1 0�1 0�1
P10t2 0�07 0�07 0�07
P10t3 0�04 0�04 0�04
b 0�03 0�03 0�03

Fig. 2. Bias of posterior occupancy probabilities (w) from models in scenarios with no heterogeneity. Bias was calculated as the difference between

the mean of the parameter’s posterior distribution and the value used to simulate data. Results are presented from all converged model runs:

A = data with confirmed absences in addition to confirmed presences, otherwise data only have confirmed presences; E = data with observation

confirmation errors, otherwise data have no observation confirmation errors; Uni = vague prior for the false positive detection probability; Be = in-

formative prior for the false positive detection probability; UnB = vague prior for the observation confirmation probability; InB = informative

prior for the observation confirmation probability; and NoFP = model assuming there were no false positive detections although data always

contained false positive errors. If the notches around the medians of two plots do not overlap, there is strong evidence that the medians differ. The

box includes the first through third quartile. Whiskers extend to the most extreme data point that is no more than 1�5 times the interquartile range

from the box. Small circles represent outliers.
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sion that resulted from accounting for both types of imperfect

detection (Table 1).

Simulation study: results

SCENARIOS WITHOUT HETEROGENEITY

The CACP and CP models generated more accurate poste-

rior distributions than the no false positive model when

data contained false positive detections (Fig. 2). Posterior

occupancy probabilities from the no false positive model

were biased high and imprecise. The CACP models consis-

tently generated unbiased posterior occupancy probabilities,

and the CP models with at least one informative prior gen-

erated posterior occupancy probabilities that were essen-

tially unbiased when there were no observation

confirmation errors. Posterior occupancy probabilities from

the CP model were biased low when the model had only

vague priors (Fig. 2) and biased high when data had obser-

vation confirmation errors (Fig. 2, Tables S1–S4 and S6).

When data contained detections of ‘phantom’ species, the

most accurate and precise posterior occupancy probabilities

resulted when there were confirmed absences and no observa-

tion confirmation errors, and posterior occupancy probabili-

ties were biased slightly higher when there were no confirmed

absences (Fig. 3). Posterior false positive detection probabili-

ties from the CACP and CP models were accurate and precise

(Tables S5 and S6).

SCENARIOS WITH HETEROGENEITY

In all scenarios with heterogeneity, the CACP and CP

models generated more accurate posterior occupancy prob-

abilities than the no false positive model. All CACP and

CP models generated essentially unbiased posterior occu-

pancy probabilities in the strong quadratic, weak quadratic

and linear scenarios (Figs 4–6 and S2–7). Posterior occu-

pancy probabilities from the no false positive model were

biased high and imprecise (Figs 4–6), and occupancy prob-

ability BCIs often did not contain the probabilities used to

simulate data (Tables S7–9).
The no false positive model also generated more biased

covariate coefficient posterior distributions than the CACP or

CP models. In the strong quadratic scenario, posterior distri-

butions for covariate coefficients were unbiased from all

CACP and CP models when there were no observation con-

firmation errors (Figs 7 and 8). The CACP model with vague

priors generated unbiased covariate coefficient posterior dis-

tributions in the weak quadratic and linear scenarios (Figs 9–
11). The CP model with an informative prior for the false pos-

itive detection probabilities and vague prior for the observa-

tion confirmation probability generated unbiased covariate

coefficient posterior distributions in the weak quadratic sce-

nario (Figs 9 and 10). With an informative prior also for the

observation confirmation probability and both priors vague,

the CP model generated unbiased covariate coefficient poste-

rior distributions in the linear scenario.

Simulation study: discussion

Classic occupancy models have assumptions that are violated

in many ecological data sets, and estimates from these models

are not robust (Miller et al. 2011, 2012). In order to generate

accurate estimates, an occupancy model needs to address both

false positive and false negative detections, but additional data,

such as confirmed presences, are needed to differentiate these

processes (McClintock et al. 2010a,b). Confirmed absences

may further improve estimation, but depending on the applica-

tion, it may not be possible to obtain these data. In these cases,

inference may be improved by incorporating existing knowl-

edge through informative priors.

Monte Carlo simulations demonstrated that the CACP and

CPmodels generate accurate inference while overcoming some

of the limitations of existing occupancy models. Namely, our

models distinguish false positive and false negative detection

processes, explicitly model high levels of heterogeneity in occu-

pancy and detection probabilities, minimize assumptions

about parameter values and can identify ‘phantom’ species. In

particular, suspected ‘phantom’ species may be identified if the

posterior occupancy probability and the upper bound of its

BCI are small and the BCI for the true-positive detection prob-

ability is verywide. Ourmodels are also robust to errors in con-

firmed observations. Conducting a simulation study such as

ours reveals model behaviour given data of different qualities

and quantities (with confirmed absences and confirmed pres-

ences, without confirmed absences but with confirmed pres-

ences, with and without observation confirmation errors, with

and without covariates), so researchers can anticipate the

strengths and limitations of the model in various applications

(Peck 2004).

Considering patterns in the results presented here can help

researchers evaluate the CACP and CP models. Accurate pos-

terior distributions resulted from the CACP model with vague

●●●●
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Fig. 3. Bias of posterior occupancy probabilities (w) from models in

scenarios with a ‘phantom’ species and no heterogeneity. A ‘phantom’

species had zero probability of occupancy and true-positive detection

but a positive probability of false positive detection. Additional box

plot details can be found in the Fig. 2 legend.
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priors because data had both confirmed presences and con-

firmed absences.We expect that posterior occupancy probabil-

ities from the CP model with vague priors and no

heterogeneity were biased low because the data did not contain

enough information to generate accurate estimates. Additional

information in the form of an informative prior or confirmed

absences resulted in accurate estimates.We can consider specif-

ically why posterior occupancy probabilities were biased low

and the observation confirmation probability was biased high

in the CP model with vague priors. A matrix of 0s and 1s indi-
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Fig. 4. Bias of posterior occupancy probabilities (w) frommodels in the scenario where a strong quadratic function related occupancy probabilities

to a covariate. Additional box plot details can be found in the Fig. 2 legend.

Fig. 5. Bias of posterior occupancy probabilities (w) from models in the scenario where a weak quadratic function related occupancy probabilities

to a covariate. Additional box plot details can be found in the legend for Fig. 2.

Fig. 6. Bias of posterior occupancy probabilities (w) frommodels in the scenario where a linear function related occupancy probabilities to a covari-

ate. Additional box plot details can be found in the legend for Fig. 2.
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cating whether there was a confirmed observation for each

survey at each site was input into the model. In the model, a

confirmed observation has probability zi*b (0 if the site is

unoccupied and b if the site is occupied), so the confirmed

observation matrix contributes to inference about b and zi.

Given a confirmed observation matrix, if b is overestimated,

zi may be inferred to be 0 too often, which could contribute

to underestimating occupancy probabilities. An informative

prior for b or an informative prior for P10, which affects

inference about occupancy probabilities, tended to improve

inference about b, P10 and wi. Posterior occupancy probabili-

ties from the no false positive model were biased high
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Fig. 7. Bias of the coefficient for the quadratic term in the scenario where a strong quadratic function related occupancy probabilities to a covariate.

Bias in the coefficient is presented from all convergedmodel runs. Box plot details can be found in the legend for Fig. 2.
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Fig. 8. Bias of the coefficient for the linear term in the scenario where a strong quadratic function related occupancy probabilities to a covariate. Bias

in the coefficient is presented from all convergedmodel runs. Box plot details can be found in the legend for Fig. 2.
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Fig. 9. Bias of the coefficient for the quadratic term in the scenario where a weak quadratic function related occupancy probabilities to a covariate.

Bias in the coefficient is presented from all convergedmodel runs. Box plot details can be found in the legend for Fig. 2.
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because false positive detections were treated as true posi-

tives. Similarly, when data had observation confirmation

errors, posterior occupancy probabilities from the CP model

were biased high because some false positive detections were

treated as confirmed true positives.

In the scenarios with heterogeneity, all CACP and CP mod-

els generated unbiased posterior occupancy probabilities, but

some posterior covariate coefficients seemed biased based on

boxplots of the parameter’s absolute error. However, there

was not strong evidence, based on the notches around boxplot

medians, that the bias was different among the CACP and CP

models when there were no observation confirmation errors.

Even for models where the notches nearly did not overlap, the

CP model with vague priors and the CP model with an infor-

mative prior forP10 and vague prior for b in the linear scenario,

the 95% BCIs for the covariate coefficients from these two

models overlapped in all 100 simulations. Additionally, Figs

S2–S7 do not indicate severely biased inference about the rela-

tionship between occupancy probabilities and covariates. The

CACP andCPmodels also were similarly accurate for all other

parameters. So we conclude that these models performed ade-

quately.

In summary, biases in results from the CP model can be

explained, and efforts can be made to reduce the potential for

these biases by developing informative priors, collecting con-

firmed absence data or eliminating observation confirmation

errors. The CACP and CP models are useful additions to the

available suite of occupancy models because they can generate

accurate inference when data have complexities that tradi-

tional models cannot accommodate but are anticipated to

occur in ecological field data (false positive and false negative

errors, heterogeneity in occupancy and detection probabilities,

and detections of phantom species).

Application

EXAMPLE

Based on the simulations presented here, we selected the CP

model with vague priors to model the relationship between

passerines and residential development. Urban development

and exurban development are considered principal causes of

world-wide habitat loss (Brown et al. 2005; Hansen et al.

2005). We focused on development in the southern Appala-
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Fig. 10. Bias of the coefficient for the linear term in the scenariowhere aweak quadratic function related occupancy probabilities to a covariate. Bias

in the coefficient is presented from all convergedmodel runs. Box plot details can be found in the legend for Fig. 2.
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Fig. 11. Bias of the coefficient in the scenario where a linear function related occupancy probabilities to a covariate. Bias in the coefficient is pre-

sented from all convergedmodel runs. Box plot details can be found in the legend for Fig. 2.
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chian region, specifically Macon County, North Carolina.

Macon County has a relatively high per cent forest cover, but

amenity-driven residential development has contributed to for-

est fragmentation, especially at higher elevations on previously

undeveloped slopes (Gragson & Bolstad 2006). For this exam-

ple, we will consider one model describing the relationship

between black-and-white warbler (Mniotilta varia; BAWW)

occupancy and forest cover. The BAWW is a forest-dwelling,

insectivorous, Neotropical migrant.

We conducted point counts and collected forest cover data

at 272 sites representing a range of elevations and land-use/

land-cover classes around Macon County (doi: 10.5061/

dryad.t68v8). Each site was surveyed three times during the

breeding season in either 2010 or 2011. Two independent

observers conducted eight minute point counts between

twilight and 10:00 am. Each observer recorded the species they

heard or saw and indicated whether the species was within

25 m and/or between 25 and 100 m.We considered detections

to be confirmed when, during a point count, both independent

observers detected a species by sight and/or sound within

25 m. We determined the per cent forest cover within 12�5 ha

(circle with 200 m radius) of point count sites by digitizing aer-

ial photographs of Macon County in ArcGIS using National

LandCoverDataset 2001 classes.We standardized the per cent

forest cover data to have a mean of zero and variance of one.

We modelled a constant observation confirmation probability

and year-specific true-positive and false positive detection

probabilities because observers differed between the 2 years.

We ran models in OPENBUGS version 3.2.2 (Lunn et al. 2009)

using the R2OPENBUGS package and R version 2.15.3 (Sturtz,

Ligges &Gelman 2005, RDevelopment Core Team 2013).We

ran three MCMC chains with at least 100 000 iterations, a

burn-in of at least 50 000 and thinning of 5.

The BAWW was detected 157 times, and 23 of those detec-

tions were confirmed presences. In the 2 years surveyed, the

true-positive detection probabilities were 0�28 (95% BCI:

0�18–0�42) and 0�40 (0�32–0�49), and the false positive detection
probabilities were 0�01 (0�00–0�03) and 0�08 (0�04–0�13). The
observation confirmation probability was 0�07 (0�04–0�11).
Occupancy probabilities increased with increasing per cent for-

est and ranged 0�01–0�90 (Fig. 12).
Our results indicate that data included false positive detec-

tions. This is not unexpected as the BAWW song can resemble

that of the American redstart. When we accounted for false

positive errors, we estimated that havingmore than a 0�5 prob-
ability of BAWW occupancy was associated with more than

70% forest cover within 12�5 ha (Fig. 12). These findings

provide insights into BAWW distribution, the effects of devel-

opment and conservation strategies. Understanding the rela-

tionship between BAWWoccupancy and forest cover can help

inform decision-making about land use and development. If

we had assumed there were no false positive detections, biased

results would have suggested that occupancy was higher at low

per cent forest cover than was true (Figs 12 and S4). This

would downplay the importance of forest cover for

the BAWW and could lead to inappropriate management

decisions.

SUGGESTIONS

Regardless of the specific application, it is prudent to include a

false positive detection probability in the model. Evidence sug-

gests that ecological data typically are not free from false posi-

tive errors (Miller et al. 2012), and the bias resulting from

ignoring even a small number of false positive errors is likely to

be larger than the bias frommodelling false positive detections

when there are none (Fig. S8). If data do not have false positive

errors, but the model includes a false positive detection proba-

bility, the model is expected to generate a posterior false posi-

tive probability with a BCI of c. 0–0�1. Posterior occupancy
probabilities may be slightly biased low, while posterior true-

positive detection probabilities may be slightly biased high

(Fig. S8).

To apply our models (Appendix S2), a researcher needs

a detection/non-detection matrix (indexed by the number

of sites and the number of surveys per site), a confirmed/

unconfirmed matrix, any relevant covariate data and prior

distributions for unknown values in the model. When

selecting sites to sample, researchers can consider that with

a smaller sample size, posterior distributions can be

expected to be more biased, but the patterns of relative

model performance presented here should not change

(Fig. S9). A researcher can collect detection histories as in

a traditional occupancy study, but at least some data with

confirmed presences are required to distinguish false posi-

tive and false negative detection processes. Some examples

of data collection procedures were presented in the ‘Data’

section of the study. Any method for making confirmed

observations is suitable if the probability of having an error

is small enough that model results would be robust to

errors. Researchers may have information about how reli-

able an identification method is in their study system, or

they could perform an identification experiment as in
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McClintock et al. (2010a) to estimate the identification

method’s probability of error. Then, they could use the

code provided in Appendix S2 to verify that accurate infer-

ence can be made with this probability of error. We

also recommend the use of simulations to explore how

informative priors may affect posterior distributions given

the expected sample size and range of detection and occu-

pancy probabilities.

Conclusion

Our results confirm the importance of accounting for false pos-

itive detections in occupancy models and illustrate the ability

of the CACP and CP models to do so with complex ecological

data (heterogeneity in occupancy and detection probabilities,

detections of ‘phantom species’, false positive detection proba-

bilities greater than true-positive detection probabilities). False

positive detections occur in field data, and if they are ignored,

inference about species occupancy and how it relates to envi-

ronmental factors will be biased. The CACP and CP models

are robust and flexible occupancy models, as evidence by the

range of biologically realistic scenarios we simulated and appli-

cations we discussed, that overcome limitations in existing

occupancymodels.
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Appendix S1. details aboutmethods.

Table S1. Performance of the confirmed absences and confirmed pres-

ences (CACP)model in scenarios with no heterogeneity.

Table S2. Performance of the confirmed presences (CP) model in sce-

narios with no heterogeneity, where priors for the false positive proba-

bility (P10) were vague U = U(0, 0�5) or informative I = Beta(1, 9))
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and for the observation confirmation probability (b) were vague

UU = U(0, 1), UB = Beta(0�5, 0�5), or informative IU = U(0�01,
0�05), IB = Beta(10, 300).

Table S3. Performance of the confirmed absences and confirmed pres-

ences (CACP) model when data had observation confirmation errors

and no heterogeneity.

Table S4. Performance of the confirmed presences (CP) model when

data had observation confirmation errors and no heterogeneity.

Table S5. Performance of models when there was a ‘phantom’ species

and no heterogeneity.

Table S6. Performance of the model that assumes false positive errors

do not occur when applied to simulated data that contained false posi-

tive errors.

Table S7. Performance of models in scenarios with heterogeneity: a

strong quadratic function related occupancy probabilities to a covari-

ate.

Table S8. Performance of models in scenarios with heterogeneity: a

weak quadratic function related occupancy probabilities to a covariate.

Table S9. Performance of models in scenarios with heterogeneity: a lin-

ear function related occupancy probabilities to a covariate.

Fig. S1. Simulated effect of percent forest on occupancy probabilities

and effect of temperature on true positive detection probabilities under

three scenarios: (a) strong quadratic, (b) weak quadratic, and (c) linear.

Fig. S2. Simulated (black) and estimated (grey) effects of percent forest

on occupancy probabilities from the strong quadratic scenario.

Fig. S3. Simulated (black) and estimated (grey) effects of percent forest

on occupancy probabilities from the weak quadratic scenario.

Fig. S4. Simulated (black) and estimated (grey) effects of percent forest

on occupancy probabilities from the linear scenario.

Fig. S5. Bias of posterior occupancy probabilities as a function of

covariate values from the strong quadratic scenario.

Fig. S6. Bias of posterior occupancy probabilities as a function of

covariate values from the weak quadratic scenario.

Fig. S7. Bias of posterior occupancy probabilities as a function of

covariate values from the linear scenario.

Fig. S8. Bias in posterior occupancy (psi), true positive detection (P11),

false positive detection (P10), and observation confirmation probabili-

ties (b) when the presence of false positives in data and in a model did

notmatch.

Fig. S9. Bias in posterior occupancy (psi), true positive detection (P11),

false positive detection (P10), and observation confirmation probabili-

ties (b) with different sample sizes: three surveys at either 250 sites or

100 sites.

Appendix S2. Occupancymodel code.
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