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Modeling individual tree growth by fusing
diameter tape and increment core data

Erin M. Schliep**, Tracy Qi Dong”, Alan E. Gelfand® and Fan Li?

Tree growth estimation is a challenging task as difficulties associated with data collection and inference often result in
inaccurate estimates. Two main methods for tree growth estimation are diameter tape measurements and increment cores.
The former involves repeatedly measuring tree diameters with a cloth or metal tape whose scale has been adjusted to give
diameter readings directly. This approach has the advantage that diameters can be measured rapidly. However, because of
the substantial error involved during tape measurements, negative diameter increments are often observed. Alternatively,
annual radius increment data can be obtained by taking tree cores and averaging repeated measurements of the ring
widths. Acquiring and analyzing tree cores is a time-consuming process, and taking multiple cores may have adverse effects
on tree health. Therefore, radius increment data are typically only available for a subset of trees within a stand. We offer
a fusion of the data sources, which enables us to accommodate missingness and to borrow strength across individuals. It
enables individual tree-level inference as well as average or stand level inference. Our model recognizes that tree growth
in a given year depends upon tree size at the start of the year as well as levels of appropriate covariates operating in that
year. We apply our modeling to a fairly large dataset taken from two forest stands at Coweeta Hydrologic Laboratory in
the southern Appalachians collected from 1991 to 2011. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tree growth is an important facet of forest dynamics and can inform about the health, productivity, and sustainability of a forest, as well as the
spatial and temporal variability in growth rates. Dynamics that depend on a clear understanding of tree growth include species interactions
(Swetnam and Lynch, 1993), carbon sequestration (Graumlich, 1991; DeLucia et al., 1999; Caspersen et al., 2000), population dynamics
(Webster and Lorimer, 2005), and forest restoration (Pearson and Vitousek, 2001). However, tree growth estimation is a challenging task as
difficulties associated with data collection and resultant inference often provide poor estimates. Forest mensuration and dendrochronology
are two main foci within this body of research. The former incorporates quantitative measurements, such as diameter tape measurements, of
trees within the forest stand to evaluate productivity and health (Husch et al., 2002). Dendrochronology, or “tree-ring dating,” on the other
hand, uses increment cores to determine the date in which the rings were formed and thus the age of the tree (Schweingruber, 1988; Cook
and Kairiukstis, 1990).

Diameter tape measurements and increment cores are both methods for estimating tree growth. Diameter tape measurements are obtained
by repeatedly measuring the perimeter of the convex hull of the tree with a cloth or metal tape. The diameter is then estimated by dividing
the perimeter by m (see Matérn (1956) for further discussion on this estimation). To expedite this process, measuring tapes are on the scale
of the adjusted perimeter and give diameter readings directly. This approach has the advantage that diameters can be measured rapidly.
Furthermore, it can be used for species that do not produce identifiable annual rings. Therefore, diameter measurements are usually available
for trees in the entire mapped stand.

In order to obtain a confident estimate of the growth, there has to be sufficient time elapsed between observations, usually two or three
years. As a result, annual growth at the individual level is not recorded and must be interpolated. In addition, because of the substantial error
involved during tape measurements (Biondi, 1999; Gregoire et al., 1990), negative diameter increments are often observed (Clark and Clark,
1999). A tree grows each year, so the observed declines in diameter should be viewed as measurement error and could be attributable to
shrinkage and swelling according to unstable moisture storage or nongrowth-related change in bark thickness. Perhaps more consequential is
the measurement error that results from field errors (e.g., inconsistent measuring height or the failure to keep the measuring tape on the proper
plane). Previous methods for dealing with negative increments include adding a constant to each observation such that all become positive or
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discarding the negative observations entirely. These approaches are unappealing as they introduce bias, and the resulting increment estimates
would depend on the arbitrary method used (Clark and Clark, 1999). A more natural approach would be to specify observed growth through
a measurement error model. That is, as a summation of true growth plus generic measurement error where true growth from year to year is
nonnegative, the measurement error allows for observable negative increments.

An alternative to diameter tape measurements is increment core data, which record nonnegative annual growth directly. Increment core
data introduce additional challenges and different measurement uncertainty. First, a core is ideally taken along the radius extending out from
the pith of the tree; however, in practice, the core is taken where the field technician thinks the core might be with varying accuracy. Second,
the pith is generally not in the centroid of the stem (Matérn, 1956). Modeling to attempt to remedy these inconsistencies is outside the scope
of this work. Here, we assume the radius estimate from the increment core is half the diameter from the tape measurement. Annual radius
increments are obtained by repeatedly measuring and averaging the width of rings on the core, which vary in identifiability across species.
Conifers in temperate environments, for example, usually have readily identifiable rings, whereas many diffuse porous hardwoods often have
missing rings. In addition, it is time-consuming to obtain and analyze tree cores, and taking multiple cores may have negative effects on tree
health. Coring can also induce a wounding response that modifies growth in the vicinity of the core, which can have impacts on subsequent
diameter tape measurements (Norton, 1998). Therefore, radius increment data are typically only available for a subset of trees within a stand.

In a forest stand, both sampling effort and data collection at the tree level can be irregular. The available individual level data vary in
terms of when the tree is tape measured and if/when an increment core was taken. Some trees have few diameter tape measurements and no
increment cores. In such cases, it is advantageous to borrow strength from other observed trees when making inference, while taking into
account the errors associated with each type of measurement.

The literature contains many methodologies for modeling tree-level growth within a forest. Regression methods have been used to approx-
imate mean growth rate for a population (Condit et al., 1993; Terborgh et al., 1997; Baker, 2003). However, they do not borrow strength from
the complete dataset nor do they estimate tree-to-tree differences and the variability associated with the population heterogeneity. The book
by Weiskittel et al. (2011) outlines two types of tree-level growth models: tree distance dependent and tree distance independent. Distance-
dependent models are developed under the assumption that the spatial arrangement of trees in a stand can greatly inform about competition
between trees. Tree-independent models, on the other hand, are computationally easier and benefit from both high precision and resolution.

In comparison, the Bayesian state space model for growth (Carlin et al., 1992; Calder et al., 2003; Clark et al., 2007) emerges as a more
satisfying model because it incorporates spatial dependence and exploits benefits from both radius increment and diameter census data.
Weather data can also be considered and may provide valuable information as indicated by previous research on forest response to climate
change (Bréda et al., 2006; Allen et al., 2010; Vila-Cabrera et al., 2011).

We advance this work in several ways. We present a method for tree growth estimation when the foregoing two types of data are available,
exhibiting the irregularities mentioned earlier. We offer a fusion of the data sources, which enables us to accommodate missingness and to
borrow strength across individuals. It facilitates individual tree-level inference as well as average or stand level inference. Specifically, a
Bayesian hierarchical model is developed to infer true annual diameter growth at the tree level by fusing radius increment data and diameter
census data. We explain growth using current size (implicit detrending) as well as appropriate weather data. We also incorporate spatial
structure, anticipating similar relative growth for proximate trees, adjusted for the covariates. This also enables fusion even if the two data
sources measure disjoint collections of trees. The spatial fusion model and three associated submodels are applied to a fairly large dataset
taken from two forest stands at Coweeta Hydrologic Laboratory collected from 1991 to 2011. Model comparison raises an interesting issue
when data sources vary between models. That is, when two datasets supply growth information in different forms, how do we demonstrate
that the fusion model predicts growth better than say a model using solely tape measurement diameter data? We offer a natural way to address
this question and compare the proposed models.

The format of the paper is as follows. In Section 2, we describe the Coweeta Hydrological Laboratory data. Section 3 presents our
ensemble of models and some detail on the associated model fitting. Section 4 presents the analysis of the data under these models and the
results of the model comparison. We conclude in Section 5 with a summary and indications of future work.

2. THE DATA

2.1. Tape-measured diameter and increment core data

Diameter measurement data were obtained from two mapped stands at Coweeta Hydrologic Laboratory in the southern Appalachians. Stand
1 is an oak-pine forest system, and stand 2 is a cove hardwood forest. The stands were established in 1991 for the purpose of studying forest
dynamics (Clark er al., 1998; Beckage er al., 2000). The measurements are made at breast height, which is marked by a tree tag with an
identifying tree number (Clark et al., 2007). Diameter censuses were conducted at intervals of 1-4 years starting in 1993. Annually, some
trees died and were removed, while new trees were planted and added, resulting in different numbers of trees measured in each census.

Increment cores at breast height were also obtained on a subset of trees (roughly 20%) within each of the two stands starting in 1998.
Additional cores were collected in the years 2001, 2006, and 2009. Some trees were sampled in multiple years resulting in more than one set
of increments observed for the tree. For example, a tree observed in 1998 and again in 2000 will have two increment core measurements for
each year beginning with the year of the first ring through 1998 and then one increment core observation for the years 1999 to 2006. Note
that the first ring is from the year that the tree reached breast height.

Illustratively, and in consultation with J. S. Clark, developer of the stands, the weather data we use to explain the between year variation in
tree growth consist of annual precipitation, average summer (June—September) Palmer Drought Severity Index (PDSI), and average winter
(January—March) temperature. These data are available for the years 1940-2013 and are stand specific.
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Figure 1. Histogram of the number of tape measurements made on each tree in the region
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Figure 2. Number of diameter measurements and increment cores observed by year

2.2. Exploratory data analysis

We included all trees that had 5 or more diameter measurement observations from 1991 to 2011. Figure 1 shows a histogram of the number
of diameter measurement cores observed per tree. Most trees have 5-7 diameter measurements, although some have as many as 15. The total
number of distinct trees over the two stands in Coweeta Hydrologic Laboratory is 1583.

Increment cores were taken on 324 distinct trees, resulting in 1259 trees having only diameter measurements. The number of cores for a
given tree ranged from O to 6. That is, 241 trees had one core, 76 had two cores, 6 had three cores, and 1 tree had five cores. Recall that an
increment core provides an annual growth observation back to the year in which the tree reached breast height. Diameters were observed as
early as 1993 for some trees, and many years are missing. For some trees, increment cores can be dated as far back as 1940. Figure 2 shows
the number of diameter measurements and increment cores observed by year. Overall, the total number of diameter measurements is 13,105,
and the total number of yearly increments observed is 17,108.

Figure 3 shows examples of two trees having both diameter measurements and increment cores. Diameter measurements often
report negative growth, as shown in Figure 3(b). This tree also had two increment cores observed, although the second was missing
before 1990.

Figure 4 shows the locations of the trees in stands 1 and 2 in the forest. Trees having only diameter measurements are indicated by
circles, while those having both diameter measurements and increment cores are denoted by x’s and are dispersed throughout each stand.
These stands are each roughly 0.5 ha, and stand 1 is 200 m north of stand 2. Finally, Figure 5 shows the annual weather data to be used
as covariates for the years 1940-2011 for stand 1. We see substantial annual variation, encouraging the hope that they can help to explain
annual growth.
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Figure 3. Tape measurement diameter (top) and increment cores (bottom) for two random trees, (a) left and (b) right. The second tree had two core
observations, one taken in 2001 and another in 2009
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Figure 4. Stands 1 and 2 at Coweeta Hydrologic Laboratory. Easting and Northing coordinates given in Universal Transverse Mercator coordinates (UTMs)

3. MODELS

‘We consider both nonspatial and spatial model specifications, introducing the former in Section 3.1 and the latter in Section 3.2. Additionally,
we analyze the diameter data separately and then introduce the fusion with the increment core data in order to assess the benefit of the
additional data. Of course, either diameter census data or increment core data can be modeled separately to draw inference on tree growth.
However, because the diameter data provide a complete census of the stands in our dataset, we chose it to provide the baseline relative to
the fusion.

3.1. Nonspatial model specification
3.1.1.  Diameter only models

For diameter census data, let # = 0 denote the year in which the first observation is available. Let Y; ; be the observed diameter and ;s be
the true diameter of tree i in year . Because we are interested in individual growth, we set u; o = Y; o and model Y; 4, for t =1, 2,... Let
€;,¢ denote the measurement error of the diameter for tree 7 in year . At the data level, the observed diameter of tree i in year ¢ is the sum
of its true diameter, ; ;, and the measurement error ¢; ;. That is,

Yig = iy +€iyg (N

Environmetrics 2014; 25: 610-620 Copyright © 2014 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics




Environmetrics E. M. SCHLIEP ET AL.
X

Annual Precipitation (cm)

120 160 200 240

T T T T
1940 1960 1980 2000

Average Summer Drought Index

T T T T
1940 1960 1980 2000

Average Winter Temperature (C)

T T T T
1940 1960 1980 2000

Figure 5. Annual precipitation, average summer Palmer Drought Severity Index, and average winter temperature for stand 1 from 1940 to 2011

The true diameter growth of tree i in year ¢, written as u; ; — (i ¢—1, is assumed to be explained by the size of the tree at the start of the
year, i; 1, a global growth rate, the weather in year ¢, and a tree-specific random effect. Therefore, diameter growth is written as

iy — HRig—1 = Mi,t—lanP(X;,tﬂ + wi) 2

where « is the global scale growth rate relative to current size, X; ; denotes a vector of weather data for tree i and time #, B denotes
a vector of coefficients, and w; is a tree-level random effect. Specifically, X; ; consists of the annual precipitation, the average summer
(June—September) PDSI, and the average winter (January—March) temperature and 8 = (81, B2, B3)’. These values are plot specific. Here,
« is intrinsically positive, and w; is used to capture the variation in response to weather at the tree level. We allow each tree to respond to
the weather differently and, hence, grow at a different rate under the same weather conditions. One could also imagine that w; serves as a
surrogate for unobservable covariates associated with the tree at location i. We assume wj; MEN (0, 72).

Under this model specification, true tree growth is nonnegative. The covariates and random effect provide a time and tree- spec1ﬁc scaling
of growth rate. Because exp(X B + w;) can be either > 1 or < 1, it reflects a relative risk. Returning to (1), we assume €; ; 1Ld " N(0,02)

and note that future work will explore heterogeneous variance specifications. We adopt customary weak priors, that is, 8 ~ N3(0, 10*T),
02 ~1G(2,2), 12 ~ IG(2,2), and & ~ IG(0.01, 1). Finally, the recursion in i enables us to rewrite the model as

t

YitlB, 0 ~N| uio 1_[ (1 + OéeXP(X;-,kﬂ + wi)) o2 3)
k=1

noting that only the observed Y; ;’s appear in the likelihood associated with (3).

3.1.2.  The fusion model

We extend the model to incorporate both diameter census data and radius increment data. This can be achieved by supplying an additional
model for the radius increment data and assuming both sources of data share the same model for growth. Unlike the diameter census data,
which gives the tree diameter measurements in certain years, the radius increment data reports the annual increase of tree radius from
measuring the ring widths on the increment cores. As noted in Section 1, we make the simplifying assumption that the radius increment is
half of the diameter increment and thus model the mean radius increment as %(/x it —Mit—1). Letting Z; ; ; denote the j th core measurement
for tree i and year ¢, we define the model as

1
Zigj ~N (Eﬂi,t—laexp(xg,tﬂ + wi) , Vz) 4
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where j = 1,...,J; and J; is the number of cores for tree i. The measurement error variance for the radius increments is yz. Here, we
assume conditionally independent measurement errors over j, resulting in marginally dependent errors due to the common w;. Again, the
recursion provides the mean in the form

t—1

%(aexp(X;,tﬂ + w,)) Hi,0 H (1 + aexp(X;’kﬂ + a),-))

k=1

The same prior distributions are employed as in the previous section, adding a weak inverse Gamma, IG(2, 2) prior for 2.

3.1.3.  Model fitting using Markov chain Monte Carlo

The likelihood for the fusion model is proportional to the product of the likelihood of all observations in both the diameter census data and
radius increment data, that is,

ny T; t
LB.o%y* % XY, Z) o [ [ [N Vi L a0 [ ]+ @exp(X) 8+ @) | .02
i=11=1 k=1
n: J; Tij 1
X 1_[ l—[ 1_[ N (Zi’t,j; g(aexp(Xg,tﬂ + o)) (1 + aexp(X; ;. B + i), yz) %)
i=1j=11=1

ny
X 1_[ N (wi;O, 12)

i=1

We use Markov chain Monte Carlo to draw inference on our model parameters. Our Markov chain Monte Carlo algorithm is a Metropolis—
Hastings within Gibbs sampler because the variance parameters, o2, y2, and t2, have conjugate full conditional posterior distributions,
while w;, and B, and o require Metropolis—Hastings steps. Estimates of the true diameter for each tree in each year are obtained using the
posterior predictive distributions enabling the estimation of the true diameter of trees in unobserved years.

3.2. Spatial model specification

Although the two forest stands are only 200 m apart, we have elected to fit each one with a separate spatial model. We think the notion of
spatial range emerges more clearly without having an imposed gap in the region, which would arise under a single model. This seems even
more appropriate given that the maximum inter-tree distance within a stand is only 121 m. The only change made from the previous modeling
is with regard to the tree-level random effects, where, now, the random effects on each stand are modeled as a realization of a Gaussian
process (GP). Let w be a vector of the tree-specific random effects for trees on stand k for k = 1, 2. Then, independently for each k,

@i ~ GP(0, %) (6)

where (Zg)i; = 2p(d; 7Pk ). Here, 72 is the spatial variance, and p is a valid correlation function with decay parameter ¢;. We adopt
an exponential correlation function for p such that the correlation between locations i and j on stand k is a function of the distance, d;;,
between tree i and tree j and corr(w;, w;) = exp(—d;;j/Pr).

The maximum distance between trees within a stand is 121 m. Uniform distributions are assigned to the decay parameters, ¢ and ¢, with
lower and upper bounds of 0 and 30, respectively. Samples from the posterior for both ¢p; and ¢, are obtained using a Metropolis—Hastings
algorithm. As noted, the spatially correlated random effects replace the independent and identically distributed random effects in (2) under
both the diameter only model and the data fusion model.

3.3. Model comparison approaches

We compare the diameter data only model and data fusion model with both the nonspatial and spatially correlated random effects. Altogether,
the following four models are considered:

1. Diameter only, nonspatial model
2. Diameter only, spatial model

3. Fusion, nonspatial model

4. Fusion, spatial model.

Out-of-sample prediction is conducted on 500 trees selected at random. Each model is fitted using the remaining 1083 trees, of which 228
have one or more observed increment core. Of the 500 holdout trees, 96 have one or more increment core. Therefore, we have both diameter
measurements and increment core measurements to assess out-of-sample prediction.
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Because of the exponentiation of the random effect in the model as well as the recursion through time, the posterior predictive distribution
of diameter can be highly skewed to the right. Therefore, we use the median of the posterior distribution for prediction and the median
absolute prediction error (MAPE) to compare across models. We also compare the models using the continuous rank probability score
(CRPS) (Gneiting and Raftery, 2007). The CRPS is attractive in that it compares an observed value with an entire predictive distribution.
The more concentrated the distribution is around the observation, the smaller the CRPS. The MAPE and CRPS are computed separately for
the diameter holdout data and for the increment core holdout data.

‘We conclude this section with an important point. Suppose validation for the diameter only model is performed using only out-of-sample
diameter data, whereas validation for the fusion model is performed using both out-of-sample diameter and increment core data. It is evident
that this confuses assessment of the performance of the latter relative to the former. When the additional data are not diameters, one should
not expect the fusion model to validate better than the diameter only model for the holdout diameter data. That is, the fusion model helps to
better learn about true growth but need not predict holdout diameters better.

The fusion model is expected to do well in predicting diameters and also in predicting increment cores. Arguably, the clearest way to
reveal the benefit of the fusion model is to see how well the diameter only model predicts radius increments. There is a predictive distribution
for radius increments under the diameter only model. It arises from the posterior samples of diameter pairs at consecutive time points.
We present out-of-sample MAPE and CRPS for the diameter only models and the fusion models for both tape measurement diameter and
increment core prediction. Note that because the diameter and increment core data are on different scales, we do not attempt to obtain an
overall model performance measure. Rather, prediction and model comparison is performed for each data type separately.

4. DATA ANALYSIS

The models were fitted for 150,000 iterations where the first 100,000 iterations of the chain were discarded as burn-in. Figures 6 and 7 give
the posterior prediction medians and 90% credible intervals for diameter measurements and increment cores, respectively, for an illustrative
tree under each of the four models. Also shown are the observed diameter and increment core measurements in the plots, respectively. We
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Figure 6. Medians and 90% credible intervals of the posterior predictive distributions of diameter for an individual tree under the four models. Also shown
are the observed diameter measurements for the tree

Illlustrative Posterior Prediction of Increment Cores for a Tree
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Figure 7. Medians and 90% credible intervals of the posterior predictive distributions of increment cores for an individual tree under the four models. Also
shown are the observed increment cores for the tree

wileyonlinelibrary.com/journal/environmetrics Copyright © 2014 John Wiley & Sons, Ltd. Environmetrics 2014; 25: 610-620



MODELING INDIVIDUAL TREE GROWTH Environmetrics

MAPE - Tape measurements CRSP - Tape measurements

P

10.00
10.0 20.0

0
|
20 5.0
| |

L

o ! I
T T | T - 1
o ! ] ! |
=7 | ! ; ! 0
- | -
e | : | , =]
| |
! | — |
! | JR N i
! | e | T ! ]
— ! | | ! ! 1
< — | - | — :
=] =3 —1
I I I I I I I I
Diameter only, Diameter only, Fusion, Fusion, Diameter only, Diameter only, Fusion, Fusion,
nonspatial spatial nonspatial spatial nonspatial spatial nonspatial spatial

Figure 8. Boxplots of the out-of-sample median absolute prediction error (MAPE) and continuous rank probability score (CRPS) for tape measurement data
for each tree for the four models
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Figure 9. Boxplots of the out-of-sample median absolute prediction error (MAPE) and continuous rank probability score (CRPS) for increment core data for
each tree for the four models

predict out-of-sample increment cores using the diameter only models for only the years 1993-2010 to avoid extrapolating outside the range
of the tape measurement data observed. In general, the nonspatial models have wider credible intervals, in support of the spatial models. The
spatial models are similar for predicting the illustrative tree’s diameter. However, the diameter only spatial model has much wider credible
intervals for the increment cores than the spatial fusion model.

Figure 8 gives boxplots of MAPE and CRPS for diameter measurements for each tree in the holdout set for the four models. The medians
and quantiles of these prediction criteria are very similar across the models. Figure 9 gives the same boxplots for the out-of-sample increment
cores for the four models. The fusion models show slight improvements over the diameter only models in terms of the absolute deviation.
However, CRPS clearly indicates superior out-of-sample prediction of increment cores for the fusion models. Additionally, both MAPE
and CPRS are slightly lower for the spatial fusion model than the nonspatial fusion model. To assess bias, we compute the proportion of
overprediction for each model and data source. For the tape measurement data, the proportion of overprediction is between 0.55 and 0.57 for
the four models. The proportion of overprediction for the increment cores is between 0.62 and 0.67, except for the nonspatial diameter only
model, in which the proportion of overprediction is 0.78. This notable bias toward overprediction is the result of the noisy tape measurement
data and the absence of the more precise increment core data.

Figure 10 shows MAPE and CRPS for out-of-sample prediction for the diameter data over all trees by year for each of the four models.
MAPE is fairly similar across the four models. CRPS tends to slightly favor the spatial models over the nonspatial models. The spikes in each
of the two plots in years 2003, 2005, and 2009 are years in which there were few diameter observations in the out-of-sample data. MAPE
and CRPS for out-of-sample prediction for the increment core data over all trees by year are given in Figure 11. MAPE slightly favors the
spatial fusion model over the nonspatial fusion model over all years. In some years, however, the diameter only models report slightly lower
MARPE than the fusion models. CRPS greatly favors the fusion models over the diameter only models, and the spatial fusion model has the
lowest CRPS for all years. The spikes seen in the last 5 years are again due to few trees in the out-of-sample data having observed cores in
those years.
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Figure 10. Median absolute prediction error (MAPE) and continuous rank probability score (CRPS) for tape measurement data by year for the four models
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Figure 11. Median absolute prediction error (MAPE) and continuous rank probability score (CRPS) for increment core data by year for the four models

Table 1. Posterior median and 90% credible intervals for the variance parameters of the four models
Diameter only, Diameter only, Fusion, Fusion,
Parameter nonspatial spatial nonspatial spatial
72 Spatial variance 1.39 (1.28, 1.50) 1.67 (1.37,2.31) 1.23 (1.15, 1.33) 1.18 (1.03, 1.42)
3¢1  Effective range (stand 1) 23.93 (17.60, 36.99) 15.37 (11.00, 21.38)
3¢o  Effective range (stand 2) 8.39 (6.66, 11.97) 7.24 (5.98, 8.94)
o2 Tape measurement error ~ 0.13 (0.12, 0.13) 0.24 (0.23, 0.26) 0.15 (0.15, 0.16) 0.33(0.31, 0.34)
y2 Core measurement error 0.0058 (0.0057, 0.0060) 0.0049 (0.0048, 0.0051)

Table 1 gives posterior median and 90% credible intervals for the variance parameters of the four models. This includes the variance
parameters of the tree-level random effects as well as the measurement error variances for the two data sources. Note that the variance of
the random effects is smaller under the spatial models suggesting that the smoothness captured by spatially structured random effects is
preferable to the independent effects under the nonspatial models. Further, there appears to be a trade-off between the spatial and nonspatial
models in terms of the measurement error variances between the two data sources. The measurement error variance for the tape measurement
data, 02, is larger in the spatial models than in the nonspatial models, while the measurement error for the increment core data, yz, is smaller
in the spatial model than nonspatial model.

Posterior median and 90% credible intervals for the spatial fusion model parameters are given in Table 2. The coefficient parameters for
annual precipitation and winter temperature behave as expected. The coefficient for annual precipitation is significant and indicates that
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Table 2. Posterior median and 90% credible interval for the spatial
fusion model parameters

Parameter Median 90% CI
B1 Annual precipitation 0.0270  (0.0165, 0.0373)
B2 Summer PDSI —0.0025 (—0.0217, 0.0166)
B3 Winter temperature —0.0051 (—0.0186, 0.0081)
o Global growth rate 0.0094  (0.0091, 0.0099)
72 Spatial variance 1.18 (1.03, 1.42)

3¢;  Effective range (stand 1) 15.37 (11.00, 21.38)
3¢,  Effective range (stand 2) 7.24 (5.98, 8.94)

o Tape measurement error 0.33 (0.31,0.34)
y Core measurement error 0.0049  (0.0048, 0.0051)

annual tree growth tends to increase with an increase in annual precipitation. Annual tree growth tends to decrease with increased dryness,
that is, larger summer PDSI. Lastly, higher winter temperatures tend to decrease annual tree growth. This may be related to higher respiration
losses outside the growing season, which has been shown for loblolly pine stands in North Carolina (Sampson ez al., 2006). Also, the
posterior estimate of the variance for tape measurement is 0.33 cm? and for increment cores is 0.0049 cm?, a reflection of the fact that the
increment core data are much more precise than the diameter data. The effective range is the distance beyond which the correlation between
two observations is less than 0.05. This indicates that the range of spatial correlation is further in stand 1 (roughly 15 m) than in stand 2
(roughly 7 m).

S. SUMMARY AND FUTURE WORK

We have dealt with the challenge of learning about individual tree growth in a somewhat novel fusion setting where we have a noisy but
full inventory data source of diameter measurements along with a smaller but historically longer and more precise source of increment core
data for a forest stand. We have implemented a hierarchical model with spatial dependence through a latent true growth specification. This
specification provides a growth model that reflects current size of individuals along with explanatory weather variables and tree-level spatial
random effects. With regard to predicting growth, this model outperforms submodels, which omit either the data fusion or the spatial aspect.
We have also clarified why, for predicting diameters, the diameter data only model and the fusion model are essentially equivalent. Primarily,
the two data sources inform differently about the frue individual growth process. By contrast, more familiar data fusion models typically
combine monitored data with computer model output for the same variable. However, with regard to the growth process, we believe the
fused, spatial model is more appealing mechanistically and behaviorally.

The novelty in the model present here takes us beyond the customary tree growth models in the literature, such as those cited in Section 1.
The latent growth model imposes nonnegative growth and is informed by two sources of data. Additionally, time and location varying
weather information is employed to help explain the annual variation in growth rates. Lastly, we incorporate a global scale growth rate with
individual random effects. These random effects, or rather, individual random adjustments to the global scale growth rate, borrow strength
across individuals to learn about these adjustment. An attractive feature of working with the spatial model is that there is no requirement that
the data contain trees with both tape measurement and increment core observations. With spatially structured random effects, we can still
implement data fusion and borrow strength across the two datasets to better learn about individual tree performance.

There are several simplifying assumptions in the proposed model, and their limitations will guide future work. First, both the model
for diameter tape measurements and the model for increment core measurements need to be refined to better reflect the way in which the
measurements are actually obtained and hence the associated bias and noise they introduce. That is, we need to consider richer noise structure
than simple normal errors. Another extension to the model is to introduce suitable heterogeneity in the uncertainty associated with the noise
to potentially reflect space, time, and current size. In order to compare growth and the response to weather data at the species level, we need
to also incorporate species information into the model. Lastly, exploring growth for a broader geographic region will enable investigation on
a larger spatial scale and incorporation of a richer palette of weather conditions.
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