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In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for
surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a
geographical environment.Wefind the optimal allocation of surveillance resources amongmultiple geographical
subdivisions via application of a classical portfolio framework, which allocates investments among multiple
financial asset types with uncertain returns in a portfolio that maximizes the performance and, by meeting the
desired diversification targets, protects against errors in estimating the portfolio's performance.
We illustrate the approachwith a case study that applies a spatial transmissionmodel to assess the risk of spread
of the emerald ash borer (EAB), a significant pest inNorth America,with infestedfirewood thatmay be carried by
visitors to campground facilities in central Canada. Adding the diversification objective yields an expected survey
performance that is comparable with undiversified optimal allocation, but more importantly, makes the
geographical distribution of survey priorities less subject to possible errors in the spread rate estimates. Overall,
diversification of pest surveillance can be viewed as a viable short-term strategy for hedging against uncertainty
in expert- and model-based assessments of pest invasion risk.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.
1. Introduction

Invasive alien species are a universally recognized problem, causing
significant environmental changes and large-scale economic damages
worldwide (Hulme et al., 2008; Mack et al., 2000; Meyerson and
Reaser, 2003; Perrings et al., 2005). Most introductions of new species
have been linked to human activities such as international trade
(Costello and McAusland, 2003; Hulme, 2009; Jenkins, 1996; Levine
and D'Antonio, 2003), transportation (Paini and Yemshanov, 2012;
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Tatem and Hay, 2007) and recreation (Koch et al., 2012). Various
post-border surveillance procedures (e.g., Cook and Fraser, 2008;
Reaser et al., 2008) have been implemented to detect the arrival of
non-native organisms via these and other pathways. For example, in
2007 the United States Department of Agriculture (USDA) allocated
$US 1.2 billion for management of invasive species, with approximately
22% directed toward early detection and rapid response activities (NISC,
2007). A considerable portion of such funding is spent on large-scale
pest surveillance programs (Tobin, 2008).

A common objective in surveillance programs aimed at early
detection is to gain as much information as possible about the extent
of a species' presence in its new environment. Typically, surveillance
planning requires some understanding of the species' behavior, such
as its capacity to spread to new locations. A variety of models that sim-
ulate the invasion process have been used to help with the assessment
of species spread (Koch et al., 2009; Pitt et al., 2009; Prasad et al.,
2010; Yemshanov et al., 2009). Regardless, knowledge about the behav-
ior of a recently discovered pest in a novel landscape is typically poor,
such that any estimates of the organism's spread potential can only be
stated in vague probabilistic terms (such as likelihood of spread or the
probability of arrival at a specified distance). This further complicates
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the planning of pest surveillance because decisions about allocating re-
sources for the surveys have to be made under substantial uncertainty.

1.1. Pest Survey Planning as a Portfolio Valuation Problem

Several methods have been applied to improve the performance of
pest surveys, such as identifying surveillance protocols that are robust
to uncertainty (Leung et al., 2010; Moffit at al., 2008), applying cost-
minimization studies (Sharov and Liebhold, 1998; Hester et al., 2013),
assessments of “wait and see” strategies (Sims and Finnoff, 2013) and
optimal allocations of search protocols (Epanchin-Niell et al., 2012;
Hauser and McCarthy, 2009; Hester and Cacho, 2012; Mehta et al.,
2007). In this study we conceptualize the short-term allocation of pest
surveillance resources as a portfolio valuation problem. Portfolio theory
has been used to allocate investments in financial assets under
uncertainty (Elton et al., 2010). In classical portfolio theory, the primary
decision problem is to determine the allocation of investments among
m asset types with uncertain returns in a portfolio that maximizes the
net returns and protects the investments against volatilities (i.e., the
variance of the net return values, which serves as a measure of financial
risk). Modern portfolio theory also emphasizes the balancing and
diversification of investment assets as measures that reduce the risk of
unexpected financial losses (Elton et al., 2010).

While the portfolio allocation problemhas been covered extensively
in the financial literature, few studies have considered geographical
applications of the approach, particularly for tasks such as the
surveillance of invasive species (although see Prattley et al., 2007 for
similar applications in animal health control). In this study, we consider
the general case of survey planning for a recently discovered invasive
species in a geographically diverse area that encompasses m territorial
subdivisions. The surveillance objective is to allocate a fixed amount
of resources (such as personnel and budget funding) among the m
geographical subdivisions in a way that maximizes the potential to
determine the pest's extent in the study area, while also meeting
the desired level of geographical diversification as a hedge against
potential survey failures (such as misplaced surveys or missed detec-
tions) which could be caused by errors in estimating the rate or pattern
of the species' spread (i.e., uncertainty in the spread estimates). The esti-
mation of the potential monetary benefits from finding new pest incur-
sions can be problematic for a recently discovered invasive organism,
since a key component of this calculation – the organism's anticipated
economic impact (such as host losses or mitigation costs) – is generally
not well characterized. Therefore, we used a non-monetary metric that
describes the estimated potential to find the species of concern in a
specific geographical region. We treated the performance metric as
analogous to the net returns on investment in financial asset valuation.
In the latter context, a decision-maker usually strives for higher return
values.With respect to pest surveillance, this translates to the acquisition
ofmore information (i.e., asmuch as possible) about a species' presence.7

1.2. Diversification in Pest Surveillance

In financial asset allocation, diversification is considered a useful
method to reduce the variance (a measure of financial volatility) of
the estimated net returns from an investment portfolio. Typically, a
portfolio with higher variance is considered riskier because the
likelihood of extreme losses is higher. Portfolios with a relatively large
7 Manyapplications of portfolio analysis to non-financial problems, such as assessments
of extreme events (Santos and Haimes, 2004), veterinary management programs
(Galligan and Marsh, 1988), resource allocations for flood protection (Aerts et al., 2008;
Zhou et al., 2012) or control of multiple exotic diseases in animal health (Prattley et al.,
2007), used non-monetary performance metrics (such as exceedance probabilities or dis-
turbance return intervals; see McInnes et al. (2009) and Zhou et al. (2012)), hence our
choice of a non-monetary metric felt justified.
number of asset types may yield lower degrees of financial risk
(Luenberger, 1998). The variance of a portfolio can be further decreased
when the correlation between the asset types in the portfolio is low or
negative (Elton et al., 2010).

In financial asset valuation, risk factors that typically increase the
correlation between asset types are generally associatedwith systematic
events that affect all assets in a portfolio, such as general market trends
(Elton et al., 2010). However, increasing the proportion of asset types
with low or negative correlations improves the stability and reduces
the variance of the portfolio given the impacts of these systematic
events (Elton et al., 2010). Basically, because asset types with similar
(i.e., correlated) behavior fluctuate in value in a similar fashion, a
risk-averse decision-maker would find it beneficial to invest in
other zero or negatively correlated assets, so that the portfolio's
overall value has a lower probability of achieving extreme levels. In-
creasing diversification also improves the stability of the portfolio in
the presence of uncertainty caused by non-systematic events, such
as data errors that may distort estimates of the portfolio variance.
In our case, diversification of pest surveys is expected to reduce the
effects of errors in model-based estimates of the spread of an inva-
sive organism (errors which eventually propagate into the estimates
of the expected performance of the survey) and decrease the chance
of erroneous selection of survey sites due to incorrect predictions of
the pest's pattern of invasion. Errors in allocating surveillance
resources are often costly and subsequently imply a penalty. This
penalty arises from the trade-off between the desired level of survey
performance and tolerated level of uncertainty.

Diversification is also consistent with common decision-making
practices for managing outbreaks of invasive pests, where skepticism
regarding the accuracy ofmodel-based predictions of spread has caused
managers to rely on subjective rules of thumb and allocate surveys in
geographical patterns which are more spatially uniform than the
model-based spread estimates.

2. Material and Methods

2.1. A Portfolio-based Model of Geographical Pest Surveillance

Consider a surveillance program for a new invasive pest that covers
m geographical regions. A defined amount of resources is available for
the entire program which must be allocated across the m regions.
Each individual region, j = 1,…, m, contains a number of potential
surveillance locations, where each location, y, is characterized by an
estimate, ξ, that depicts the likely outcome if the survey were to be
implemented at that location. The distributions of potential survey
outcomes (ξ) for the survey regions are estimated prior to survey
planning with a geographical model of pest invasion that predicts, in
probabilistic terms, the expansion of the invasive pest population
over the survey period. (Their descriptions will be presented in
Sections 2.4, “Model-based Assessment of EAB Spread With
Campers”, and 2.5, “Expected Survey Outcome Metric.”).

For each region j, we constructed the cumulative distribution of the
expected survey outcomes from the location-specific ξ values generated
with the invasion model. We then sampled these cumulative distribu-
tions at 20 successively increasing percentile points spaced at equal in-
tervals between 0 and 1, so each survey region was characterized by a
set, Ij, of the distribution values Ij at the sampled percentile points.
Since the sampling points were identical for all regions, the size, N, of
set Ijwas the same for all regions,making it possible to directly compare
sets Ij and Ii for any two regions j and i.

A survey of m geographical regions is conceptually similar to a
portfolio of m assets in financial analysis; essentially, the proportion,
ωj, of the total surveillance resource allocated to a particular region j
can be considered analogous to the fraction of investment in a financial
portfolio that is allocated to a given asset type j. For each of our geo-
graphical regions, we treated the set Ij values in the same manner that
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a sample of net return values might be utilized to estimate the
performance of investment assets.8 First, we estimated a mean
survey performance value, I j , for each region from its set Ij. This is
comparable to estimating the mean return value of a financial asset
type j. In turn, the mean performance, I jI, of a survey of all m regions
is analogous to the mean return of an m asset portfolio, and was
estimated as the sum of the region-specific I j values, multiplied by
the proportions, ωj, of available resources allocated to these regions
in the survey:

I ¼
Xm
j¼1

ω jI j where
Xm
j¼1

ω j ¼ 1 and ω j∈ 0;1½ �: ð1Þ

We did not consider the possibility of ωj b 0.9

The standard deviation of the survey performance values Ij in a
region (cf. asset type) j was estimated as:

σ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

I jk−I j
� �2

vuut ð2Þ

where Ijk is an element of the set Ij for region j, k=1,…, N, N is the total
number of elements in Ij and I j is themean performance value for region
j. Subsequently, the covariance of the survey performance values
between any two regions j and i was estimated as:

σ ji ¼
1
N

XN
k¼1

I jk−I j
� �

Iik−Ii
� � ð3Þ

where Iik and Ijk are expected survey performance values (and elements
of vectors Ii and Ij) corresponding to regions i and j, respectively, andN is
the number of elements in Ii and Ij (N is the same for all regions). Note
that the mean values Ii and I j are region-specific and therefore do not
have sub-index notations. The total variance of the survey (i.e., across
all m regions) was estimated as:

V ¼
Xm
j;i¼1

ω jωiσ ji: ð4Þ

A common objective in financial asset valuation is to find a convex
frontier of optimal solutions that combine the highest performance (I)
and lowest variance (V) (Elton et al., 2010). This is achieved by finding
the solutions that minimize the portfolio variance (V) for different
desired levels of portfolio performance I. We have also added a diversi-
fication constraint. Generally, diversification of a portfolio is achieved by
minimizing portfolio correlation or adding a portfolio correlation
constraint (Zhou et al., 2012). However, a correlation-based metric
does not fully capture information about the relationships among
portfolio asset types (Kish andHogan, 2009; Livingston, 2013). Pairwise
correlation is sensitive to the shape of the distributions of the asset
returns (the survey performance values Ij in our case) and is not
adequate if the distributions deviate from normal. Instead, we used a
distance measure of diversification (i.e., the degree of dissimilarity in
the allocation of survey resources among m regions) based on the
sum of squared Euclidean distances between the expected survey
8 For consistencywith the portfolio valuation literature, we have termed the Ij values as
the expectedperformance (i.e., the “expected return”) of a survey in region j. Note that our
pest invasion model did not include simulation of survey events, so this metric does not
indicate whether the pest of interest was actually detected (or not) in region j.

9 Negative values of ωj in financial asset valuation indicate shorting, the selling of
assets that are borrowed from a third party with the intention of buying identical as-
sets back at a later date. Imposing short selling constraints can help prevent extreme
positive and negative asset proportions (ωj) and may lead to modest improvements
of portfolio performance (DeMiguel et al., 2009), but the concept does not have an
obvious decision-making parallel in our pest surveillance example.
performance values (Ii and Ij) of each possible pair of regions, i and j,
out of the m regions comprising the survey:

D ¼
Xm
j¼1

Xm
i ¼ 1
i≠ j

ω jωidji ð5Þ

where:

dji ¼
XN
k ¼ 1
i≠ j

I jk−Iik
� �2

� �
; ð6Þ

where Iik and Ijk are survey performance values in (and elements of) sets
Ii and Ij representing regions i and j, respectively, andN is the number of
elements in Ii and Ij. The similarity measure (dij) helps find the regions
which, while perhaps having relatively high expectations of pest arrival,
also have highly dissimilar distributions of the expected invasion
outcomes. Obviously, the surveillance of more dissimilar regions in
terms of the variation of the predicted survey performance values (Ij)
would cover more diverse conditions in a landscape and potentially
offer more opportunities to detect the pest in unanticipated locations.
This is consistent with the basic idea behind financial portfolio diversi-
fication, where inclusion of low-correlated assets in a portfolio helps
improve the stability of the portfolio returns in uncertain or unforeseen
conditions andmakes the portfolio less sensitive to errors in estimating
the asset variance and expected returns.

We then formulated the survey allocation problem as finding the
optimal apportionment of the total surveillance resource among m
geographical regions (represented by a set of the resource fractions,
ωj, allocated to each region j) that minimizes the portfolio (i.e., survey)
variance (V) while meeting the desired level of survey performance (I⁎)
and diversification (D⁎):

argmin
ω j

V½ �
s:t: :Xm
j¼1

ω j ¼ 1 and ω j∈0;hmax�

D� ¼ D and I� ¼ I:

8>>>>><
>>>>>:

ð7Þ

Note that we have also added an upper constraint, hmax, that limits
the maximum fraction of the total surveillance resource that can be
allocated to any one region. In classical portfolio valuation, the fractions
of individual asset types (ωj) in a portfolio can be changed at extremely
small increments from 0 to 1, so optimizationmay lead to concentrated
portfolios that include only a few best-performing and often least-
correlated asset types. This can diminish the overall performance of
the portfolio if the estimates of the covariance matrix of the return
values or net asset returns have errors. This problem is commonly ad-
dressed by constraining the maximum number of asset types that can
be included in a portfolio (Chang et al., 2000), or by limiting the amount
of resources that can be allocated to a single asset type. With respect to
surveillance, a positive detection at a survey site typically assumes that a
population of the species of interest is present within a certain area
around the surveyed location. This area is commonly based on the
species' known spread range or local biological spread capacity since
the last survey, possibly in conjunction with the effective range of the
survey mechanism (e.g., a pheromone trap for an insect pest). As a
result, survey locations are typically placed at a certain minimum
distance apart, which eventually limits the total amount of survey
points that can be allocated to a single region. To keep the problem
formulation in general terms, we specified the hmax value as relative to
the equal resource allocation proportion (i.e., 1/m) and tested three
scenarios with the hmax constraint exceeding equal resource allocation
by two, three and four times (hmax = 2/m, 3/m and 4/m hereafter).
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Higher hmax values offer the possibility of allocating higher resource
proportions (ωj) to fewer regions. In our scenarios, the optimal alloca-
tions based on the conditions hmax = 2/m, 3/m and 4/m resulted in
the assignment of high resource shares to approximately 50%, 38% and
22% of regions, respectively.

We then plotted the sets of optimal allocations in the dimensions
of the portfolio variance (V) and mean portfolio performance (I) at
different desired levels of diversification (D). For each diversification
level, D, we have calculated multiple optimal solutions correspond-
ing to different performance levels (I). For different desired levels
of survey performance, the optimal solutions yielded different values
of portfolio variance (V). These optimal solutions, when plotted for a
given diversification level D in the dimensions of the V and I values,
delineated a convex frontier. Essentially, this frontier is analogous
to a frontier of efficient portfolios in mean–variance space in financial
asset allocation. Each point on these frontiers represents an optimal
allocation of survey resources for a combination of I, D and V values,
and had an associated vector ofm region-specific resource share values
ωj. We then mapped these ωj share values in a geographical domain.
Given a potentially large amount of geo-referenced outputs (i.e., maps
or resource allocations corresponding to each individual point in the
convex frontiers), we present only the most prominent examples of
the best-performing portfolios for low, moderate and high diversifica-
tion levels.

2.2. Benchmark Allocations of Survey Resources

We also evaluated three allocation approaches that have been
regularly used as benchmarks in the financial literature (DeMiguel
et al., 2009). The first allocation was based on equal resource distri-
bution among survey regions (i.e., ωj = 1/m), while the second de-
fined the resource proportions ωj as proportional to the mean
performance values I j. We also evaluated an equal risk contributions
(ERC) portfolio (Maillard et al., 2010). Under this approach, the asset
proportions (ωj) are chosen such that the variance contributions of
each asset type to the total portfolio variance are equal (Maillard
et al., 2010). The ERC approach may be viewed as a form of
variance-minimizing portfolio valuation subject to a constraint of
sufficient diversification in terms of the asset type weights
(Maillard et al., 2010), and is considered as an intermediate point be-
tween the equal asset portfolio (1/m) and an unconstrained portfolio
that minimizes portfolio variance. The numerical solution for the ERC
portfolio was obtained, via a quadratic programming algorithm, by
minimizing the Euclidean distance between each asset's (i.e., survey
M A N I T O B A O N T A R I O

U S A

Fig. 1. Areas infested with EAB (as per Decem
region) weighted marginal contributions to the total portfolio
variance (Maillard et al., 2010):

ω j � ∂ω jσ ωð Þ ¼ ωi � ∂ωiσ ωð Þ forall regions i; j ¼ 1;…;m; i≠ j

s:t:
Xm
j¼1

ω j ¼ 1

ω j∈ 0;1½ �

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where ∂ωjσ ωð Þ ¼ ω jσ
2
jþ∑i≠ jω jσ ij

σ ωð Þ and σ ωð Þ ¼ ∑
m

j¼1
σ j ωð Þ.

2.3. Case Study Example

We applied a portfolio-based approach to plan the surveillance of
spreading populations of the emerald ash borer (EAB), Agrilus
planipennis Fairmaire (Coleoptera: Buprestidae), in central Canada.
Native to eastern Asia, EAB is a major threat to North American ash
(Fraxinus) tree species, all of which are apparently susceptible to attack.
Since its initial introduction near Detroit, MI, it has spread to 22 U.S.
states and two Canadian provinces (Fig. 1). The pest has already caused
significant damage in eastern North America (Kovacs et al., 2010;
Poland and McCullough, 2006). The majority of long-distance EAB
transmissions have been associated with human transport, primarily
with commercial and passenger vehicles moving firewood or other
infested materials (Haack et al., 2002; Koch et al., 2012; Kovacs et al.,
2010; Yemshanov et al., 2012). The existing capacity to detect EAB
(using traps or other means) remains relatively poor, so new detections
usually indicate the presence of already established populations
(de Groot et al., 2008; McCullough et al., 2009). Despite significant
investment in EAB management efforts – $32 million by USDA-
APHIS alone in 2008 (Kovacs et al., 2010) – timely detection of
EAB infestations remains difficult.

Human-mediated movement of EAB with infested firewood that
may be carried by visitors to parks and campgrounds is believed to be
one of the primary vectors of long-distance spread of the pest in North
America. The movement of firewood by campers has been linked to
the spread of wood-boring invasive forest pests, specifically including
EAB, and camper traffic volume has been recognized as a viable predictor
of the human-mediated spread of these pests (Haack et al., 2010; Jacobi
et al., 2011; Koch et al., 2012). The geographical extent of our analysis
was limited by the range of ash species distribution in Canada and the
U.S. (Little, 1971) (Fig. 1), and by the availability of campground
Ash distribution
range
Survey 
allocation area 
Areas infested 
with EAB

Q U E B E C

ber 2012) and EAB survey regions (j).
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reservation data that document the movements of campers. Such data
are maintained by provincial ministries of natural resources (MNRs) in
Canada, as well as state departments of natural resources (DNRs) in the
U.S. In addition, the U.S. National Recreation Reservation Service (US
NRRS)maintains an online reservation systemat federal campground fa-
cilities nationwide. The available information in Canada included data
from Quebec, Ontario and Manitoba, and in the U.S., from Minnesota,
Michigan and Wisconsin, as well as the reservations stored in the US
NRRS dataset (Appendix A, see also Koch et al., 2012). Pest surveys are
often planned at the level of administrative jurisdictions, so we used
the system of Canadian Consolidated Census divisions (StatCan, 2011)
as our survey regions j (total 138 regions, Fig. 1).
Nested convex frontiers in a y - ( y) space:

- frontier 1 (highest rank)

- frontier 2 (2ndhighest rank)

- frontier 3 (3rdhighest rank)

0

ϕϕ

ϕMean pest arrival rate, y
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) 
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Fig. 2. Expected survey outcome metric concept.
2.4. Model-based Assessment of EAB Spread With Campers

The portfolio model required the estimation of the distributions
of the potential survey outcomes in various regions. We evaluated
the potential survey outcomes with a geographical invasion model
that simulated the potential spread of EAB with campers. The
model outputs represented plausible realizations of the human-
mediated spread of the pest in the study area. We chose a pathway-
based model that projects the spread of an organism via a lattice of
vectors connecting a set of nodes (i.e., a network). For networks, the
physical distance between nodes may matter less than their degree of
connectivity, so the amount ofmovement along a vector ismore impor-
tant than the vector's lengthwhen determining the likelihood of spread
(Bodin and Saura, 2010,Moslonka-Lefebvre et al., 2011). Themodelwas
based on the frequencies of camper travel to a network of state,
provincial and federal campground facilities. These frequencies were
estimated from the campground reservation data, which provided
visitor origin and destination campground locations, andweremodeled
as two sets of linked nodes, with the strength of the links defined by the
number of campers traveling along them (Appendix A).

Because symptoms of attack may not be immediately apparent,
there is usually a time lag of approximately two years between EAB in-
festation and detection (Ryall et al., 2011). Although we initialized the
invasion model with the distribution of known EAB populations in
Canada and the U.S. (USDA APHIS, 2012) as of December 2012 (see
Fig. 1), due to this time lag we used campground reservation data for
the period between 2009 and 2011, averaged to a 2010 reference
year. Notably, our method for addressing the time lag may not have
mattered much for the model results; prior to completing the model
runs, we examined the year-to-year variation in the campground reser-
vation data and found good consistency between years in terms of
major travel patterns (i.e., the most prominent origins and destinations
as well as the most heavily traveled pathways in the network). This is
not surprising because the local recreational hotspots in central
Canada – and the routes that connect them to human population
centers – are well known and did not change over that period.

We used the geographical locations of each visitor's origin and des-
tination campgrounds, as well as the total number of visitors along
unique “origin–destination” paths, to build a pathway matrix where
each element defined the relative rate of camper travel (and by exten-
sion, infested firewoodmovement) from an origin location y to another
location z (Appendix A). The pathwaymatrix stored the relative rates of
EAB transmission, pyz, for each pair of locations y, z in Canada and the
U.S. (Appendix A). While we focused our analyses on Canadian prov-
inces only (i.e., Ontario, Quebec and Manitoba), the pathwaymatrix in-
cluded cross-border travel to Canadian campgrounds from neighboring
U.S. states.We then used the pathwaymatrix to simulatemovements of
EAB through the camper travel network from currently infested areas to
all other locations in the camper travel network. Based on the stochastic
simulations, each geographical location (i.e., a camper travel network
node y) outside of the areas likely infested with EAB was characterized
by a distribution of EAB arrival rates (φy) at that location y.
2.5. Expected Survey Outcome Metric

Model-based estimates of spread (such as φy) have been regularly
used to guide the surveillance of invasive species (Cacho et al., 2010;
Hester and Cacho, 2012; Koch et al., 2009; Pitt et al., 2009). For example,
locations with high estimated spread rates or high density of the
modeled patterns of invasion are often assigned high priority as poten-
tial survey sites. Furthermore, if the model forecasts are uncertain, the
variation in the predicted spread patterns can still provide useful guid-
ance for an allocation of surveys. In short, it may also be beneficial to
visit regions where the predicted uncertainty of the spread estimates
is high, so the surveys at those locations could help reduce the variabil-
ity of the long-distance spread estimates and calibrate the underlying
invasion model. Thus, the prime candidate locations to look for a pest
may best be represented by a combination of two sets of sites: one
with high estimated likelihoods of species arrival, and another with
high uncertainty in those estimates.We used this basic idea to calculate
our expected survey outcome metric, ξ.

For each spatial location, y, within our study area,we generatedwith
the spatial invasion model a distribution of EAB arrival rates φy. From
these distributions, we estimated for each location y the mean arrival
rate value, φy , and the standard deviation of the arrival rate, σ(φy), as
a measure of uncertainty (Fig. 2). We then plotted the individual geo-
graphical locations in dimensions of the mean arrival rate (φy) and its
standard deviation (σ(φy)). In the resulting two-dimensional point
cloud, locations with some combination of the highest φy and/or
σ(φy) values were then identified as prime candidates for survey.
Clearly, the locations with the highest φy values can be considered
sites where the species is likeliest to be discovered, and surveys of
locationswith highly uncertain estimates ofφy could provide opportune
(i.e., unexpected but highly useful) knowledge gains about the
geographical extent of infestation. In the φy−σ φy

� �
point cloud, loca-

tions with the highest φy and/or σ(φy) values fall along the cloud's
upper outermost convex boundary (Fig. 2). We assigned these points
(and their corresponding geographical locations) the highest rank of 1
and then removed them temporarily from the φy−σ φy

� �
cloud. Next,

another convex boundary (i.e., a new subset of points in the cloud) com-
prised of the second highest combinations of φy and σ(φy) values was
found and assigned a performance rank of 2, and so on, until all locations
were assigned a rank, 1, 2, ...., ν. The ranks denote nestedmulti-attribute
frontiers (Yemshanov et al., 2013) in the dimensions of theφy andσ(φy)
values. For convenience, we inverted and rescaled the rank values to a
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[0; 1] range so the highest rescaled ranks, corresponding to the locations
where it would be best to survey for EAB, were close to 1 and the lowest
to 0 (but note that the rescaling did not change the order relationships
within themulti-attribute set). These rescaled ranks became our survey
outcome metric, ξ, and we subsequently composed the cumulative
distributions of ξ to estimate the expected performance values (Ij) for
each survey region (see Section 2.1) and find optimal allocations of
surveillance resources with the portfolio-based technique.

3. Results

We first explore the allocations of survey resources in the dimen-
sions of the mean portfolio performance (I) and the portfolio variance
(V). We estimated optimal allocations for a range of diversification
levels, D. For each diversification level, the optimal solutions represent
points corresponding to different levels of the survey performance (I)
andminimized portfolio variance (V). For a given desired level of diver-
sification (D), the points constitute the frontier line of optimal solutions
in the dimensions of mean performance I and portfolio variance V (i.e., a
mean–variance space, Fig. 3). The frontiers of optimal solutions estimat-
ed for multiple diversification levels appear nested when plotted in this
mean–variance space (Fig. 3). Note that the differences across the
nested frontiers are relative andmeasured in the dimensions of the sur-
vey performance values (Ij).

We have also compared the optimal allocations (represented by the
frontier lines) with the benchmark scenarios. The benchmark scenarios
typically have single solutions and are thus represented by single points
in mean–variance space. Fig. 3a–c present the benchmark allocations
based on equal resource share (i.e., ωj = 1/m), rescaled mean survey
performance values ( I j ) and equally-weighted risk contributions
(ERC). The positions of the benchmark scenarios in I−V mean–variance
spaces relative to the frontier lines of optimal allocations helps better
understand the tradeoffs between the scenario objectives (such as de-
sired level of survey performance, diversification and tolerated level of
uncertainty) aswell as the potential impacts that adding the diversifica-
tion requirements has on the portfolio performance.

As expected, the allocations based on equal resource shares (1/m)
and mean survey performance values (I j) show low performance, low
diversification and relatively high portfolio variance (Fig. 3a–c). Alter-
natively, the scenarios with the diversification constraint (i.e., the fron-
tier lines) show higher performance and lower variance at low and
moderate diversification thresholds. In general, the scenarios with the
diversification level below 0.7–0.8 display better performance than
the benchmark allocations based on 1/m and I j criteria. High levels of di-
versification impose a penalty on the portfolio performance and lead to
an increase of the portfolio variance (V) above the ERC and I j benchmark
scenarios.

Like the benchmark allocations based on 1/m and I j values, the
ERC allocations exhibited relatively low performance, but with
considerably lower variance and levels of diversification. This is not
surprising because the ERC allocation method tends to favor low-
variance asset types (in our case, survey regions where the estimates
of the EAB arrival rate are most certain). The position of the ERC sce-
nario in mean–variance space (I−V) also points to the minimum
level of diversification that can be achievedwhile meeting or exceed-
ing the performance of the survey in the ERC portfolio. This level is
identified by the nearest optimal frontier line above the ERC point
in I−V space, e.g., the frontier with the diversification level D = 0.9
in the 4/m scenario (Fig. 3a) or the frontier with the diversification
D = 0.6 in the 2/m scenario (Fig. 3c). This aspect is also illustrated
in Fig. 3d, which depicts the cross-sections of the frontiers of optimal
solutions with the highest performance values (i.e., the points on the
right ends of the frontier lines in Fig. 3a–c). In general, the portfolio
variance and performance values in the ERC and Ij allocations were
matched or exceeded by the diversification scenarios at low levels
of diversification constraint (D). Moderately-diversified scenarios
outperform ERC, but usually at the cost of higher portfolio variance
(i.e., higher uncertainty).

3.1. Geographical Distribution of Survey Resources

Each optimal solution (i.e., a point on the frontier lines in Fig. 3) had
an associated vector of resource proportions (ωj), which could be
mapped in a geographical domain. We present the geographical distri-
butions of survey resource proportions (ωj) for the three illustrative sce-
narios with high, medium and low levels of portfolio diversification
(Fig. 4, Appendix B), as well as map the resource proportions for the
ERC and I j benchmark scenarios (Fig. 5). Compared to the diversification
scenarios and ERC allocation, the scenario based on mean performance
values (I j) exhibited a more even distribution of resource proportions
among geographical regions (Fig. 5a). The highest resource proportions
(ωj) were allocated to regions adjacent to areas already infested with
EAB, as well as suburban areas around Montreal and Quebec City
(QC), both potential hubs of human-assisted movement of EAB. In con-
trast, the ERC allocation displayed a distinct geographical pattern, with
most of themedium and high resource proportions allocated to Quebec
(Fig. 5b). This is explained by less diverse camper travel patterns in
Quebec versus Ontario, Manitoba and the U.S. Midwest and compara-
tively lower variance of the campground reservation data from Quebec.
Because the ERC allocation tends to pick low-variance asset types, most
of the survey resource was allocated to low-variance regions in Quebec.
This indirectly highlights a potential drawback of variance-based alloca-
tions: because they depend heavily on variance as the sole allocation
criterion, they are extremely sensitive to errors in the variance
estimates.

Alternatively, the diversification scenarios (Fig. 4, Appendix B) were
less influenced by variance and exhibited geographical patterns some-
what similar to the allocation based on I j values in eastern Canada
(Fig. 5). The maps showed three prominent geographical groupings.
The first group includes suburban areas near Montreal and Quebec
City (QC), as well as portions of the Greater Toronto suburbs (ON) in
close proximity to areas already infestedwith EAB. The second group in-
cludes more distant regions in Ontario and Quebec with higher varia-
tion of the Ij values. These areas – such as the Lake Superior coast
north of Sault Ste. Marie (ON), areas around Algonquin Park in central
Ontario and the “cottage country” north of Barrie (ON) – are character-
ized by the presence of numerous recreational facilities, which repre-
sent potential final destinations for visitors coming from regions
already infested with EAB (e.g., southern Ontario and Quebec). The
third group of regions with allocated high resource proportions includ-
edWinnipeg (MB) and nearby areas in southernManitoba with low es-
timated rates of EAB arrival and low to moderate variation of those
estimates. Although the threat of EAB arrival is comparatively low in
this province, it is nevertheless consistent across its component survey
regions due to a low-volume but steady flow of recreational travelers
and cross-border visitors from the U.S. Consequently, if implemented
in those regions, the survey may lead to unexpected EAB detections,
which could be more illuminating than detecting EAB in some parts of
southern Ontario or Quebec near existing infestations and could close
some important knowledge gaps about the pathways of EAB expansion
into western Canada and the U.S.

3.2. Region-specific Performance of the Survey

Three sets of diversification scenarios with the hmax constraint set to
2/m, 3/m and 4/m allocated high resource proportions (ωj) to a different
number of regions. The scenarios with hmax = 2/m assigned high pro-
portions to approximately 66–75 regions, while the scenarios with
hmax = 3/m and hmax = 4/m allowed higher resource concentrations
per region and allocated high resource proportions to approximately
50–55 and 30–33 regions, respectively (Fig. 4, Appendix B). In general,
as hmax increased from 2/m to 3/m, and then from 3/m to 4/m, the
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scenarios showed better performance in terms of I j values, lower port-
folio variance and higher possible levels of diversification (Fig. 3a–c).
Notably, while the selection of fewer survey regions with increasing
hmax thus led to higher diversification and portfolio performance, it
caused only moderate changes in the geographical allocation of high
resource proportions (Appendix B).

We also plotted individual survey regions (j) as points in the di-
mensions of the region-specific survey performance value (I j) and
its standard deviation, σ(Ij) (Fig. 6). The circles in Fig. 6 outline re-
gions with the allocated resource proportions above 0.85% (which
is above equal allocation, 1/m = 0.72%). The graphs reveal key
differences between the selections of high-priority regions in the di-
versification scenarios and the benchmark allocations. Unsurprising-
ly, the allocation based on the mean performance values ( I j )
prioritized regions with high I j values, while the ERC allocation pri-
oritized regions with low variance (Fig. 6a, b). The diversification
scenarios identified high-priority regions in a different fashion: in-
stead of prioritizing only regions with very low variance and/or
very high performance, the selected regions tended to be spread
evenly along the outer boundary of the mean–variance ( I−V )
cloud (Fig. 6c, d, Appendix C). Moreover, in addition to regions
with high performance and low variance, the diversification
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scenarios also prioritized medium-variance, low-performing regions
at the lower boundary of the I−V cloud. Because these regions are
least correlated with the best-performing regions, their inclusion in
a survey “portfolio” serves to increase the overall level of diversifica-
tion with the lowest penalty to the performance levels.

Pairwise correlations between diversification scenarios and the
benchmark allocations (Table 1) further emphasize our described
findings. The correlations between the benchmark allocations and
high diversification scenarios appear to be low. The equal allocation
scenario (1/m) does not correlate with any other allocation. The ERC
scenario is not correlated with high diversification scenarios (Dhigh)
and showsmoderate correlationwith the allocation based onmeanper-
formance values (I j). In mean–variance space, the scenarios with the
lowest correlation between ERC and diversification are allocated along
the highest-variance, high diversification region (Fig. 3a–c, lowest-
correlated scenarios aremarked empty square symbols), which empha-
sizes conceptual differences between the ERC and high diversification
scenarios. The impact of the hmax constraint on correlations appears to
be moderate: the scenarios with lower hmax values (i.e., with a resource
distribution closer to equal) have generally lower correlations.

4. Discussion

When dealing with new pest incursions over large geographical
areas, decision-makers often must choose the best course of action
from a set of diverse objectives (such as surveying regions proximal to
known infestation versus remote uninvaded locations) in the shortest
possible time. The portfolio-based technique helps structure the
decision-making process around three key variables: the anticipated
performance of the survey, the uncertainty around this anticipated
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performance and the level of geographical diversification of the survey
efforts. The latter aspect is especially important in those situations
when the geographical extent of the potential survey area is large
while the capacity to predict the spread of the pest and assess where
the surveillance would be most effective is poor. In such situations, a
decision-maker's aspiration to diversify the allocation of surveillance
resources across many regions can be viewed as a hedging strategy
against potential failures to find the pest as a result of errors in forecast-
ing the spread of invasion. Diversification has important geographical
implications because it emphasizes the dissimilarities in organism's
spread patterns between individual regions in the survey area and
thereby extends the surveillance priorities to regions with low antici-
pated risk of infestation.

We also compared our diversification scenarios with current survey
allocations inManitoba (established by Canadian Food Inspection Agen-
cy and Manitoba Conservation and Water Stewardship). Fig. 4d shows
the province's census subdivisions and U.S. border crossings where
EAB traps were placed in 2013 (T. Kimoto, F. Ross, pers. comm.). In
terms of the census subdivisions, the current trap locations and our di-
versification scenarios both prioritized Winnipeg (the largest city in
Manitoba) and some areas in southwestern Manitoba. The U.S. border
crossing locations shown in Fig. 4d indicate where traps have been
placed to intercept possible EAB introductions with commercial and
passenger transportation from the U.S. Since our pest invasion model
did not specifically predict the flows of cross-border commercial or pas-
senger vehicle traffic through these crossing locations, this aspect was
not captured in our optimal allocation scenarios, but note that our
high diversification scenarios did include regions in southwestern
Manitoba near the U.S. border (Fig. 4c, Appendix Bc, f).

In fact, the current abundance of traps inManitoba, where the risk of
EAB arrival is relatively low, provides confirmation that geographical di-
versification was at least partially considered by pest management pro-
fessionalswhen placing the traps. Sincewe did not know all criteria that
influenced the current allocation of traps in central Canada, we did not
expect our diversification scenarios to closelymatch the current trap lo-
cations, but rather looked for (and found) general evidence of EAB
surveillance activities in areas, like Manitoba, where the threat of inva-
sion is deemed to be low. Additionally, differences between the current
trap allocation and the allocations suggested by our diversification sce-
narios may help identify areas that have been overlooked by current
surveillance efforts. For example, the current trap allocation strongly
emphasizes major transportation hubs and populated regions (such as
Winnipeg and major border crossings). In contrast, our results, which
are based on predictions of EAB spreadwith campers, provide more de-
tailed stratification of interior areas in central and western Manitoba
(i.e., where themajority of recreational destinations is located). Overall,
the diversification objective improves the chances of unexpected detec-
tions of the pest in areas perceived low risk and therefore helps develop
amore informative allocation strategy.Most importantly, it represents a
better strategy for early detection because itmakes sure to include areas
that may be labeled low risk due to errors in the invasion forecasts.

4.1. Benefits of Diversification

Accounting for diversification helps address some technical limita-
tions of the portfolio-based technique. Despite wide recognition in fi-
nancial literature, mean–variance optimization has a tendency to
maximize the impacts of errors in estimating the portfolio performance
and its variance (Best and Grauer, 1991; Jobson and Korkie, 1981;
Michaud, 1989; Pollak, 2012). For example, errors in underlying data
(in our case, model-based pest arrival rates) propagate to the asset
type and portfolio variance, which, in turn, shifts the optimal allocation
towards lower-variance asset types (Chopra and Ziemba, 1993). In fact,
this aspect was evident in the ERC scenario (Fig. 5b), where most of the
high resource proportions were allocated to low-variance regions in
Quebec. Various regularization techniques have been developed to ad-
dress this issue, such as resampling techniques (Michaud, 1989;
Scherer, 2002), shrinkage estimators of the covariance matrix
(DeMiguel et al., 2009; Ledoit and Wolf, 2004; Wang, 2005) or factor
analyses to filter out the noise from the covariance matrix (Ledoit and
Wolf, 2003; Pollak, 2012). In our study, adding the diversification con-
straint helped make the optimal allocations less influenced by variance
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estimation errors because it placed emphasis on general dissimilarities
between the survey regions rather than variance estimates. While a
constraint requiring minimum levels of diversification has a generally
Table 1
Correlations between the benchmark allocations and high diversification scenario.

hmax Scenarioa I j ERC Dhigh

2/m 1/m b±0.01 b±0.01 b±0.01
I j 0.41b 0.28

ERC 0.07
3/m 1/m b±0.01 b±0.01 b±0.01

I j 0.40 0.20
ERC 0.20

4/m 1/m b±0.01 b±0.01 b±0.01
I j 0.36 0.03

ERC 0.06

a Benchmark allocations:

1/m equal resource allocation;
I j allocation based on mean performance values;
ERC allocation based on asset types' equal risk contributions;
Dhigh high diversification scenario.

b Correlations above 0.3 are marked in bold.
negative impact on the expected performance of a portfolio, the perfor-
mance of the majority of moderately-diversified survey allocations in
our example matched or exceeded the performance of the benchmark
allocations based on minimum-variance and equal risk contribution
criteria.

Notably, our results did not incorporate spatially explicit factors
into our diversification metric, such as proximity to nearby ameni-
ties, transportation hubs, populated places or ecological constraints.
The implementation of spatial covariates would require proper
quantification of the types of economic activities which influence
the spread of the pest of interest in a geographical domain, as well
as subsequent linkage of these activities to the organism's rate of
spread. While including spatial covariates could potentially improve
the accuracy of the survey allocations, their estimation would be
challenging, as it would require high-resolution metrics of economic
activities and the development of econometric models which link
these data to the spread rate estimates. The addition of multiple spatial
covariatesmight also require a reformulation of the portfoliomodel to a
multi-objective programming task. Several studies have demonstrated
the feasibility of multi-objective approaches in portfolio analysis
(Konno et al., 1993; Sealey, 1978). Overall, the addition of multiple
decision-making objectives, such as preferred allocations of survey
resources to specific locations on the landscape driven by socio-
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economic and decision-making considerations, could help accommo-
date real-life tradeoffs faced by pest management professionals in
monitoring andmanaging alien pest invasions and promote acceptance
of the utility of a portfolio-based approach.

5. Conclusions

Many areas in biosecurity planning face a problem of balancing the
allocation of surveillance resources against the capacity to account for
low-probability cases of long-distance pest incursions. Themethodology
presented in this study provides means to account for a geographical
diversification of pest surveillance activities and enables decision-
makers to explore the trade-off between the desired level of pest survey
performance, tolerated levels of uncertainty, and the degree of
geographical diversification of surveillance activities. Overall, the
approach is generic and can be a useful tool in managing uncertainties
associated with emerging alien invasive threats, especially when
knowledge about a new invader is scarce.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecolecon.2014.04.024.
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