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1. Introduction 
 

Current methods for the detection and identification 
of pesticide residues on agricultural and landscape plants 
require time-consuming and expensive chemical analyses [1-
4]. This problem causes delays for agricultural land managers 
in making important crop-management and pest-control 
decisions involving pesticide applications. The presence of 
pesticide residues on food crops also is a major health concern, 
especially on fresh fruits and vegetables because of the broad 
impacts of health laws regulating the safety of plant-related 
food and fiber products in commercial markets. The 
inadequacies of current conventional chemical-analysis 
methods, such as gas chromatography-mass spectroscopy (GC-
MS) for determining the identities of pre-harvest and 
postharvest crop residues on the surfaces of plant products, has 
produced a strong need for new more rapid chemical-detection 
methods to effectively identify pesticide residues on plants in 
crop fields and in post-harvest storage facilities prior to plant-
product introductions into commercial markets. 

 Many electronic sensor devices have been evaluated 
for specific capabilities of detecting insecticides in the 
environment. Most previous insecticide-detection research has 
focused on organophosphate (OP) insecticides because this 
broad class of organic compounds is highly toxic to mammals, 
as powerful cholinesterase inhibitors (nerve toxins), resulting 
in significant threats to the health of humans and the 
environmental due to widespread commercial use of OP-
insecticides on agricultural lands [2]. Organothiophosphates 
(P�S, P=S) are related to phosphoryl-type (P=O) 
organophosphates that include such lethal nerve and chemical 
warfare agents as VX, Soman and Sarin. Organophosphate 

residues on agricultural crops, livestock, and poultry products 
have the potential to migrate into aquifers and contaminate 
water resources following direct applications to plants and 
soils or from accidental spills or leaks from storage tanks and 
waste repositories. Most OP insecticides are non-persistent, 
but a few OP-contaminants, such as azinphos methyl, have 
long half-lives and may persist in the environment for long 
periods of time (up to four years). Insecticides have been 
detected using a wide range of techniques, including 
electrochemical [5-8], luminescent [9-11], fluorescent [12-14], 
optical [15], polymer [16], hydrogels [17], and surface 
acoustic wave (SAW) electronic-nose sensors [18,19] as well 
as immunological (antibody) [20-23], enzyme-linked 
immunosorbent assay (ELISA) [24], enzymatic biosensor [25], 
microbial biosensors [26] and fiber optic biosensors [27,28]. 

Electronic chemical-detection methods are ideally 
suited for repeated, rapid detections needed for making 
pesticide-management decisions and for monitoring pesticide 
levels on crops for regulatory safety enforcements. In 
particular, portable electronic-nose (e-nose) devices are 
especially useful for these applications due to the capability of 
rapid detections, sensor recovery, high reproducibility, 
accurate determinations, and high sensitivity to polar volatile 
organic compounds (VOCs) typical of most commercial 
pesticides. This study is part of a series of efficacy studies to 
assess the relative suitability and capabilities of e-nose devices 
to detect agricultural pesticide residues in various commercial 
plant-production settings. The current paper reports on the 
development and testing of methods for use with an 
intrinsically conducting polymer (ICP) e-nose technology to 
potentially identify insecticide residues on plant surfaces in 
agricultural fields. The objectives of this study were to 1) 
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determine the capability and effectiveness of ICP e-nose 
technology to discriminate between different insecticide 
residues in vitro (as the first testing phase before analysis of 
residues on plant surfaces in the field), based on analysis of 
headspace volatiles, 2) assess the tentative potential usefulness 
of these methods, followed by subsequent field tests on plant 
surfaces, for making crop-management decisions involving the 
application and use of insecticides for pest-control applications 
and 3) a minor objective to determine whether these e-nose 
methods provide some indications of relatedness between 
individual insecticide types, based on vapor characteristics and 
interactions with the sensor array. Some brief preliminary 
results of this study were published previously [29,30]. 
 
2. Experimental Details 
 

Eleven insecticides from several different chemical 
classes, having different modes of actions against various 
insect pests, were selected for this study. The insecticides, 
analyzed and compared using an e-nose type electronic aroma 
detection (EAD) technology [31], included acephate (Acep), 
carbaryl (Carb), cyfluthrin (Cyfl), diazinon (Diaz), fipronil 
(Fipr), imidacloprid (Imid), lindane (Lind), malathion (Mala), 
methoxyfenozide (Mefo), methyl parathion (Mpth), and 
spinosad (Spin). The formulations, chemical classes, modes of 
action, and volatility of each insecticide are presented in Table 
1. All insecticides were obtained in formulations that were 
commercially available from manufacturers, including 
Monsanto Co. (Acep, Diaz), Bayer AG (Carb, Cyfl), BASF 
Corp. (Fipr), Makhteshim Agan of North America, Inc. (Imid), 
Drexel Chemical Co. (Lind), PBI/Gordon Corp. (Mala), Dow 
AgroSciences LLC (Mefo, Spin), and Cheminova Agro 

(Mpth), rather than from technical grade preparations, to 
facilitate practical efficacy testing of formulations actually 
used in insect-control applications for agronomic crop 
production.  
 
2.1. Sample preparation and prerun procedures  

Small aliquots (5-10 µl) of each insecticide type were 

analyzed separately by placing them into 14.8 cm3 uncapped 
glass vials inserted into a 500 ml Pyrex glass sampling bottle 
no. 1395 (Corning Inc., Corning, NY) fitted with reference air, 
sampling, and exhaust ports on a polypropylene bottle cap. 
Reference air entered the sampling bottle through a 3 mm 
polypropylene tube extending to just above the bottom of the 
sampling bottle. The sampling bottle was held in the sampling 
chamber within the instrument at a constant air temperature of 
25 °C and purged with moisture-conditioned reference air for 2 
min prior to building headspace. The sampling bottle was 
sealed and volatiles from each insecticide analyte were 
allowed to build headspace and equilibrate for 30 min prior to 
each run.  Concentrations of individual insecticides in the 
sampling bottle, following the building of headspace volatiles, 
ranged from approximately 5-15 ppm, near or below inhalation 
LD50 toxicity levels in rats for most insecticides tested. Prerun 
tests were performed as needed to determine sample air 
relative humidity compared with that of reference air. 
Reference air was set at 4% relative humidity at 25 °C. The 

sampling bottle cap and exhaust port were opened between 
runs to purge the previous sample with conditioned reference 
air. A reference library (recognition file) for pesticide types 
was constructed using neural net training by defining vapor 
classes using reference databases of known pesticides. This 
recognition file was used to identify unknown samples.  

Table 1. Chemical classes, formulations and vapor pressure characteristics of insecticides determining chemical interactions with the CP 
32-sensor array of the A32S e-nose. 
 

Common name Trade name Classa Chemical formula Formulationb VPc Toxicityd 

Acephate Orthene OP 
 

C4H10NO3PS 75% WP 2.0 × 10-1 >60 

Carbaryl Sevin CB 
 

C12H11NO2 80% WP 2.5 3.8 

Cyfluthrin Baythroid PY 
 

C22H18Cl2FNO3 12.7 % EC 4.4 × 10-3 >1.7 

Diazinon Spectracide OP 
 

C12H21N2O3PS 14% GR 9.7 × 10-2 >2.5 

Fipronil Combat PP C12H4Cl2F6N4OS 2.15% GR 3.7 × 10-4 0.7 

Imidacloprid Provado NN C9H10ClN5O2 75% WP 4.0 × 10-7 3.2 

Lindane Silvanol OC C6H6Cl6 1.65 EC 4.8 × 10-2 NH 

Malathion Malatox OP 
 

C10H19O6PS2 5% EC 1.6 × 10-2 >5.2 

Methoxyfenozide Intrepid DH C22H28N2O3 2% F 1.4 × 10-3 >0.9 

Methyl parathion Penncap OP C10H14NO5PS 21.2 % MEF 1.3 × 10-3 0.12 

Spinosad Tracer SP C41H65NO10 80% SC 3.2 × 10-5 >17 

 

a Chemical class: CB = carbamate, DH = diacylhydrazine, NN = neonicotinoid, OC = organochlorine, OP = organophosphate, PP = 
phenylpyrazole, PY = pyrethroid, SP = spinosyn. 
b Formulation abbreviations: EC = emulsifiable concentrate, F = flowable, GR = granular, MEF = microencapsulated flowable; WP = 
wettable powder, SC = suspension concentrate. 
c Vapor pressure (VP) expressed in millipascals (mPa) at 20 °C. 
d Toxicity by inhalation LC50 (ppm for 15 min by rats); NH = considered nonhazardous by inhalation. 
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2.2. Instrument configuration and run parameters 
Electronic-nose analyses of insecticides were 

conducted with an Aromascan A32S (Osmetech Inc., Wobum, 
MA) intrinsically conducting polymer (ICP) e-nose instrument 
with 32 sensors in the sensor array consisting of polypyrrole, 
polyanaline, and polythiophene sensor types with 15 volts 
across sensor paths. Eight sensors, (including sensors 11, 12, 
21-23, 26, 31 and 32) that did not respond or did not contribute 
to the discrimination of pesticide volatiles, were turned off. 
The response sensitivities of individual sensors, measured as 
percent changes in electrical resistance response across sensor 
paths relative to base resistance (%∆R/Rbase), varied with the 

type of polymer used in the sensor matrix coating, the type of 
proprietary ring substitutions used to modify its conductive 
properties, and the type of metal ions used to dope the matrix 
to improve and modulate sensor response. Detailed analyses 
indicating relative analyte sensitivities for individual sensors in 
the array to various analyte types (representative of different 
chemical classes) were reported previously [31]. The block 
temperature of the sensor array was maintained at a constant 
30 °C. Reference air was preconditioned by passing room air 

sequentially through a carbon filter, silica gel beads, inline 
filter, and Hepa filter to remove organic compounds, moisture, 
particulates, and microbes, respectively, prior to humidity 
control and introduction into the sampling bottle. The flow rate 
of sampled air at the sampling port was maintained at ~702 
cm3/min using a calibrated ADM 3000 flow meter (Agilent 
Technologies, Wilmington, DE). Sensor surfaces were purged 
between runs using a 2% isopropanol wash solution. The 
instrument was interfaced with a personal computer via an 
RS232 cable and controlled with Aromascan Version 3.51 
software. The instrument plumbing (reference air flow route 
through the instrument) was altered from conventional 
architecture and specifically configured for static sampling of 
the headspace by allowing air flow, maintained at 605 cm3/min 
flow rate, to be released out of the external vent port of the 
instrument during analytical runs, and closing the exhaust port 
on the sampling bottle so that headspace volatiles were taken 
by vacuum (suction) from a homogeneous static air mass 
within the sampling bottle. 
 
2.3. Data acquisition parameters and run schedules  

Data from the sensor array were collected at 1 s 
intervals using a 0.2 detection threshold (y-units), a 15�20 y-
max graph scale, and with a pattern average of five data 
samples taken per run during data acquisition. A uniform run 
schedule was used consisting of reference air 20 s, sampling 
time 90 s, and wash 20 s, followed by 90 s of reference air for 
a total run time of 220 s. A 2 min reference air purge was 
completed between runs after each sample was removed from 
the sampling bottle. 
 
2.4. Construction of reference libraries and validation 

A vapor signature reference library was constructed 
from eleven known reference insecticides included in this 
study. All database files were linked to specific (designated) 
vapor classes defining each sample type or category. All 
databases were constructed from sensor-array output data 
collected during a 20 s interval, 85-105 s into the run cycle, 
immediately prior to the closing of the reference air valve to 
the sensor array. The following recognition network options 
(neural net training parameters) were used for each training 
session: training threshold = 0.60, recognition threshold = 

0.60, number of elements allowed in error = 5, learning rate = 
0.10, momentum = 0.60, error goal = 0.010 (P = 0.01), hidden 
nodes = 5, maximum iterations (epochs) = 10,000, using 
normalized input data, not actual intensity data. Some 
parameters were modified for improvement of recognition 
accuracy. A typical training required 2�35 min, depending on 
the size of the database applied, using an IBM-compatible 
personal computer with a minimum of 64 mb of RAM and 350 
MHz run speed. Neural net trainings were validated by 
examining training results that compare individual database 
files for compatibility or by similarity matches to each specific 
vapor class by test-assigned vapor class distributions among 
related vapor classes included in each library. The specific 
detailed analytical methods used for identification of 
unknowns, data processing, and statistical determinations 
followed the procedures and specifications indicated by 
Wilson et al. [31]. 
 
2.5. Principal component analysis 

Detailed comparisons of relatedness of vapor classes 
(insecticide types) were determined using principal component 
analysis (PCA) algorithms provided by the Aromascan 3.51 
software. Three-dimensional PCA was used to distinguish 
between insecticide headspace volatiles released from eleven 
insecticide types. The mapping parameters for three-
dimensional PCA were: iterations = 30, units in Eigen values 
(%), and use of normalized input data. The degree of 
relatedness between insecticide vapor classes was determined 
using three-dimensional principal component analysis (PCA) 
of headspace volatiles. PCA allowed the determination of the 
vapor relatedness between individual insecticides via pairwise 
comparisons that generated a quality factor (statistical 
significance value) for each vapor comparison and a vapor 
map showing a 3-dimensional plot of the relatedness of 
insecticide vapors. The relatedness of vapor profiles between 
insecticides provided some indications of similarity in vapor 
elements and chemical characteristics as well as interactions 
with the sensor array. 
 
3. Results and Discussion 
 

The insecticides tested in this study, similar to other 
pesticide types, consisted of stronger polar functional groups 
that tended to produce more intense sensor responses than 
were observed previously for headspace volatiles derived from 
microbial biotic sources [31], consisting mostly of primary and 
secondary metabolic products of oxidative and fermentative 
respiration. As a consequence, the sensor array was more 
sensitive to insecticide residues that could be detected at lower 
concentrations in the 5-10 ppm range. Sometimes the high 
polarity of certain pesticides resulted in stronger binding of 
headspace volatiles to individual sensors that caused 
temporary sensor inactivation or overloaded responses that 
were not rapidly attenuated because the analyte could not be 
easily removed from the surface of some sensors during the 
wash cycle between analytical runs. In extreme cases, some 
sensors could be permanently inactivated by an analyte that 
was allowed to build to concentrations that were too high for 
the sensor array. In such cases, several factors had to be 
considered prior to analysis including the type of insecticide 
being analyzed, the concentration (application rate) and total 
amount of insecticide residues previously applied to crop 
surfaces, the quantity of sample (e.g. leaf surface containing 
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the pesticide residue) placed in sampling bottle for analysis, 
and the time allowed for the sample to build headspace 
volatiles of the pesticide analyte. 

Certain polar insecticides and other pesticides 
previously have been determined (prior to this study) to be 
associated with the inactivation of individual CP-sensors 
included sensors 11, 12, 21-23, and 26) in the A32S e-nose 
instrument. Analyses of highly-polar insecticide types should 
be done carefully to avoid overloading the sensor array, 
leading to potentially permanent sensor damage and 
inactivation of certain sensor types. The optimum sample size 
for individual chemical classes of pesticides should be 
determined prior to data analyses, starting with a small sample 
pesticide volume of 1-10 µl at ≤1 ppm placed on an inert 

surface (small glass vial), and testing increasing sample sizes 
until the minimum effective detection concentration is reached. 
The A32S e-nose has a detection limit that varies depending on 
chemical analyte types, but generally ranges below 1 ppm for 
most pesticide compounds (including insecticides) detectable 
by the majority of sensors in the sensor array. Concentrations 
of pesticide residue samples well above (more than 10× greater 

than the minimum detection concentration) may be avoided by 
diluting the residue sample with an appropriate solvent if 
necessary prior to analysis. 
 
3.1. Identification of insecticide analytes  

The Aromascan A32S electronic nose provided 
consistent correct identifications for 10 of the 11 insecticide 
residue types analyzed based on differences in sensor-array 
responses to headspace volatiles (Table 2). Only 
methoxyfenozide (Intrepid) could not be consistently identified 
at a high level of confidence. Individual sensor responses to 
each insecticide varied widely within the 2 to 8 sensor-
intensity range with good precision as indicated by low 
standard deviations (SD) of mean values. Sensors 24, 25, and 
30 had no responses to some of the insecticides. In particular, 
sensor 24 could only detect acephate and lindane among the 
eleven insecticides, whereas sensors 25 and 30 were unable to 
detect the same five insecticides including fipronil, 
imidacloprid, methoxyfenozide, methyl parathion, and 
spinosad. 

The instrument correctly identified individual 
insecticide residues at frequencies ranging from 82-99% 
among all insecticide residue analytes tested with the 
exception of methoxyfenozide (Intrepid) of the 
diacylhydrazine chemical class which was correctly identified 
in only 73% of samples analyzed. Some samples of 
methoxyfenozide could not be identified and were classified as 
unknown due to unexplained variations in vapor signature 
patterns. For methoxyfenozide samples that were unidentified, 
the ANN algorithm could not assign the vapor profile to a 
majority vapor class present in the reference library. Some 
significant vapor elements in the Intrepid profile were assigned 
to vapor classes of other insecticides. This resulted in a vapor 
class distribution that was allocated more widely among other 
vapor classes. However, none of the insecticide identifications 
were determined to be incorrect or ambiguous, defined as 
determinations that resulted in an insecticide residue type 
being assigned to a different majority vapor class from 
separate analyses of sample replications. 
 
 
 

3.2. Discrimination between insecticide residues 
The discrimination of vapor profiles between 

insecticide residue types was further evaluated following 
neural net training validation by determining the precise 
breakdown of vapor class distributions of principal vapor 
components present in headspace volatiles among the eleven 
insecticides as summarized in Table 3. Vapor class 
distributions indicate (on a percentage bases) the proportion of 
vapor components, present in the headspace volatiles of each 
insecticide type, that are in common with principal vapor 
elements of volatiles from other insecticide types present in the 
reference library. Thus, the degree of overlap among principal 
vapor elements from volatiles of each insecticide type provides 
some indication of relatedness between insecticide-residues 
volatiles based on the chemical nature of volatile principal 
components present in each residue type. All of the insecticide 
types identified correctly among the eleven types had a 
majority proportion of the vapor profile that was assigned to 
the principal vapor element characteristic of each individual 
insecticide type.  

The range of vapor class distributions attributed to an 
individual principal vapor element characteristic of each 
insecticide type ranged from 64.7% in methoxyfenozide 
(Intrepid) samples to 92.3% in acephate (Orthene) residue 
samples. Methoxyfenozide residues had a relatively large 
proportion of secondary vapor elements in common with 
fipronil (37.5%), diazinon (18.0%), and methyl parathion 
(16.8%). Consequently, methoxyfenozide residues were 
determined to have an unknown vapor profile and were not 
identified. The proportion of secondary vapor elements 
attributed to vapor classes besides the principal vapor elements 
ranged from <1% for acephate and spinosad to highs of >25% 
for fipronil and methoxyfenozide and 50.4% for methyl 
parathion in common with methoxyfenozide. 

The number of principal and secondary vapor 
elements present in the vapor profiles of individual insecticide 
residues ranged from four in cyfluthrin to seven in about half 
of the insecticide residue types with the average number of 
total vapor elements in common between insecticide residues 
being approximately 6 to 7 shared vapor elements. Most of the 
secondary vapor elements in common between insecticide 
residues contributed to ≤ 11% of the vapor class distribution 

for most insecticide types with some few exceptions for 
diazinon (19.8% of vapor secondary elements in common with 
lindane), fipronil (26.6% and 24.8% of secondary elements in 
common with methoxyfenozide and spinosad, respectively), 
lindane (14.2% secondary elements in common with 
spinosad), and malathion (13.7% and 13.9% of secondary 
elements in common with lindane and methy parathion). 
 
3.3. Principal component analysis 

An analysis of eleven insecticide residues using PCA 
by pairwise comparisons of headspace volatiles (in all possible 
combinations) provided greater details of possible chemical 
relatedness and differences between individual insecticide 
types based on sensor response patterns (vapor profiles). The 
results of relatedness between headspace volatiles of 
insecticide residues from different chemical classes were 
measured using a statistical algorithm called quality factor 
(QF) statistical analysis that determines pairwise distances 
between vapor profiles of insecticide types using Euclidean 
distance units of measurement. The greater the QF value 
determined from pairwise comparisons of volatiles, the greater  
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Table 2. Sensor outputs from the A32S electronic nose sensor array based on conductive polymer analyses of headspace volatiles released from eleven insecticide residues in vitro. 
 

 Sensor numbera 
Insecticide       1       2       3       4       5       6       7       8       9      10      13      14 

Acephate 3.60±0.04 3.17±0.04 3.62±0.04 3.14±0.01   3.15±0.01 3.13±0.01 3.18±0.02 3.31±0.02 2.98±0.03 2.61±0.04 5.62±0.04 5.53±0.04 

Carbaryl 4.33±0.04 3.93±0.03 4.45±0.03 2.53±0.01 2.50±0.01 2.53±0.01 4.66±0.01 4.75±0.02 4.06±0.01 3.63±0.01 3.93±0.02 3.65±0.02 

Cyfluthrin 4.55±0.04 4.13±0.03 4.66±0.04 3.64±0.01 3.63±0.01 3.61±0.01 4.32±0.02 4.48±0.02 3.58±0.02 2.97±0.01 3.89±0.01 3.80±0.01 

Diazinon 4.51±0.01 4.14±0.01 4.71±0.01 3.22±0.02 3.13±0.02 3.22±0.02 4.72±0.01 4.77±0.01 3.93±0.01 3.26±0.03 4.37±0.04 4.35±0.06 

Fipronil 4.85±0.02 4.39±0.02 5.03±0.02 2.84±0.01 2.89±0.02 2.85±0.02 5.47±0.03 5.41±0.02 4.47±0.02 4.32±0.03 3.92±0.01 3.62±0.01 

Imidacloprid 4.75±0.02 4.30±0.03 4.96±0.02 2.71±0.01 2.69±0.01 2.74±0.01 5.76±0.02 5.53±0.02 4.86±0.02 4.95±0.03 3.78±0.01 3.26±0.01 

Lindane 4.35±0.06 4.04±0.05 4.72±0.07 3.35±0.02 3.25±0.02 3.33±0.03 4.93±0.02 4.69±0.01 5.19±0.02 5.05±0.01 5.33±0.10 5.09±0.14 

Malathion 4.25±0.04 3.82±0.03 4.37±0.02 2.66±0.01 2.67±0.02 2.64±0.01 4.63±0.03 4.75±0.03 4.29±0.04 3.74±0.02 3.68±0.02 3.47±0.02 

Methoxyfenozide 5.16±0.01 4.66±0.01 5.33±0.01 2.71±0.01 2.71±0.01 2.74±0.02 5.59±0.02 5.63±0.01 4.67±0.02 4.35±0.02 3.70±0.02 3.36±0.02 

Methyl parathion 5.07±0.02 4.57±0.02 5.27±0.02 2.68±0.02 2.68±0.01 2.67±0.02 5.65±0.01 5.58±0.01 4.65±0.02 4.51±0.03 3.75±0.01 3.34±0.02 

Spinosad 4.27±0.03 3.92±0.03 4.63±0.02 2.52±0.01 2.44±0.01 2.47±0.01 5.09±0.00 5.00±0.01 5.45±0.00 5.64±0.03 6.42±0.01 6.43±0.02 

 Sensor numbera 
Insecticide      15      16      17      18      19      20      24      25      27      28      29      30 
Acephate 5.31±0.04 5.48±0.04 4.49±0.07 4.73±0.06 4.34±0.06 5.59±0.11 3.58±0.03 3.74±0.03 4.56±0.01 4.85±0.02 4.99±0.02 5.31±0.10 

Carbaryl 3.99±0.01 3.75±0.02 5.00±0.02 5.12±0.01 4.80±0.01 4.30±0.06 NR 4.95±0.02 6.28±0.01 6.10±0.01 5.84±0.01 4.93±0.02 

Cyfluthrin 3.71±0.01 3.88±0.01 4.37±0.04 4.65±0.03 4.40±0.02 4.38±0.04 NR 4.97±0.02 5.26±0.01 5.45±0.02 5.85±0.02 5.82±0.10 

Diazinon 4.22±0.01 4.16±0.04 4.04±0.03 4.25±0.02 4.01±0.03 3.35±0.05 NR 5.25±0.03 5.98±0.01 5.97±0.02 5.95±0.03 4.52±0.05 

Fipronil 3.99±0.01 3.82±0.02 5.53±0.03 5.63±0.02 5.33±0.02 4.28±0.07 NR NR 7.43±0.04 7.12±0.07 6.84±0.08 NR 

Imidacloprid 4.06±0.01 3.68±0.01 5.50±0.02 5.54±0.01 5.28±0.01 4.47±0.05 NR NR 7.67±0.03 7.06±0.05 6.44±0.03 NR 

Lindane 5.85±0.09 5.57±0.11 2.78±0.10 3.05±0.09 2.87±0.09 3.73±0.10 3.46±0.04 4.29±0.04 4.27±0.06 4.06±0.03 4.28±0.01 2.49±0.16 

Malathion 3.61±0.01 3.59±0.02 4.32±0.06 4.49±0.05 4.20±0.06 4.65±0.07 NR 5.68±0.07 6.17±0.03 6.37±0.04 6.48±0.04 5.48±0.04 
Methoxyfenozide 3.83±0.01 3.56±0.02 5.41±0.02 5.51±0.02 5.23±0.01 3.88±0.06 NR NR 7.59±0.05 7.33±0.08 7.07±0.07 NR 

Methyl parathion 3.90±0.01 3.57±0.01 5.29±0.02 5.38±0.03 5.12±0.02 3.92±0.06 NR NR 7.81±0.06 7.46±0.09 7.14±0.07 NR 

Spinosad 6.50±0.03 6.40±0.02 3.61±0.04 3.76±0.04 3.56±0.03 4.28±0.05 NR NR 6.00±0.01 5.98±0.05 5.66±0.08 NR 
 

a Each sensor in the sensor array was coated with a different intrinsically conducting polymer composed of either polypyrrole, polyanaline, or polythiophene derivatives that were modified by 
proprietary ring-substitutions with different functional groups to impart unique conductive properties (resistance responses to VOCs). All conducting polymers were doped with specific metal ions to 
improve and modulate polymer conductivity and sensor sensitivity. Values for each sensor are normalized data (transformed from raw data of sensor intensities) expressed as mean ± SD. NR indicates 

no sensor response was produced or recorded for this insecticide. 
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the difference (or distance) between the vapor signature 
profiles of the two vapors being compared. In terms of 
statistical determinations, a QF value of 2.0 is roughly 
equivalent to a statistical difference at P = 0.10 level of 
significance. The relatedness among the eleven insecticide 
types varied greatly based on Euclidean distance as indicated 
in Table 4. QF values ranged from 0.1 to >70, indicating a 
very wide range of chemical relatedness between individual 
insecticides. Among the eleven insecticides compared, a QF of 
0.1 indicated a very similar vapor profile and close chemical 
relationship between diazinon and malathion, both 
organophosphates, based on PCA. However, other pairwise 
comparisons also indicated very similar vapor profiles between 
fipronil and imidacloprid, fipronil and methoxyfenozide, and 
imidacloprid and methoxyfenozide, even though each of these 
insecticides within each pair are from different chemical 
classes. Fipronil and imidacloprid share chlorinated phenyl or 
pyridyl aromatic groups and structurally-related imidazole or 
pyrazole groups which could account for the relatedness of 
vapor signatures. A close vapor profile also was found 
between methoxyfenozide and methyl parathion insecticides 
from different chemical classes. Nevertheless, methyl 
parathion and methoxyfenozide contain phenyl and multiple 
methyl groups in common within their chemical structure that 
may contribute to the similarities in vapor signature patterns. 

Other PCA data indicated very large differences in 
vapor signature patterns between carbaryl and fipronil, 

carbaryl and spinosad, cyfluthrin and fipronil, cyfluthrin and 
methyl parathion, diazinon and fipronil, diazinon and 
imidacloprid, imidacloprid and malathion, and malathion and 
methoxyfenozide, in which the insecticides of each pair were 
from different chemical classes. By comparison, very large 
differences were determined between acephate and malathion, 
both organophosphates, but with quite different chemical 
structures. Acephate contains an acetamide group, a single 
sulfanyl group, and a shorter carbon chain compared to 
malathion. 

The relatedness between vapor profiles of eleven 
pesticide residues based on 3-dimensional PCA, was graphed 
in the form of an vapor map (Figure 1). The percentages of the 
total variance for this analysis, accounting for the variability 
explained by each orthogonal principal component (PC), are as 
follows: PC 1 = 75.2%; PC 2 = 23.4%; and PC 3 < 0.5%, 
representing the x-, y-, and z-axis of the vapor map, 
respectively. A high proportion (98.6%) of the variation was 
explained by the first two principal components (PC 1 and PC 
2). Almost all of the data points for individual samples of each 
insecticide residue are closely clustered for most insecticides 
on the vapor map except for lindane and cyfluthrin. One fairly 
wide outlying data point for lindane occurred close to acephate 
from a different chemical class. Cyfluthrin data points had a 
moderately wide distribution pattern closest to malathion, but 
significantly unrelated. The close clustering of data points for 
individual insecticides indicates very good precision between 

Table 3. Distribution of electronic-nose vapor class membership components among eleven insecticide analyte types based on ANN 
training-algorithm and database validations. 
 

Insecticide 

Vapor class distribution (%)a 

Insecticide analytes (abbreviations)b 

Acep Carb Cyfl Diaz Fipr Imid Lind Mala Mefo Mpth Spin 

Acephate 92.3 4.3 � 0.8 8.9 2.0 2.3 2.5 � � � 

Carbaryl 2.0 86.5 � 7.3 � 8.1 � 2.3 9.9 � � 

Cyfluthrin � � 86.4 10.1 4.1 � � 6.8 � � � 

Diazinon 3.0 10.6 2.3 90.6 � � 19.8 � 8.4 � � 

Fipronil 12.2 � 2.5 � 87.6 � � � 26.6 � 24.8 

Imidacloprid 2.0 6.8 � � 2.0 89.3 � 1.5 2.8 � 3.3 

Lindane 1.8 � � 3.3 � 1.5 91.3 1.3 � 9.6 14.2 

Malathion � 5.1 7.1 � � 4.8 13.7 87.8 � 13.9 � 

Methoxyfenozide � 5.7 � 18.0 37.5 5.3 � � 64.7 16.8 8.5 

Methyl parathion � 5.7 1.8 � � � 7.7 3.4 50.4 71.9 � 

Spinosad � � 2.0 0.8 10.6 9.1 7.3 � 3.8 � 87.7 

 

a Mean percent vapor class membership distributions indicated for each insecticide analyte type; values are read from left to right (by row), 
not top to bottom (by column). Insecticide analyte abbreviations correspond to insecticide types indicated in column 1. Values in bold 
indicate the major principal component vapor class elements that are representative and unique to each insecticide type. 
b Insecticide abbreviations: acephate (Acep), carbaryl (Carb), cyfluthrin (Cyfl), diazinon (Diaz), fipronil (Fipr), imidacloprid (Imid), lindane 
(Lind), malathion (Mala), methoxyfenozide (Mefo), methyl parathion (Mpth), spinosad (Spin). 

 

http://www.cognizure.com/pubs


 

7 

 

Chemical Sensors                                                                           Chemical Sensors 2014, 4: 3 

Cognizure 
www.cognizure.com/pubs    © Cognizure. All rights reserved. 
 

e-nose analytical runs which is typical of CP data with good 
sample analytes and use of the static air sampling method 
(analyzing headspace that is not diluted by sampling air) rather 
than dynamic stripping in which the analyte is continuously 
swept by sampling air that dilutes analyte concentrations as a 
result of perturbations in carrier-gas mixing with analyte 
headspace. The high precision of analytical runs also provided 
higher levels of significant differences in sample (analyte) 
types. High levels of significant differences between analyte 
types are not always readily obvious from data point 
distributions on vapor maps due to 3-dimensional mapping 
perspectives that are not fully discernible on 2-dimensional 
(flat) graphs. The differences are more readily observed using 
analytical software that allows the rotation of 3-dimensional 
vapor maps to view different perspectives for indications of 
data-point separations. Thus, statistical values provide a more 
accurate indication of analyte differences than visual 
differences observed from a vapor map. 

The inability to identify some samples of 
methoxyfenozide may have been due to chemical 
decomposition of some sample residues resulting in variations 
in vapor signatures patterns derived from collective sensor 
array responses to headspace volatiles. Other possible reasons 
why methoxyfenozide could not be consistently identified may 
include insufficient volatiles for analysis, the lack of sufficient 
principal components in adequate quantities to make up a 
representative vapor signature profile for this particular 

insecticide, or the presence of particular VOCs to which the 
A32S e-nose sensors were not sufficiently sensitive, thus 
unable to generate a distinctive pattern of sensory outputs. The 
A32S instrument sensor array generally has detection limits 
that are below 1 ppm for most strongly polar compounds such 
as the insecticides tested here. Thus, the concentrations of 
volatiles released from insecticide residues on crop surfaces 
usually are well above the detection limits of the instrument 
even many days after pesticide application. As a consequence, 
any possible challenges to the capability of the instrument to 
identify and discriminate insecticide residues are more likely 
to be due to the occurrence or presence of pesticide mixtures 
from multiple applications of different pesticides rather than 
instrument-detection limitations. The presence of plant 
volatiles should be relative constantly (of one type) due to the 
common practice of monocultural farming. 

Generally, e-noses are set to a level of specificity (run 
parameters) during neural net training that preclude false 
positives and result in unknown determinations for samples 
that cannot be recognized or that have vapor profiles that are 
missing from the reference vapor library. Diagnostic 
specificity for discriminations can be improved even further by 
building e-nose methods and libraries that are specific 
(application-specific libraries) to particular sample types so 
that false positive determination are exceedingly rare. Also, the 
collection of known sample types from the sampling area (crop 
field) to create vapor reference libraries, representative of the 

Table 4. Pairwise-comparisons of relatedness between vapor profiles of eleven insecticide types based on 3-dimensional PCA of headspace 
volatiles. 

 

Vapor class Vapor class QF valuea Vapor class Vapor class QF valuea 

Acephate Carbaryl 56.8** Diazinon Imidacloprid >900**** 
 Cyfluthrin 11.3**  Lindane 17.3** 
 Diazinon 72.0**  Malathion <0.1 
 Fipronil 101.6***  Methoxyfenozide 37.3** 
 Imidacloprid 126.2***  Methyl parathion >900**** 
 Lindane 123.6***  Spinosad 25.4** 
 Malathion >900**** Fipronil Imidacloprid <0.1 
 Methoxyfenozide 78.4**  Lindane 367.6*** 
 Methyl parathion 48.2**  Malathion 409.7**** 
 Spinosad 80.7**  Methoxyfenozide 3.4* 
Carbaryl Cyfluthrin 7.6*  Methyl parathion <0.1 
 Diazinon 13.3**  Spinosad 58.1** 
 Fipronil >900**** Imidacloprid Lindane 116.0*** 
 Imidacloprid 186.7***  Malathion >900**** 
 Lindane 48.9**  Methoxyfenozide <0.1 
 Malathion 50.4**  Methyl parathion 2.2* 
 Methoxyfenozide 95.9**  Spinosad 55.1** 
 Methyl parathion 31.0** Lindane Malathion 812.5**** 
 Spinosad >900****  Methoxyfenozide 71.5** 
Cyfluthrin Diazinon 3.4*  Methyl parathion 151.8*** 
 Fipronil >900****  Spinosad 52.4** 
 Imidacloprid 202.8*** Malathion Methoxyfenozide >900**** 
 Lindane 10.5**  Methyl parathion 399.4*** 
 Malathion 33.4**  Spinosad 633.6**** 
 Methoxyfenozide 233.4*** Methoxyfenozide Methyl parathion 1.2 
 Methyl parathion >900****  Spinosad 28.1** 
 Spinosad 14.1** Methyl parathion Spinosad 45.8** 
Diazinon Fipronil >900****    
      

 
a Quality factor significant difference levels between vapor classes: * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001. The 
percentages of the total variance, accounting for the variability explained by each orthogonal principal component (PC), are as follows: PC 1 
= 75.2%; PC 2 = 23.4%. Statistical analyses for pairwise-comparisons were performed for all possible combinations of insecticide types. 
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region from which future unknown insecticide residue samples 
will be collected, reduces the likelihood that geographical 
variations in individual sample types will not affect 
determination of insecticide residue sample unknowns. 
Another way to improve on the e-nose for the detection of a 
specific chemical group (such as particular pesticide types) is 
to modify the types of sensors present in the sensor array to 
include those that are more sensitive and helpful in the 
identification (discrimination) of chemicals in the particular 
chemical class of interest. Some e-nose instruments have a 
large library of sensor types available that can be substituted to 
improve the overall sensitivity and effectiveness of chemical 
discriminations by the sensor array. Thus, e-nose instrument 
sensitivity is probably determined more by the selection of 
sensors in the array (based on the expected chemical-detection 
application) rather than the device design (sensors and 
transducers) of the instrument. 

Some limited indications of chemical relatedness of 
insecticide residue types from the same and different chemical 
classes were apparent for some pairwise comparisons using 
PCA. For example, a strong chemical relatedness, based on 
vapor profiles, was found between the organophosphate 
insecticides diazinon (Spectracide) and malathion (Malatox), 
but not between other paired combinations among the four 
organophosphates tested. The presence of differences in 
chemical structure and functional groups, among individual 
insecticides within the organophosphate class, had significant 
effects on the resulting vapor signature patterns as a result of 
differential interactions and responses of individual sensors 
within the sensor array to these molecular differences between 
different organophosphates. The differential responses of the 
sensor array to molecular differences also accounted for the 
low statistical differences between pairs of insecticides from 
different functional groups. In this case, the apparent chemical 
relatedness may reflect similarities in largely nonfunctional 
side (R-) groups rather than the main toxophores that often 
functionally define insecticide chemical classes. 

A few previous studies have indicated the potential 
feasibility of using e-nose instruments to detect certain types 
of insecticides. For example, Déjous et al. [19] utilized a 

surface acoustic wave (SAW) e-nose to detect 
organophosphate in ambient air. A new experimental e-nose 
was used more recently to detect organophosphate insecticides 
on vegetables [32]. Other literature on the e-nose detection of 
pesticides on fruits, crops, and other plant surfaces are limited 
[4]. Thus, research on the detection of pesticides using e-nose 
devices particularly on field crops has just begun. 
 
4. Conclusions 
 

The current study has provided evidence to indicate 
that the CP A32S e-nose has the capability to discriminate 
between insecticide residue types (in vitro) from several 
chemical classes including organophosphates, carbamates, 
pyrethroids, phenylpyrazoles, neonicotinoids, organochlorines, 
diacylhydrazines, and spinosyn. Vapor data profiles from e-
nose analyses of insecticide residue types resulted in different 
vapor signature patterns and provided some limited indications 
of chemical relatedness between insecticide residue types. 
Thus, e-nose data should theoretically provide a means for 
discriminating insecticide residue types on plant foliage, once 
plant volatiles are added to the vapor signatures of insecticide 
residues taken from crop surfaces. Testing of the e-nose 
capabilities to detect insecticide residues on crop foliage in the 
field will be the logical next phase of this study. The capability 
of identifying insecticide residues on crops will be quite useful 
for making crop management decisions relating to insect-pest 
control. 

The identification of insecticide residues on foliar 
surfaces will require the building of application-specific 
reference libraries of each insecticide on specific types of leaf 
surfaces (plant or crop species) in order to account for the 
added plant volatiles that vary with plant species [33]. The 
reference library must contain all of the possible combinations 

 
 
Figure 1. Vapor map showing the chemical relatedness of eleven insecticide residue types using principal component analysis (PCA). The 
percentages of the total variance, accounting for the variability explained by each orthogonal principal component (PC), are as follows: PC 1 
= 75.2%, PC 2 = 23.4%, and PC 3 < 0.5%. 
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of plant species and insecticide types that may be encountered 
among collected leaf samples (containing insecticide residues) 
from crop fields to be sampled. The analysis of leaf-insecticide 
residue combinations not present in the reference database will 
likely result in unsuccessful (indeterminant) identifications due 
to the requirement for a precise match of unknown signature 
patterns with known vapor profiles in the reference library. 
Ambiguous determinations and false-positive identifications 
are rare with sample types or combinations not found within 
the reference database used for analysis [31]. Insecticide 
residues on leaf surfaces were not analyzed in this study due to 
the large permutations of possible combinations of headspace 
volatiles that are possible with multiple crop and insecticide 
types that are possible in modern crop fields. Nevertheless, the 
task is easier when application-specific reference databases are 
created (such as one for each crop species) that includes all of 
the possible insecticides to be sprayed on each individual crop 
during the growing season. This method eliminates error and 
confusion due to cross-species sampling and encountering 
plant-pesticide volatile combinations not contained in the 
reference database. However, this method does not eliminate 
the problem of sampling crops fields with multiple 
applications of different insecticides in which case reference 
databases must contain the combination of volatiles from 
multiple possible combinations of insecticide types in addition 
to the plant volatiles. More complex sampling of pesticide 
residues on crops generally requires the use of conventional 
chemical analysis equipment such as gas chromatographs and 
mass spectrometers. 

Pesticide residue-monitoring methods for insecticides 
and other pesticides on agricultural products currently are 
costly, time-consuming, and have limitations based on 
conventional sampling and analytical technique requirements. 
Thus, there is a strong demand for the development of quick, 
simple and reliable methods for the detection and identification 
of organic-based agricultural insecticide residues on plant 
surfaces. The advantage of electronic-nose devices over 
conventional analytical-chemistry instruments, typically used 
in laboratory chemical analyses, is that e-noses identify the 
source of headspace volatiles without having to identify 
individual chemical compounds present in the headspace 
analyte mixture. Utilization of portable e-nose devices in 
agricultural crop fields provides a mean to obtaining real-time 
information of insecticide residues on crops allowing 
immediate pest-control and crop-management decisions. This 
study has demonstrated that an ICP e-nose has the capability of 
identifying and discriminating insecticide residue types based 
on headspace volatiles released from inert surfaces in vitro. 

The time that insecticide residues remain on plant 
surfaces following application can affect e-nose analysis as a 
result of chemical vaporization, solar or temperature-induced 
degradation, leaching or weathering due to dilution by 
precipitation, or removal in runoff water. Thus, e-nose 
detection of insecticide residues can be attenuated over time if 
intense weather conditions remove significant amounts of 
residues to levels below instrument-detection limits. The 
maximum duration of residue detection following pesticide 
application varies not only with weathering conditions, but 
also the chemical class, volatility or vapor pressure, and initial 
concentration of the insecticide as well as the sensitivity of the 
e-nose sensor array to specific analyte residues. Successful 
insecticide residue detection and identification usually depends 
on the quality of the sample selected for analysis. Thus, 

collection of multiple samples from each crop field for 
analysis provides greater confidence in interpretations of 
analytical results. 
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