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Water-use efficiency of a poplar plantation in Northern China
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Abstract The water-use efficiency (WUE) of an eco-

system—defined as the gross ecosystem production (GEP)

divided by the evapotranspiration (ET)—is an important

index for understanding the coupling of water and carbon

and quantifying water–carbon trade-offs in forests. An

open-path eddy covariance technique and a microclimate

measurement system were deployed to investigate the

WUE of a poplar plantation ecosystem in the Daxing

District of Beijing, China, during the growing seasons in

2006, 2007, and 2008. We found that WUE values changed

diurnally, peaking in early morning and showing a mini-

mum between 2 pm and 3 pm. This pattern was regulated

by photosynthetically active radiation, saturated vapor

pressure deficit, and stomatal opening and closure. WUE

had inter-daily variations but no substantial seasonal vari-

ation. The WUE decreased with increasing soil water

content due to the higher sensitivity of ET than GEP to

increased soil moisture. Under moist soil conditions (i.e.,

relative extractable water content [0.4), GEP was stable

and WUE was generally low. These results suggest that the

poplar plantation does not effectively use the available soil

water for carbon uptake, and that soil moisture is lost to the

atmosphere through ET.
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Introduction

Forests cover about 31 % of the land surface, and represent

a persistent carbon sink (Woodwell et al. 1978; Post et al.

1982; Vitousek 1991; Wright et al. 2000; Pan et al. 2011)

that slows the increase in the concentration of carbon

dioxide (CO2) in the atmosphere and thus global warming

(Dilling et al. 2003; IPCC 2007). China has the largest

acreage of manmade forests in the world today, and poplar

(i.e., Populus sp.) plantations account for about 14 % of the

total acreage devoted to plantations in China (Chinese

Forestry Society 2003), making it the most important tree

species employed for afforestation in Northern China. As it

is a fast-growing species, poplar exhibits high biomass

accumulation but also high rates of water loss (Pearce and

Rowe 1979; Gordon et al. 1998; Farley et al. 2005).

However, water shortages in northern China are becoming

increasingly serious, making them the limiting factor in
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forest production. Thus, recently, much research attention

has focused on how best to use the limited water resources

of Northern China and how to improve the efficiency of

water use by manmade forests in this region.

Ecosystem water-use efficiency (WUE)—the ratio of

CO2 assimilation to water loss (Law et al. 2002; Yu et al.

2008)—is used to characterize and define the trade-off

between the water loss and carbon gain of an ecosystem

(Yu et al. 2004). Additionally, the WUE is as an effective

way to assess ecosystem response to climate change

(Baldocchi 1994; Bacon 2004; Hu et al. 2008; Beer et al.

2009). Therefore, studies on the ecosystem WUE of poplar

plantations are helpful when attempting to understand and

quantify how much water the plants need in order to

assimilate a certain amount of carbon, and to determine

how future climate-warming-induced hydrological changes

will impact the carbon budgets of poplar plantation eco-

systems. Eddy covariance (EC) systems measure both CO2

and water vapor exchange between ecosystems and the

atmosphere at a high temporal resolution (Wofsy et al.

1993). These measurements provide a unique approach to

quantifying the characteristics of ecosystem gross ecosys-

tem productivity (GEP), evapotranspiration (ET), and

WUE, as well as their responses to global climate change

(Law et al. 2002; Baldocchi 2003; Barr et al. 2007). Pre-

vious studies of variations in ecosystem WUE found that

there were similar diurnal variations (Scanlon and Albert-

son 2004; Testi et al. 2008; Tong et al. 2009) but different

seasonal variations of the ecosystem WUE in various for-

ests (Reichstein et al. 2002; Ponton et al. 2006; Yu et al.

2008; Migliavacca et al. 2009). Some studies found that the

ecosystem WUE was lower during severe droughts (Teskey

et al. 1994; Reichstein et al. 2002; Migliavacca et al. 2009),

while some other studies showed that the WUE increased

during moderate drought (Linderson et al. 2007; Yu et al.

2008). The various results for the seasonal variation in the

WUE stem in part from the different influences of envi-

ronmental factors on carbon sequestration and water loss

(Veron et al. 2002) and from the various responses of the

WUE to environmental variables in different tree species.

Numerous studies have been conducted in China on

poplar plantations over the last 20 years in terms of bio-

mass measurement, biomass production and growth mod-

eling, water use, and the relationships between stem

density and physiological traits of poplar varieties (Cao

et al. 2002; Peng et al. 2003; Xue and Yang 2004; Liang

et al. 2006), but detailed studies on the relationship

between carbon gain and water loss and their environ-

mental controls at the ecosystem level are lacking. There-

fore, an open-path eddy covariance system and an

automatic micro-meteorology system were used to con-

tinually measure the carbon, water, and energy exchanges

between the canopy of a 10-year-old poplar plantation and

the atmosphere in the Daxing District of Beijing, China

from 2006 to 2008. Our objectives were (1) to quantify the

diurnal and seasonal variability of the ecosystem WUE of a

poplar plantation, and (2) to determine the effects of

environmental factors on the ecosystem WUE at different

temporal scales.

Materials and methods

Study site

The study was conducted in a 10-year-old poplar plantation

(Populus euramericana cv. ‘‘74/76’’) at the Daxing Forest

Farm (116�1500700E, 39�3105000N, and elevation 30 m),

located in a suburb of Beijing, China. The plantation covers

an area of 0.8 km2 and the density of planting was

3 m 9 2 m. The average height and root depth of the trees

were 14.8 ± 1.2 and 1.86 ± 1.02 m by the end of 2008,

respectively, and the leaf area index (LAI) of the stand was

2.1 ± 0.6. The understory vegetation was sparse, contain-

ing perennial herbs such as Chenopodium glaucum Linn.,

Medicago sativa L., Melilotus officinalis (L.) Lam., Salsola

collina Pall., and Tribulus terrestris L. The mean annual

(i.e., 1952–2000) precipitation is 569 mm, of which

*65 % occurs between July and September. The mean

annual (i.e., 1990–2009) temperature is 11.5 �C, as recor-

ded at the Daxing Weather Station (116�1905600E,

39�4302400N). The top two meters of the soil profile were

largely composed of well-drained fluvial sand with a pH of

8.3 and a bulk density of 1.45 g cm-3. Further details are

available in Zhou et al. (2013).

Field measurements

An open-path EC flux measurement system was deployed

at the center of the study site for long-term measurements

of CO2, water vapor, and energy fluxes from 2006 to 2008.

Footprint analysis using an analytical model (Hsieh et al.

2000) suggested that 80 % of the footprint contribution was

in the range of the measurement region (Zhou et al. 2013).

To obtain sufficient fetch, a CO2/H2O infrared gas analyzer

(LI-7500, Li-Cor Inc., Lincoln, NE, USA) and a three-

dimensional ultrasonic anemometer (CSAT3, Campbell

Scientific, Inc., Logan, UT, USA) were mounted 16 m

above ground level (AGL) in 2006 and lifted to 18 m AGL

in 2007 and 2008. The raw 10-Hz data were logged into a

CR5000 data logger (Campbell Scientific, Inc.).

Net radiation (Rn) and photosynthetically active radiation

(PAR) were measured using a net radiometer (Q7.1, REBS,

Seattle, WA, USA) and a quantum sensor (LI190 SB-L, Li-

Cor Inc.) at 16 m AGL in 2006 and 18 m AGL in 2007 and

2008, respectively. Precipitation (P) and atmospheric
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pressure were measured at heights of 16 m AGL and 13 m

AGL in 2006 and of 18 m AGL and 21 m AGL in 2007 and

2008 using a tipping-bucket rain gauge (TE525-L, Camp-

bell Scientific, Inc.) and an air pressure gauge (CS105,

Campbell Scientific, Inc.). Air temperature (Ta) and relative

humidity were measured at four levels (2, 6, 10, and 14 m

AGL in 2006 and 5, 10, 15, and 20 m AGL in 2007 and

2008) using relative humidity and air temperature sensors

(HMP45C probe, Campbell Scientific, Inc.).

Soil temperature profiles and soil heat fluxes were

measured by soil temperature sensors (TCAV107, Camp-

bell Scientific, Inc.) and soil heat plates (HFT3, REBS) at

depths of 5, 10, and 20. Volumetric soil water contents

(VWC) were measured at depths of 20 and 50 cm by a

time-domain reflectometry (TDR) soil moisture device

(CS616, Campbell Scientific, Inc.). All micrometeorologi-

cal data were stored at 30-min intervals on a data logger

(CR5000, Campbell Scientific, Inc.).

Data processing

The turbulent fluxes were corrected for density fluctuations

(Webb et al. 1980) and calculated in the planar fit coor-

dinate system (Wilczak et al. 2001). All calculations were

done with the EC_PROCESSOR 2.1 software package

(http://www4.ncsu.edu/*anoorme/ECP/).

Quality screening included filters for periods of highly

unstable and highly stable atmospheric conditions (Hol-

linger et al. 2004), nonstationarity in turbulent fluxes (Fo-

ken et al. 2004), and periods with rainfall. Data with

friction velocities (u*) lower than an appropriate threshold

(u* = 0.18 m s-1 in 2006; u* = 0.12 m s-1 in 2007;

u* = 0.14 m s-1 in 2008) were eliminated to avoid the

underestimation of fluxes in low-wind conditions.

Data quality control resulted in the elimination of 37–

45 % of the original EC data. Gaps in the 30-min NEE

were filled by dynamic parameter mechanistic models

(Lloyd and Taylor 1994; Law et al. 2002; Noormets et al.

2007), where the respiration (Re) was obtained using a

simple modification of the Lloyd–Taylor equation (Lloyd

and Taylor 1994; Noormets et al. 2007, 2008):

Re ¼ R10e
Ea
R
�ð 1

T
ref

1
Ta
Þ ð1Þ

R10 ¼ a0 þ a1 � VWC; ð2Þ

where R10 is the reference respiration at a common tem-

perature (Tref = 283.15 K = 10 �C), Ea is the activation

energy (kJ mol-1 K-1), R is the universal gas constant

(8.3134 J mol-1 K-1), and a0 is considered to be the same

as R10 under moisture-saturated conditions. a1 is the unit

change in R10 per unit change in VWC. The nighttime data

were used to fit the Lloyd–Taylor equation and the daytime

respiration was estimated using Ta and VWC data fitted

monthly. Missing latent heat (LE) values were filled by

applying a mean diurnal variation (MDV) method (Falge

et al. 2001) using mean values for the monthly or weekly

fixed MDV. Further details about the methods used to fill

the gaps in the NEE data can be found in Zhou et al.

(2013).

Calculation of the WUE and relative extractable water

content

Energy balance closure was evaluated by performing a sta-

tistical regression of the non-gap-filled, half-hourly turbu-

lent energy flux (i.e., sensible and latent heat) against 3 years

of the available quality-controlled energy data. The energy

balance during 2006–2008 at this site was studied by Liu

et al. (2009) and Zhang et al. (2014), and had slopes of 0.86

(R2 = 0.87, N = 12,716, P \ 0.0001), 0.78 (R2 = 0.84,

N = 11,625, P \ 0.0001), and 0.75 (R2 = 0.85,

N = 13,950, P \ 0.0001) in 2006, 2007, and 2008,

respectively. The ecosystem WUE can be calculated by

various methods depending on the scientific discipline and

the spatial and temporal scales of interest (Huxman et al.

2004; Yu et al. 2008). In this study, the ecosystem WUE was

calculated as the ratio of the GEP (the sum of the turbulent

flux, the canopy storage term, and the estimated ecosystem

respiration, Re; Zhou et al. 2013) to the corresponding ET.

The canopy storage of CO2 was estimated from the half-

hourly changes in the mean CO2 concentration, using the

approach of Hollinger et al. (1994). The ET was derived by

dividing the LE by the heat of vaporization (Sun et al. 2008).

Key processes that control carbon transfer and storage

vary over multiple temporal scales. Therefore, the eco-

system WUE varies with the temporal scale (Stoy et al.

2006). In this study, we considered the WUE in various

guises: as the half-hourly WUE, the daily WUE, and the

annual ecosystem WUE (the growing season). Each of

these WUE terms was calculated using a dataset with the

corresponding temporal resolution.

The relative extractable water content (REW) is an

index that is used to quantify the ecosystem drought

intensity. A soil drought occurs when the REW drops

below 0.4 (Granier et al. 1999, 2007; Bernier et al. 2002),

and the daily REW is calculated from the soil water content

as follows:

REW ¼ VWC� VWCmin

VWCmax � VWCmin

; ð3Þ

where VWC is the actual soil volumetric water content at a

depth of 50 cm, and VWCmin and VWCmax are the mini-

mum and maximum soil volumetric water contents at a

depth of 50 cm, respectively.
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Results

Meteorology

Figure 1 illustrates the seasonal variations in air tem-

perature (Ta), vapor pressure deficit (VPD), precipitation,

and soil water content in 2006, 2007, and 2008,

respectively. The daily mean Ta during the 2008 growing

season was 20.5 ± 0.5 �C, which was a little lower than

those in 2006 (21.3 ± 0.6 �C) and 2007 (21.9 ± 0.6 �C)

(Fig. 1a–c).

Precipitation differed among the 3 years, in terms of

both amount and seasonal distribution (Fig. 1d–f). The

year 2006 was dry with a total precipitation of 433 mm

during the growing season (April–October). Although

irrigation (35 mm in April and 21 mm in May) was

applied during growing season, the total water supply in

2006 was also less than the multi-year (1990–2009)

mean rainfall of 527 mm (Zhang et al. 2014). The pre-

cipitation was 631 and 632 mm during the growing

seasons of 2007 and 2008, respectively. However, there

was a drought period in 2007 during April to June, and a

much lower VPD was observed in 2008 (especially in

the spring) compared with those of 2006 and 2007

(Fig. 1a–c).

Seasonal changes in REW closely followed the varia-

tions in precipitation (Fig. 1d–f). A long dry period in 2006

and 2007 resulted in severe water deficits in the autumn of

2006 and spring of 2007 when the REW dropped below

0.4. However, no lasting drought was observed in 2008.

Diurnal and seasonal variations in WUE

The instantaneous WUE showed a diurnal trend, with a

primary maximum WUE ranging from 3 to 5 g C kg-1

H2O in the early morning and a secondary maximum

ranging from 2 to 4 g C kg-1 H2O in the evening (Fig. 2).

Ecosystem WUE decreased by about 30–60 % during the

daytime compared with the early morning and reached its

minimum between 14:00 and 15:00. Besides, the morning

WUE was higher than that in the afternoon.

Seasonal patterns of the ecosystem GEP, ET, and WUE

from 2006 to 2008 are shown in Fig. 3. The mean daily

WUE during the growing season was 2.3 ± 0.9, 2.4 ± 0.9,

and 2.3 ± 1.1 g C kg-1 H2O in 2006, 2007, and 2008,

respectively. The mean daily GEP was 6.4 ± 2.9,

6.4 ± 2.4, and 7.5 ± 3.8 g C m-2 d-1 in 2006, 2007, and

2008, respectively (Zhou et al. 2013). The mean daily

growing season ET was 2.7 ± 1.3, 2.7 ± 1.2, and

3.3 ± 1.6 kg H2O m-2 d-1 in 2006, 2007, and 2008,

respectively. During the 3-year study, daily GEP and ET

peaked in July or August with rates of 12–15 g C m-2 d-1

and 3.6–4.7 kg H2O m-2 d-1, respectively. However,

ecosystem WUE fluctuated and did not show a seasonal

cycle during the growing seasons.

Responses of GEP, ET, and WUE to climate factors

Instantaneous WUE was negatively related to PAR and

VPD (Fig. 4). Therefore, WUE declined with increasing

PAR and VPD until 2 pm or 3 pm, and increased with

decreasing PAR and VPD during the rest of the afternoon

(Fig. 5). However, beginning at sunrise, WUE increased

with increasing PAR and VPD.

GEP and ET (both measured per day) showed positive

correlations with PAR (P \ 0.05), while the sensitivity of

GEP to PAR was different to the sensitivity of ET to PAR,

regardless of the soil moisture conditions present (Fig. 6a–

c). The relatively large increase in ET at low PAR com-

pared to that of GEP led to a tendency of WUE to decrease
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with increasing PAR under low-PAR conditions (Fig. 6a–

c, f). Neither GEP, ET, nor WUE were significantly cor-

related with VPD on a daily basis (P [ 0.5).

Although the impact of soil water on the daily GEP and

ET was not statistically significant (P [ 0.5, Fig. 7), the

sensitivities of GEP and ET to PAR varied with the REW

(Fig. 6d, e). A power equation was found to give a good fit

to a plot of daily GEP against daily PAR for different

REWs, while a good linear fit was obtained for a plot of

daily ET against PAR when REW [0.4. A low REW

significantly limited ET, and this effect became more

pronounced as PAR increased (Fig. 6e). The slope of the

daily GEP–PAR relationship was smallest when REW

\0.1, but there was no significant effect of soil water on

the relationship between GEP and PAR when

0.1 \ REW \ 0.4 and for REW [ 0.4 (Fig. 6d). Ecosys-

tem GEP and ET were significantly correlated during the

growing seasons of 2006–2008 under various soil water

conditions (i.e., REW \ 0.1: R2 = 0.78, P \ 0.001;

0.1 \ REW \ 0.4: R2 = 0.56, P \ 0.001; REW [ 0.4:

R2 = 0.44, P \ 0.001), but the slope of the GEP–ET

relationship, which is a measure of WUE, declined with

increasing soil moisture (i.e., REW \ 0.1: slope = 2.1,

R2 = 0.78; 0.1 \ REW \ 0.4: slope = 1.6, R2 = 0.56;

REW [ 0.4: slope = 1.4, R2 = 0.44) (Fig. 4).

Discussion

Influence of climate on WUE

The primary environmental driver for changes in the

30-min WUE was the VPD, and thus the cyclical nature of

the VPD resulted in a consistent diurnal cycle for WUE.

The negative linear relationship between WUE and VPD

was due to the limitations of a high VPD on the stomatal

conductance of the plantation, as known from a previous

study performed at this site (Zhou et al. 2013) and other
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studies performed at both the leaf level (Schulze and Hall

1982) and the ecosystem level (Baldocchi 1994; Law et al.

2002; Scanlon and Albertson 2004; Ponton et al. 2006).

Although stomatal conductance influences both carbon

gain and water loss, more water was lost by transpiration

during the photosynthetic uptake of CO2 under high VPD.

This led to a tendency of WUE to decrease with increasing

VPD at the leaf and ecosystem levels (Baldocchi 1994;

Dewar 1997; Berbigier et al. 2001; Law et al. 2002; Mahrt

and Vickers 2002; Scanlon and Albertson 2004; Ponton

et al. 2006; Tang et al. 2006).

As it is a driving factor in both photosynthesis and

evapotranspiration, solar radiation is one of the most

important factors influencing WUE. Instantaneous and

daily WUE showed negative correlations with PAR

(Figs. 4a, 5a, 6f), possibly due to the high evapotranspi-

ration rate induced by strong radiation (Monteith 1989).

Similar results were also seen in both forests and cropland

ecosystems (Rouphael and Colla 2005; Tong et al. 2009).

The fact that the minimum WUE was observed between 2

and 3 pm also supports the results indicating that there was

a greater increase in ET than in GEP under strong radiation

(Fig. 2). The higher WUE seen in the morning than in the

afternoon for the same PAR was mainly due to low feed-

back inhibition of photosynthesis in the morning (Tong

et al. 2009). In the morning, the photosynthetic rate was

strong even when the light intensity was low, due to low

carbohydrate levels in leaves. Strong photosynthesis and a

weak ET led to a maximum WUE in the morning. In the

afternoon, feedback inhibition of photosynthesis led to a

lower carbon uptake, while ET increased due to the higher

temperature and VPD in the afternoon (Baldocchi 1994;

Tong et al. 2009).

Soil water content was another environmental controller

of WUE (Fig. 6f). Low soil moisture suppressed stomatal

conductance (Law et al. 2000; Ponton et al. 2006) and

therefore limited carbon and water exchange (Fig. 6d, e).

Daily GEP and ET showed significant relationships during

Fig. 5 Relationships between

a half-hourly WUE and
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radiation (PAR) and b half-

hourly WUE and saturated

vapor pressure deficit (VPD)
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online)
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the growing seasons with different soil moisture conditions

(i.e., REW \ 0.1: R2 = 0.78, P \ 0.001; 0.1 \ REW \
0.4: R2 = 0.56, P \ 0.001; REW [ 0.4: R2 = 0.44,

P \ 0.001) (Fig. 7). Similar relationships were found

between GEP and ET across various biome types, and the

slope of this relationship can be used to characterize the

ecosystem WUE (Law et al. 2002). Our results suggested

that the slope increased with decreasing soil moisture. Even

though stomatal conductance decreases during a drought,

WUE can increase so long as the internal resistance to CO2

diffusion is kept constant (Yu et al. 2004). Some studies

obtained similar results during moderate droughts at both the

leaf (Huber et al. 1984; Nijs et al. 1989; Liang and Maruy-

ama 1995) and ecosystem (Linderson et al. 2007; Yu et al.

2008) scales. However, during severe drought, WUE

decreased or remained constant (Teskey et al. 1994;

Reichstein et al. 2002; Granier et al. 2007; Migliavacca et al.

2009) due to increased internal resistance to CO2 diffusion

caused by decreased photosynthetic capacity (Baldocchi

et al. 1983). Carbon and water showed more feedbacks at the

ecosystem scale than at the leaf level, so photosynthetic

capacity was not the only reason for the changes in WUE

under water-limited conditions. The fraction of the evapo-

ration that occurs from the forest floor is significant in forest

ecosystems (Baldocchi and Ryu 2011). The low LAI

observed at this site probably supports the notion that the

forest floor makes a significant contribution. When the

shallow layer is dry, the contribution of the forest floor to

evapotranspiration becomes small, but poplars can maintain

transpiration by taking up water through their deep root

systems. Therefore, in our study, WUE was higher under

low soil water conditions, even when the soil water content

was lower than the wilting point (i.e., WP, VWC = 6 %,

REW = 0.2) (Tan et al. 2009) (Fig. 6d–f).

Comparison with other ecosystems

Reported ecosystem-level WUE values of different forests

are briefly summarized in Table 1. Compared to another

poplar plantation forest of a similar age and soil type, the

GEP was similar during the growing season but WUE was
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Fig. 7 Relationship between gross ecosystem productivity (GEP) and

evapotranspiration (ET) for different relative extractable water

contents (REWs) (filled circles 0 \ REW \ 0.1; crosses

0.1 \ REW \ 0.4; unfilled circles REW [ 0.4:) during the growing

seasons in 2006–2008. Regression lines: REW \ 0.1: GEP =

2.11ET ? 1.889, R2 = 0.779; 0.1 \ REW \ 0.4: GEP =

1.63ET ? 2.845, R2 = 0.562; REW [ 0.4: GEP = 1.41ET ? 2.497,

R2 = 0.437

Table 1 Average annual ecosystem water-use efficiency (WUE) of different ecosystems

Ecosystem type Latitude, longitude WUE (g C kg-1 H2O) Reference

Ponderosa pine 44�300N, 121�370W 3.0 Law et al. (2000)

Maritime pine 44�420N, 0�460W 0.9 Berbigier et al. (2001)

Young Jack pine 53�520N, 104�380 W 1.0 Mahrt and Vickers (2002)

Aspen 55�530N, 98�400W 2.3 Mahrt and Vickers, (2002)

Deciduous broadleaf forest 2�–65�N, 20�W–25�E 0.9 Law et al. (2002)

Evergreen conifer forest 2o–65�N, 20�W–25�E 0.8 Law et al. (2002)

Aspen 53�380N, 106�120W 3.6a Ponton et al. (2006)

Douglas fir 49�540N, 125�220W 5.4a Ponton et al. (2006)

Deciduous forest 42�240N, 128�050E 2.6 Yu et al. (2008)

Conifer plantation forest 26�440 N, 115�030E 2.5 Yu et al. (2008)

Evergreen broadleaf forest 23�100N, 112�320E 1.9 Yu et al. (2008)

Poplar plantation 45�120N, 9�030E 3.6b Migliavacca et al. (2009)

Hybrid poplar plantation 54�180N, 111�300W 1.7 Cai et al. (2011)

Poplar plantation 39�310N, 116�150E 2.3b This research

a Daily average
b Growing season
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56 % lower at our site, which was largely because the ET

was 25 % higher in our study (Migliavacca et al. 2009).

Cai et al. (2011) reported the carbon and water fluxes of a

5-year-old hybrid poplar plantation, which indicated a

52 % lower annual ET, a 65 % lower annual GEP, and a

26 % lower WUE than at our study site. The WUE of a

boreal aspen forest was 56 % higher (Ponton et al. 2006)

due to a 28 % lower annual ET and a 7 % lower annual

GEP than in the current study (Barr et al. 2007). Besides,

Mahrt and Vickers (2002) reported a similar WUE for

aspen from the southern study area of the Boreal Ecosys-

tem and Atmospheric Study. In addition, WUE was 13 %

lower in our study due to a 9 % higher GEP and a 17 %

higher ET compared with those of another deciduous forest

at a higher latitude in eastern China (Yu et al. 2008).

We found diurnal WUE patterns at our study site that

were similar to those previously reported (Baldocchi 1994;

Lindroth and Cienciala 1996; Moren et al. 2001; Scanlon

and Albertson 2004; Testi et al. 2008; Tong et al. 2009),

while the seasonal variation in WUE was different

(Reichstein et al. 2002; Ponton et al. 2006; Yu et al. 2008;

Migliavacca et al. 2009). Reichstein et al. (2002) and Yu

et al. (2008) found that the maximum WUE occurred in

wet ecosystems in winter, whereas the minimum occurred

during the peak vegetation season. However, other studies

found no apparent seasonal trend in WUE during the

growing season (Ponton et al. 2006; Yu et al. 2008). In our

study, although there was substantial inter-daily variation

in the WUE, no seasonal variation was observed during the

growing season. This may suggest that the seasonal chan-

ges in WUE were due to factors such as site conditions,

climate, and vegetation type, including the understory and

growing season length (Veron et al. 2002).

Conclusions

The WUE of the poplar plantation forest examined in this

study presented no apparent seasonal variations, but did

show a significant diurnal trend during the growing season.

Maximum WUE was observed in the morning, and mini-

mum WUE was seen between 2 and 3 pm. This was reg-

ulated by stomatal closure and VPD. Seasonally, there was

substantial inter-daily variation in WUE due to the influ-

ences of both the PAR and the soil water conditions. A

higher sensitivity of ET than GEP to soil moisture led to a

decreasing ecosystem WUE with increasing soil moisture.

Therefore, soil moisture was not effectively used by carbon

uptake. Instead, soil water was returned to the atmosphere

through evapotranspiration.
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