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Toward Robust Estimation of the Components of
Forest Population Change
Francis A. Roesch

Multiple levels of simulation are used to test the robustness of estimators of the components of change. I first created a variety of spatial-temporal populations based
on, but more variable than, an actual forest monitoring data set and then sample those populations under a variety of sampling error structures. The performance of
each of four estimation approaches is evaluated when the temporal scale of the estimand of interest is 1 year while the temporal scale of observation is t years. Three
approaches for estimating the individual components of forest change are compared over five simulated populations under four sets of sampling error structure. The
performance of a modification to these approaches is shown when extraneously obtained information indicates that a deviation to the assumed population model exists.
Finally, the extraneous information is incorporated into a mixed estimator, combining each of three general transition models with a single compatibility model. The
first three approaches, without the incorporation of extraneous information, are compatible with large monitoring efforts that require intervention-free results. The
mixed-estimation approach accounts for model assumptions that sometimes remain latent in other approaches and is amenable to the incorporation of the extraneously
obtained information and to ensuring estimator compatibility. All four approaches are shown to work well when the sampling error structure is unbiased, while some
notable differences in performance were observed at the temporal extremities of observation in the presence of temporal anomalies and in the presence of biased
sampling error structures.
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An estimator is robust when it provides significant revelations
about the conditions being investigated even in the presence
of violations of population and sampling error assumptions.

This paper uses two levels of simulation, the first to create a variety
of spatial-temporal populations based on actual forest monitoring
data and the second to sample those populations under a variety of
sampling error structures. I examine the robustness of three estima-
tors for the annual components of forest change below when the
temporal scale of the population estimand of interest is finer than
the scale of observation in a temporally rotating panel sample
design. The approaches are similar but differ in their underlying
trend assumptions, leading to differences in how measurement in-
tervals that are not centered on a target year inform the estimate for
the target year. A modification to these approaches is shown when
extraneously obtained information indicates that a deviation to
the assumed trend model by each method has occurred. Mixed
estimation is then used to package the extraneous information with
each of three general transition models and a single compatibility
model.

The components of forest change that are of interest when mon-
itoring a dynamic landscape include:

1. Land-use change during the period of interest in the form of
reversion from some other land use to forest and diversion away
from forest to some other land use, including the growth on trees
that occurred prior to a land diversion and growth on trees that
occurred subsequent to a land reversion but prior to the first
observation.

2. Change of trees on land that is forested during the entire
period of interest, which can be further categorized into:

a. Fully observable forest tree change, that is the growth, such as
in value or volume, on trees that survive in the population from one
observation to the next, (also known as survivor growth), a compo-
nent of live tree growth.

b. Partially observable forest tree change: The value of trees en-
tering into the population, the value growth on entry trees prior to
the first observation (another component of live tree growth), and
the value loss due to the death or harvest of trees prior to the next
observation.

c. Unobserved forest tree change to include the growth subse-
quent to the final measurement on trees prior to death or harvest.

For a dynamic forest inventory to be fully informative, it is im-
portant to acknowledge the distinction between land-use change
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and the change that occurs on forestland. Both are important factors
when evaluating the state of the forests in an area or nation, but the
full implications of the distinction are often lost in aggregations of
national forest inventory (NFI) data. That is, (1) and (2) above are
sometimes confounded. The discussion below assumes that there
exists a method of subsetting land by the temporal period of forest-
land classification, within the temporal period of interest. The
methods discussed here can then be applied to the subsets individ-
ually. Van Deusen and Roesch (2009) and Roesch and Van Deusen
(2012) explored estimation of the change in forestland classification
in the context of the NFI in the United States, while the current
paper concentrates on estimation of the change in the tree popula-
tion on land that remains forested throughout the period of interest.

Historically, the definition of the components of growth was
sample dependent. The resulting quantities could easily be calcu-
lated from remeasured samples but were not truly estimates of pop-
ulation parameters. Eriksson (1995) addressed this deficiency with
the presentation of a set of definitions for the continuous compo-
nents of change. In this paper, I subscribe to the definitions of
Roesch (2007b), which presented a discrete version of the Eriksson
definitions and discussed the distinctions between the discrete pop-
ulation components of change and the traditional components of
growth.

Consider a sample design that consists of g mutually exclusive,
spatially disjoint temporal panels in which, subsequent to a random
areal start, one panel per year is measured, in turn, for g consecutive
years. After each cycle, the panel measurement sequence reinitiates.
Such a design is discussed in Bechtold and Patterson (2005) and
Roesch (2007b). For instance, in a five-panel system, the five panels

are measured for growth over a 10-year period, that is panel 1 is
measured in years 1 and 6, panel 2 is measured in years 2 and 7, etc.
Several philosophies have emerged as to how data resulting from this
design should be applied to estimates of growth and change because
remeasurement of the panels provides observations that are spatially
disjoint but temporally overlapping, and the temporal scale of the
population of interest is finer than the scale of observation. Roesch
(2007b) argued that the average annual growth within each individ-
ual panel is best applied to the center of the measurement interval,
which is analogous to an assumption of linear change between ob-
servations. Presumably, this would be a reasonable first approxima-
tion in lieu of contradictory evidence. All analytical methods pro-
posed to date, for this class of sample designs for forest monitoring,
have been predicated on this or similar assumptions. This is also true
for most of the discussion below, however, I do look at the effects of
a simple nonconforming population trend, which can be either
latent or overt.

The population components of change are compatible, that is

Yt�1 � Yt � Lt,t�1 � Et,t�1 � Mt,t�1 � Ht,t�1, (1)

where
Yt � the value of interest at time t.
Lt,t�1 � growth in the value of interest on live trees between time

t and time t � 1.
Et,t�1 � the value of interest on live trees as they enter the

population between time t and time t�1.
Mt,t�1 � the value of interest on trees as they die between time t

and time t � 1.

Table 1. Distribution statistics for population 1.

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 4.68 11.1 16.78 21.82 26.3 30.81 34.43 36.86 39.3 40.89 42.37 43.28 44.62
Median 56.14 64.25 71 76.6 82.02 85.6 88.27 90.41 92.59 95 98.34 102.38 106.3
Mean 83.06 88.69 94.05 98.69 103.0 106.94 110.14 112.71 114.87 117 119.88 123.33 127.69
3rd quartile 127 134.71 141.72 147.24 152.21 156.87 161.05 164.54 167.4 170.31 173.11 178.22 184.87
Maximum 599.56 602.77 620.56 636.28 650.25 661.39 669.52 674.7 679.09 679.78 676.46 684.32 831.11

Live growth Minimum �5.66 �6.86 �43.60 �21.13 �10.62 �13.44 �22.80 �32.27 �24.60 �10.21 �10.94 �6.57 �12.45
1st quartile 0 0.46 1.12 1.58 1.95 1.931 1.78 1.29 0.51 0 0 0 0
Median 2.91 3.72 4.30 4.68 4.96 4.88 4.51 4.02 3.53 2.95 2.408 2.13 1.99
Mean 6.49 6.84 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76
3rd quartile 9.10 9.50 9.80 9.63 9.45 8.95 8.49 8.18 7.89 7.91 8.06 8.42 8.67
Maximum 70.95 67.54 70.22 66.27 74.08 63.73 56.33 83.58 110.91 134.04 157.17 180.30 203.43

Entry Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0
Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.043 0 0
Mean 0.99 0.98 0.90 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69
3rd quartile 0.82 0.90 0.95 0.95 0.94 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68
Maximum 65.92 67.49 69.45 43.39 73.56 33.3 32.30 11.83 13.74 15.31 16.88 18.44 20.01

Mortality Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0.04 0.11 0.10 0.06 0 0 0 0 0 0
Mean 1.48 1.33 1.19 1.07 0.97 0.88 0.82 0.78 0.79 0.82 0.87 0.92 0.97
3rd quartile 0.56 0.63 0.72 0.84 0.90 0.87 0.77 0.61 0.47 0.40 0.37 0.32 0.31
Maximum 162.27 125.27 88.28 63.89 57.18 50.48 43.77 37.07 30.36 29.23 32.39 34.55 37.63

Harvest Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean 0.37 1.14 2.132 2.47 2.73 3.14 3.34 3.3 3.06 2.23 1.66 0.93 0.35
3rd quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Maximum 461.93 493.15 478.92 486.63 493.17 495.13 497.93 575.7 591.30 590.59 602.60 589.36 628.30
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Ht,t�1 � the value of interest on trees as they are harvested
between time t and time t � 1.

As such, it is often argued that estimators of these components
should also be compatible. In this article, I compare four general
approaches for estimating the components of forest change utilizing
data from an annually rotating five-panel sample design, with 5-year
change observations made for each panel. In the first three ap-
proaches, each component is estimated independently of the others.
In the fourth approach, the estimates are constrained to be compat-
ible. For clarity and without loss of generality, assume that the
estimands of interest are the cubic meter volume per hectare of all
live trees in a fixed area in each component of change category
during each year of a multidecadal period.

One estimation approach uses a centralized difference estimator
(CDE), the second uses the exponentially weighted difference esti-
mator (EWD) of Roesch (2007a), another uses the (semicentral-
ized) moving-window mean of ratios estimator (MWMOR) in
Roesch and Van Deusen (2013), and the fourth uses the mixed-
estimator variant in Roesch (2007a). Three general transition mod-
els were each combined with a single compatibility model for the
mixed-estimation approach. Because we know that compatibility
will have a cost in terms of squared error loss for one or more of the
estimated components, the initial results compare only the first
three approaches. The fourth approach is discussed in a situation in
which the first three approaches are shown to give unfavorable re-
sults in lieu of the incorporation of extraneous information.

Roesch and Van Deusen (2013) discussed the effects of ignoring
differences in the temporal aspects of a realized sample from the
intended design. Specifically, they showed the effects of two (usually

tacit) assumptions in NFI designs. The first was that variation in the
time of observation for an individual areal sample is ignorable. The
second was that variation in the remeasurement period lengths be-
tween individual plots in successive areal samples was ignorable.
They explored the effects of these assumptions and discussed how
inference can be improved by a judicious accounting of these sam-
pling disparities. They showed the remeasurement period assump-
tion to be especially problematic, that is, plots in NFI systems are
never remeasured on exact temporal intervals, and large biases can be
introduced when there is little effort made to restrict the distribution
of temporal interval lengths. They concluded that further research
was needed to determine what restrictions should be placed on the
distribution of temporal intervals to achieve specific objectives.

Again without loss of generality, in this paper, I define: entry as
the cubic meter volume (or value) of trees as they attain the entry
criterion; live growth as the annual growth in volume that occurs on
trees after a defined entry criterion has been achieved; mortality as
the volume of trees as they die; and harvest as the volume of trees as
they are harvested. In addition, without loss of generality I use the
entry criterion of 12.7 cm at 1.3716 m above the ground (dbh). A
reader interested in how definitions of the components of change
differ from the traditional components of growth, as in Meyer
(1953), can refer to Eriksson (1995) or Roesch (2007b).

Estimators for the Components of Change
I first present three estimators that can be expected to yield equiv-

alent results until they are differentially affected when an underlying
assumption becomes tenuous. I then present a reweighting scheme
that can be applied to each of the three estimators to incorporate

Table 2. Distribution statistics for population 2.

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 4.68 11.13 16.78 21.74 26.16 30.62 34.15 36.32 38.42 39.84 41.33 42.10 43.36
Median 56.13 64.25 71.04 76.52 81.91 85.37 87.90 89.73 91.90 94.25 97.37 101.10 104.79
Mean 83.07 88.72 94.05 98.63 102.91 106.77 109.87 112.23 114.24 116.25 119.01 122.40 126.71
3rd quartile 126.99 134.77 141.73 147.21 152.17 156.79 160.95 164.30 167.08 169.98 172.70 177.70 184.12
Maximum 595.09 603.74 622.28 638.03 651.04 661.42 668.94 673.73 677.89 678.48 675.11 691.20 828.74

Live growth Minimum �5.71 �6.83 �43.71 �21.18 �10.77 �13.48 �22.79 �32.38 �24.33 �10.20 �11.00 �6.54 �12.55
1st quartile 0 0.46 1.12 1.58 1.95 1.93 1.78 1.29 0.50 0 0 0 0
Median 2.91 3.71 4.30 4.68 4.96 4.88 4.51 4.02 3.52 2.95 2.41 2.13 1.99
Mean 6.49 6.84 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76
3rd quartile 9.10 9.49 9.80 9.63 9.45 8.96 8.49 8.18 7.88 7.91 8.06 8.42 8.67
Maximum 71.19 67.80 70.52 67.14 74.87 63.18 56.71 83.66 111.09 134.23 157.36 180.49 203.62

Entry Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0
Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.04 0 0
Mean 1.00 0.98 0.90 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69
3rd quartile 0.82 0.90 0.95 0.95 0.94 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68
Maximum 66.43 67.37 69.43 42.65 73.55 33.63 32.12 11.68 13.49 15.06 16.63 18.20 19.76

Mortality Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0.04 0.11 0.10 0.06 0 0 0 0 0 0
Mean 1.48 1.33 1.19 1.07 0.97 0.87 0.82 0.78 0.79 0.82 0.87 0.92 0.97
3rd quartile 0.56 0.63 0.72 0.84 0.90 0.87 0.76 0.61 0.47 0.40 0.37 0.32 0.31
Maximum 162.00 125.00 88.01 63.83 57.13 50.42 43.71 37.01 30.30 29.03 32.19 34.57 37.65

Harvest Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean 0.34 1.17 2.19 2.51 2.81 3.23 3.55 3.45 3.18 2.35 1.72 0.99 0.38
3rd quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Maximum 459.38 481.46 485.90 497.54 505.01 504.85 514.68 577.39 586.59 589.27 599.83 594.19 676.00
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extraneously obtained information when an anomaly occurs that
can be expected to affect these estimators under the given sampling
design. Subsequently, the extraneously obtained weights are incor-
porated directly into a mixed estimator, and all four estimators are
tested in the anomalous situation.

Centralized Difference Estimator
The CDE is a moving average estimator applied to a series of

within-panel differences (i.e., a series of change component values).
The CDE gives equal weights to the interval observations surround-
ing the interval of interest. In the CDE, a panel difference is applied
to the center interval (or year) and combined with adjoining panel
differences.

Let

dh�t,h�1 the annual mean of a remeasured panel difference, such
as t�1L̂h�t,h�1.

r � �m�1)/2, where m is odd and is the number of remeasured
panels used in the estimator.

The CDE for component C in year k is then

Ck
CDE � m�1 �

i��r

r

dk�r�i,k�r�i. (2)

A trivial method of assuring compatibility when using this esti-
mator would be to estimate entry, live growth, mortality, and har-
vest separately and then use the sum of these component vectors to
estimate the total value vector. The CDE provides no estimates for
m years on each end of the time string. In practice, an ad hoc
variation would have to be incorporated to provide some or all of
these estimates. Here, five panels are used in the estimator when

there are differences from at least two panels available before and
after the central panel. Three panels are used in the estimator when
there is only one additional panel difference available on either side
of the central panel (e.g., for the second and penultimate estimates).
A single panel difference is used for the first and the final estimates.

Exponentially Weighted Difference Estimator
An estimator introduced in Roesch (2007a) is the EWD, similar

in concept to the exponentially weighted moving average (EWMA)
estimator common in the quality control literature (i.e., Chandra
2000) and the econometrics literature (i.e., West and Harrison
1989, p. 55). In the EWD, a series of differences (i.e., a series of
change component values) within panels is calculated. The EWD
gives larger weights to the interval observations closest to the interval
of interest, allowing more local variation than if equal weights are
used. In the EWD, the panel difference is applied to the center
interval and combined with the m-1 adjoining interval differences.
The supporting panels are down-weighted exponentially with each
step away from the central interval.

In addition to the notation above for the CDE, let

� � � r

r � 1� .

The EWD for component C in year y is then

Cy
EWD � �

i��r

r �1 � ��

�1 � � � 2�r�1�
� �i�dy�r�i,y�r�i. (3)

As with the CDE, a trivial method of assuring compatibility

Table 3. Distribution statistics for population 3.

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 4.95 11.35 16.92 21.96 26.34 30.84 33.85 36.19 38.53 39.87 41.12 42.26 43.58
Median 56.68 64.91 71.49 76.92 82.19 85.65 86.53 88.33 90.98 93.18 96.48 100.53 103.69
Mean 84.02 89.49 94.64 99.10 103.25 106.97 108.10 110.65 112.81 114.99 117.83 121.32 125.72
3rd quartile 127.27 135.26 142.04 147.53 152.35 156.86 157.92 161.43 164.42 167.13 170.33 175.53 181.97
Maximum 667.96 609.09 628.10 644.38 658.01 668.73 667.17 672.10 676.24 676.75 673.31 688.97 822.51

Live growth Minimum �5.68 �6.76 �43.76 �21.12 �10.72 �13.35 �22.78 �32.17 �24.85 �10.08 �11.08 �6.56 �12.57
1st quartile 0 0.47 1.12 1.58 1.95 1.93 1.78 1.29 0.50 0 0 0 0
Median 2.93 3.73 4.31 4.68 4.96 4.88 4.51 4.02 3.52 2.95 2.41 2.13 1.99
Mean 6.53 6.85 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76
3rd quartile 9.16 9.51 9.80 9.63 9.45 8.95 8.49 8.18 7.88 7.91 8.06 8.42 8.67
Maximum 71.03 67.42 70.88 66.71 74.77 63.07 56.87 84.05 111.66 134.79 157.92 181.05 204.18

Entry Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0
Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.04 0 0
Mean 0.99 0.99 0.91 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69
3rd quartile 0.82 0.90 0.95 0.95 0.95 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68
Maximum 66.93 67.97 69.15 43.37 72.30 44.83 32.57 11.77 13.61 15.17 16.74 18.31 19.88

Mortality Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0.04 0.11 0.38 0.06 0 0 0 0 0 0
Mean 1.68 1.53 1.39 1.27 1.17 2.96 0.81 0.78 0.78 0.81 0.84 0.89 0.94
3rd quartile 0.58 0.65 0.75 0.87 0.97 3.13 0.76 0.60 0.46 0.40 0.36 0.32 0.30
Maximum 161.99 132.67 124.81 116.96 109.11 101.25 43.73 37.02 30.31 28.49 31.57 34.65 37.73

Harvest Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean 0.37 1.16 2.11 2.43 2.74 3.13 3.36 3.31 3.02 2.27 1.65 0.91 0.37
3rd quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Maximum 455.44 477.77 483.53 484.98 489.37 501.90 506.03 581.44 578.92 584.22 582.56 601.94 628.32
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when using this estimator would be to estimate each component
separately and then use the sum of the component vectors to esti-
mate the total value vector. The EWD also does not provide esti-
mates for m years on each end of the time string. Here, as with the
CDE, five panels are used in the estimator when there are differences
from at least two panels available before and after the central panel.
Three panels are used in the estimator when there are differences
from at least one panel available before and after the central panel. A
single panel difference is used otherwise, rendering the EWD equal
to the CDE when there is not at least one panel difference available
before and after the central panel.

Moving-Window Mean of Ratios Estimator
Roesch and Van Deusen (2013) proposed an estimator that arose

from a different perspective than the two estimators above that
could also be applied to the current objective. In the temporal di-
mension, the idea was simple. One stacks the observations on a
temporal scale (or a function of the temporal scale) and then slices
through the stack (say to create annual segments) to determine how
much of each observation contributes to the estimate for each year.
For this problem, as in Roesch and Van Deusen (2013), I use the
general three-dimensional selection model given in Roesch (2008)
with the exception that time will be rescaled relative to the propor-
tion of the growing season elapsed within each year. Assign to each
observation of variable x labels for plot i and a superscript represent-
ing the beginning value and ending value as xi

b and xi
e, respectively.

Because there are no observations between xi
b and xi

e, the distribu-
tion of the volume growth between the two observations must be
modeled. Initially, I make two simplifying assumptions, both of

which can be refined by an appropriate model, as needed. In the
first, I assume that the growing season does not vary within the area
of interest. In the second, I assume that growth for each plot is
uniform throughout the growing season. I can then temporally or-
der each observation by the year of observation plus the proportion
of the growing season that has elapsed (i.e., in the format year.p), and
use si to represent the temporal span between the beginning and
ending observations. I then allocate the proportion of growth ob-
served over si to the proportion of each year spanned by si, (thereby
accounting for the marginal probability of the time dimension).
Modeling growth between observations allows me to allocate
growth within components to the years the growth occurred. A
simple time-adjusted estimator for annual volume growth (within
growth component) is the MWMOR for component C in year y.

Cy
MWMOR �

1

ny
�
i�1

ny ci,y

pi,y
, (4)

where
ny � the number of plots observing growth in year y.
pi,y � the product of portion of year y growing season observed

by plot i and the portion of plot i area within the area of interest.
ci,y � the value of component C observed on plot i, assignable to

year y.
The general statistical properties of ratio estimators are well

known by now and can be found in such early works as Raj (1968),
Walton and DeMars (1973), Cassel et al. (1977), and Cochran
(1977).

Table 4. Distribution statistics for population 4.

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 7.55 13.69 18.64 21.62 25.20 27.87 30.13 31.57 32.68 33.18 33.70 34.31 35.19
Median 60.42 67.19 72.32 76.17 79.53 80.75 80.88 80.38 80.30 80.88 81.91 83.56 85.78
Mean 86.40 91.11 95.22 98.23 100.65 102.47 103.42 103.70 103.65 103.61 104.24 105.51 107.70
3rd quartile 130.65 137.25 143.28 146.07 148.62 150.60 151.03 151.21 151.33 151.43 152.03 152.77 155.92
Maximum 608.21 602.18 615.03 625.44 634.34 640.85 645.19 647.47 649.17 648.63 645.73 640.58 674.22

Live growth Minimum �4.73 �5.33 �32.68 �15.17 �7.41 �9.00 �14.86 �20.59 �15.24 �6.27 �6.59 �3.93 �7.37
1st quartile 0 0.49 0.92 1.20 1.37 1.33 1.17 0.83 0.31 0 0 0 0
Median 2.47 3.05 3.31 3.43 3.49 3.33 2.97 2.58 2.22 1.83 1.46 1.28 1.15
Mean 5.69 5.83 5.64 5.29 4.89 4.44 3.97 3.61 3.39 3.34 3.40 3.59 3.81
3rd quartile 7.69 7.87 7.65 7.08 6.71 6.12 5.60 5.25 4.97 4.94 4.99 5.24 5.50
Maximum 67.08 60.22 60.14 52.60 57.23 45.53 37.36 53.90 69.99 93.12 116.25 139.38 162.51

Entry Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0.08 0.11 0.10 0.08 0.01 0 0 0 0 0
Median 0.19 0.27 0.31 0.33 0.33 0.32 0.28 0.22 0.15 0.10 0.03 0 0
Mean 0.94 0.84 0.80 0.76 0.70 0.61 0.58 0.50 0.47 0.47 0.49 0.52 0.56
3rd quartile 0.78 0.81 0.84 0.81 0.80 0.74 0.67 0.60 0.56 0.52 0.50 0.51 0.54
Maximum 66.89 62.86 49.51 53.90 24.77 13.09 31.69 9.36 10.71 12.28 13.85 15.41 16.98

Mortality Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0.05 0.12 0.11 0.07 0 0 0 0 0 0
Mean 1.56 1.42 1.28 1.17 1.07 0.99 0.94 0.92 0.93 0.96 1.00 1.03 1.07
3rd quartile 0.63 0.70 0.78 0.93 1.01 0.99 0.88 0.71 0.55 0.48 0.44 0.38 0.34
Maximum 167.89 130.90 93.90 69.67 62.96 56.25 49.55 42.84 36.13 34.56 37.64 40.72 43.80

Harvest Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean 0.36 1.15 2.14 2.46 2.71 3.11 3.33 3.24 2.97 2.22 1.62 0.89 0.36
3rd quartile 0 0 0 0 0 0 0 0 0 0 0 0 0
Maximum 474.55 479.35 482.29 486.63 485.76 501.16 496.55 542.87 559.86 553.63 552.81 554.08 618.84
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Incorporating Outside Information
Situations arise within the scope of national-scale forest moni-

toring efforts for which the data obtained from the sample design are
inadequate. Many approaches to incorporating extraneous informa-
tion in forest inventories have been proposed and proven useful for
particular applications. The example below demonstrates the utility
of a weighting method that can be used in conjunction with each of
the estimators above and with the mixed estimator below.

Assume that there exists strong external information that sug-
gests that expected value of X at time t, E(Xt) and only at time t
differs from the expected value of a previous estimate of X, E�x̂t

P�, at
time t by a factor kw. For the estimators above, this suggests a

reweighting of previous estimates for all estimates that had used the
previous estimate for time t.

To accomplish this reweighting, let

k� � kw � nt � 1, (5)

where nt is the number of years used for each annual estimate,
and let

kt� � nt/k�, (6)

and

kt � �nt�kw�/k�. (7)

Figure 1. The mean over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 1 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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Then weight the previous estimates at times other than time t
that used the previous time t estimate by kt�, and weight previous
estimates at time t by kt to form the reweighted estimates.

Mixed Estimation
The mixed estimator (Theil 1963) can be used to draw strength

from overlapping panels and easily incorporate extraneous informa-
tion into forest monitoring efforts. Mixed estimation was first pro-
posed for use in forestry when Korhonen (1993) used the method
for calibrating tree volume functions. Van Deusen (1996, 1999, and
2000) developed mixed estimators for annual forest inventory de-
signs, and Roesch (2007a) used it for components of change estima-
tion. Here, I use mixed estimation as a convenient way to incorpo-

rate both (1) a belief in how the individual growth components
should be related and transition from year to year and (2) extraneous
information that suggests that a modification to those beliefs is
appropriate. To achieve these goals, I start with the three transition
models below and then adapt those models to incorporate the ex-
traneous information. The three base models all assume compatibil-
ity of the total annual change with the components of change; that
is, for each year t

�t,t�1 � V̂t�1 � V̂t � L̂t,t�1 � Êt,t�1 � M̂t,t�1 � Ĥt,t�1. (8)

Initially, Model 1 assumes that for each component C � L, E, M,
or H, at each time t

Figure 2. The EB over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 1 for the CDE, EWD, and
MWMOR by growth component and estimation year.
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Ĉt,t�1 � Ĉt�1,t�2 � �C,t. (9)

Model 2 assumes that for each component, at each time t

Ĉt,t�1 � 2Ĉt�1,t�2 � Ĉt�2,t�3 � �C,t, (10)

while Model 3 assumes that for each component, at each time t

Ĉt,t�1 � 3Ĉt�1,t�2 � 3Ĉt�2,t�3 � Ĉt�3,t�4 � �C,t. (11)

Formulation of the constraints under each of these models is
straightforward.

Let Y�an (nc*nt) row � ns column response matrix, where nc �
5 is the number of growth components plus 1, nt is the number of

years in the estimation interval, and ns is the sample size for all np

panels. The columns of Y are arranged in nt successive ordered
five-tuples of (1) the MWMOR estimate of annual change, (2)
observed annual live growth, (3) entry, (4) mortality, and (5) har-
vest, for each year in the observation interval for a plot and zeroes
otherwise.

A user’s level of belief in the underlying model can be incorpo-
rated into the mixed estimator in a number of ways. In a similar
application, Van Deusen (1999) showed that the level of belief in
the constraints could be incorporated into the estimation process by
choice or estimation of the value of a parameter p in the mixed
estimator. Here, I choose to preprocess Y by first reweighting ac-
cording to the extraneous information, adapting the constraint

Figure 3. The EMSE over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 1 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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matrix, and then strictly applying the constraints to ensure growth
component compatibility. To accomplish this weighting is simple.
For estimates at times other than time t, that use estimates for time
t, weight the time t estimate by kw�1 prior to combining with the
nontime t estimates. For estimates at time t, weight the nontime t
estimates by kw prior to combining with the time t estimate.
Indicate the outside information weighted response matrix as YOI.
Then, let

� � an�nc�nt� row � (nc�nt) column variance/covariance ma-
trix of YOI.

R � an �nR� row � (nc�nt) column constraint matrix, appro-
priate for a given model, where nR is the number of constraint rows.

�̂ � an (nc�nt) row � 1 column predictive coefficient vector for
strict constraints.

�̂ � YOI � ��R�(R�R�)�1 RYOI	. (12)

Let M be an (nc�nt) row � ns column matrix, with each column
consisting of nt repetitions of the vector (ns

�1, ns
�1np, ns

�1np,
ns

�1np, ns
�1np).

Then

Ŷmix � �̂M�. (13)

Figure 4. The mean over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 4 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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Population Simulations
To motivate the discussion, in this application, I use data from

the USDA Forest Service’s Forest Inventory and Analysis Program
(FIA) collected in South Carolina to construct five simulated pop-
ulations. Although all of the populations are plausible, the intention
was for the first population (population 0) to be a seed population
utilizing the simplest possible model for deriving annual values from
multiyear observations. The seed population allows the simulation
of a series of populations, some of which we might assume to be like
the one from which the sample data were drawn and others that
might arise from a wider diversity of conditions. As explained more
fully in the ensuing paragraphs, the next four populations differed

from population 0 as follows. For population 1, a mild (latent)
nonlinear trend was introduced into each of the components of
population 0. For population 2, a mild nonlinear trend was intro-
duced into the components of live growth, entry, and mortality, and
a stronger nonlinear trend was introduced into the harvest compo-
nent. For population 3, a mild nonlinear trend was introduced into
the components of live growth, entry, and harvest, and a cata-
strophic high mortality event of four times the mortality rate of
population 1 was introduced for the year 2004. Population 4 was
initially as in population 1 and then postulated climate change ef-
fects were simulated by increasing mortality and decreasing growth
and recruitment, with harvest levels remaining the same. Each of the

Figure 5. The EB over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 4 for the CDE, EWD, and
MWMOR by growth component and estimation year.
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five populations consists of 1,458,000 forested “hectares” or “ele-
ments” with measurable cubic meter volume at some time in the
14-year period from 1998–2011.

Specifically, I created the five simulated populations by first se-
lecting all remeasured forested plots spanning the 14-year period
from the South Carolina data. This resulted in 2,430 forested plots
(set 1), most of which had three measurement times (i.e., two ob-
served growth intervals for each component). Because exact harvest
times were unknown, harvested volume was randomly allocated to a
year within each observation interval. Linear interpolation and
extrapolation were used to obtain an initial value for the live growth,
entry, and mortality change components for each year from 1998
through 2011 (set 1), as well as a starting cubic-meter per hectare
value in the beginning of 1998, with temporal adjustments made as

necessary for high levels of harvest and mortality. (Note that I am
not attempting to reconstruct the plot but rather a reasonable fac-
simile to the forested condition from which it was drawn.) Each
population has five (1,458,000 row by 14 column) matrices, one for
each change component and one for initial annual volume. Con-
struction of population 0 then proceeded with 600 variance-inter-
jected copies of set 1, resulting in 1,458,000 hectares. Variance was
interjected at two levels, in step 1, to keep trend but add variance to
the seed, by multiplying all values for each component on each
hectare by a random variate, unique for that hectare, drawn from an
N(1, 0.025) distribution. The second level of variance was intro-
duced temporally by multiplying the result of step 1 for each annual
value for each component on each hectare by a unique random
variate drawn from an N(1, 0.0025) distribution.

Figure 6. The EMSE over 1,000 iterations of 1,000 samples each from population 1 under sampling error structure 4 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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Population 1 was initiated in the same manner as population 0
and then multiplied by a mild nonlinear trend

T1i � �0.95 � �.05 ln�i � 1997�	, (14)

where each value in each year i � 1998 to 2011 is multiplied by
T1i. Table 1 gives the population 1 distribution statistics for
1999–2011.

Population 2 had increasing harvesting pressure introduced into
the cut component as

T2i � �0.90 � �.10 ln�i � 1997�	, i � 1998 to 2011. (15)

That is, each value of the cut component in each year i is

multiplied by T2i, while all other components are as in population
1. Table 2 gives the population 2 distribution statistics for
1999–2011.

Population 3 was constructed as in population 1, except with an
introduced catastrophic event of four times the amount of mortality
in of population 1 in 2004. Table 3 gives the population 3 distribu-
tion statistics for 1999–2011.

Population 4 was initially constructed in the same manner as
population 0 and then postulated climate change effects were
simulated by increasing mortality and decreasing growth and re-
cruitment, with harvest levels remaining the same as in population
1. Specifically, each value of live growth in year i is multiplied by

Figure 7. The mean over 1,000 iterations of 1,000 samples each from population 3 under sampling error structure 4 for CDE, EWD, and
MWMOR by growth component and estimation year.
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T4i � �0.90 � �.10 ln�i � 1997�	, i � 1998 to 2011, (16)

while each value of entry in year i is multiplied by

T5i � �0.95 � �.05 ln�i � 1997�	, i � 1998 to 2011; (17)

and each value of mortality in year i is multiplied by

T6i � �0.80 � �.20 ln�i � 1997�	, i � 1998 to 2011. (18)

Table 4 gives the population 4 distribution statistics for
1999–2011.

The five populations in this study were constructed to examine
estimator performance in the presence of plausible suboptimal pop-
ulation characteristics, in the form of nonlinear trends and a fine-
scale anomaly for the given sample design.

Error Structures
Usually, the overriding criterion for selection of an estimator in

forest inventories is the minimum mean squared error for the
candidate unbiased estimators. Rarely, is the effect of sampling error
in the form of bias on the robustness of theoretically unbiased
estimators considered. Some notable exceptions have been Gertner
(1987), Thomas and Roesch (1990), and more recently Eastaugh
and Hasenauer (2013). Eastaugh and Hasenauer (2013) gave the
results of a particularly thorough investigation into the potential
bias that can be introduced into theoretically unbiased estimators
under plausible assumptions concerning common sampling and
measurement errors in remeasured forest inventories. In the current
investigation, estimator robustness was tested in a simulation by
sampling each population under four different assumptions of total

Figure 8. The EB over 1,000 iterations of 1,000 samples each from population 3 under sampling error structure 4 for the CDE, EWD, and
MWMOR by growth component and estimation year.

Forest Science • December 2014 1041



sampling error structure. The models are intended to represent all
error that would not be addressed by the use of an unbiased sam-
pling simulation. The unbiased simulation might be the closest one
can come to the pure sampling error inherent in a perfectly observed
and measured sample, while in a realized sample there could also be
“item observation” errors, frame errors, and measurement errors to
say the least. That is, the error structure models used here are in-
tended to represent all of the ways that a realized sample might differ
from its perfectly observed theoretical counterpart.

Each simulation consisted of 1,000 iterations of 1,000 plots each
(without replacement) from each population, under each of the four
sampling error structures.

For error structure 1, sampling error was assumed to consist
exclusively of a small variance, effected by multiplying a unique

random normal deviate of mean 1 and standard deviation (SD)
0.025 by each sampled observation of each component.

For error structure 2, I assumed that sampling error consisted of
a small variance and a positive bias on all change components. I
effected error structure 2 by multiplying a unique random normal
deviate of mean 1.05 and SD of 0.025 by each observation of each
component.

For error structure 3, I assumed that sampling error consisted of
variance and positive bias on volume, live growth, and entry and a
negative bias on harvest and mortality. I effected error structure 3 as
follows.

Each observation of live growth and entry was multiplied by a
unique random normal deviate of mean 1.05 and SD of 0.025. Each
observation of mortality and harvest was multiplied by a unique

Figure 9. The EMSE over 1,000 iterations of 1,000 samples each from population 3 under sampling error structure 4 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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random normal deviate of mean 0.90 and SD of 0.025. Although
the level of simulated error is somewhat arbitrary, errors of approx-
imately these magnitudes seem reasonable based on the work in
Thomas and Roesch (1990) and the results in Eastaugh and Ha-
senauer (2013).

Error structure 4 was similar to error structure 3, but I assumed
that sampling error consisted of a higher variance and greater bias, as
follows: each observation of live growth and entry was multiplied by
a unique random normal deviate of mean 1.1 and SD of 0.05. Each
observation of mortality and harvest was multiplied by a unique
random normal deviate of mean 0.80 and SD of 0.05.

For population 3, I also simulated extraneously obtained infor-
mation that mortality during 2004 was about 4� higher than in

surrounding years by drawing a random variate from a normal
distribution of mean 4 and SD of 0.05 and setting it equal to kw for
each observation. Then estimates for each estimator, the CDE, the
EWD, and the MWMOR, were reweighted to obtain the CDE-OI,
the EWD-OI, and the MWMOR OI estimators. For instance, for
(t � 2002, 2003, 2005, and 2006), CDE-OImort,t� CDEmort,t*kt�,
and for t � 2004, CDE-OImort,t� CDEmort,t*kt. The input values
and constraints for the mixed estimator models were reweighted
analogously.

For each iterate, for each year, I calculated the empirical bias (EB)
and the empirical mean squared error (EMSE) over the 1,000 iter-
ations between each estimator and the true population values under
each of the four error structures.

Figure 10. The mean over 1,000 iterations of 1,000 samples each from population 4 under sampling error structure 3 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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That is

EBPES �
1

1000 �
i�1

1000

�x̂PESi � XP�, (19)

where x̂
PESi

is the sample estimate of X in population P for estimator
E under error structure S for iterate i. Likewise,

EMSEPES �
1

1000 �
i�1

1000

�x̂PESi � XP�2. (20)

Usually, the overriding criterion for selection of an estimator in
forest inventories is the minimum mean squared error for the can-

didate unbiased estimators. This might suggest that the emphasis in
the presentation of these results should focus on EMSEPES. Because
the four error structures were devised to examine estimator perfor-
mance over these populations in presence of plausible differentially
biased sampling error, I will pay special attention to EBPES in the
presentation of results.

Results
In the interest of parsimony, I am providing a subset of the results

that can be used to demonstrate the salient points. The results for all
populations under all sampling error structures are available from
the author on request. Figures 1–3 give the empirical mean, bias,
and mean squared error, respectively, over 1,000 iterations of 1,000

Figure 11. The EB over 1,000 iterations of 1,000 samples each from population 4 under sampling error structure 3 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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samples each from population 1 under sampling error structure 1 for
the CDE, the EWD, and the MWMOR, by growth component for
estimation years 2000–2009. These are the years that are the center
of at least one observation window (or panel) for a sample drawn
under this design from a population spanning 1998–2001. By def-
inition, the CDE and EWD use the observations from a single
panel’s remeasurement for years 2000 and 2009 while the noncen-
tralized MWMOR uses the observations from three panels. The
CDE and EWD use the observations from the remeasurement of
three panels for years 2001 and 2008 while the semicentralized
MWMOR uses the observations from four panels for these years.
Five panels are used for all of the estimators for estimates of years
2002–2007. All three estimators, in conjunction with the design are

shown to be general smoothers. That is the design observes 5-year
windows, which provides an average annual change or “smooths”
the actual annual change, and the estimators, while drawing
strength from overlapping panels, provide further smoothing. In
Figure 1, this effect can be seen quite clearly in all four components
under this simplest sampling error structure. As expected, owing to
the nonlinear latent trends, in the central years of the estimation
span, the EWD is sometimes slightly closer to the population value
than the other estimators are. In the temporal extremes, the results
for the MWMOR are mixed, with the expected bias due to the use
of the off-center panels sometimes, but not always, being overridden
by the lower variance from the larger sample. This can be verified by
comparing the harvest and mortality results in Figures 2 and 3.

Figure 12. The EMSE over 1,000 iterations of 1,000 samples each from population 4 under sampling error structure 3 for the CDE, EWD,
and MWMOR by growth component and estimation year.
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Figures 4–6 give the empirical mean, bias, and mean squared
error, respectively, over 1,000 iterations of 1,000 samples each from
population 1 under sampling error structure 4 for the CDE, the
EWD, and the MWMOR by growth component and estimation
year. In general, the three figures reflect the bias and greater variance
of error structure 4 over error structure 1 for this population. The
estimators do not appear to be differentially affected by the bias in
error structure 4. I do note that occasionally the bias in the temporal
extremities shown in Figure 2 for the MWMOR is offset in Figure 5
by the counteracting bias in the sampling error structure, resulting
in lower EMSE in Figure 6 relative to Figure 3. This reinforces a
point made in Eastaugh and Hasenauer (2013) that being that often
the implementation of theoretically unbiased sample designs will
result in biased samples for a myriad of reasons, and estimators
should, therefore, be evaluated in consideration of that possibility.
With respect to robustness, note that if we were examining only the
outcome for one or more of these estimators and did not know the
true population values, that is, the population line was missing from

Figures 1 and 4, we would draw the same conclusions about the
trend in each of the components. This suggests that all of these
estimators are, at least in this regard, robust.

Figures 7–9 give the empirical mean, bias, and mean squared
error, respectively, for 1,000 iterations of 1,000 samples each from
population 3 under sampling error structure 4, for the CDE, the
EWD, and the MWMOR by growth component and estimation
year. Although I show the results for error structure 4, the most
notable outcome for population 3 under all error structures is that all
three estimators give no indication of the extreme anomaly for mor-
tality in 2004 due to the smoothing effects of the both the sample
design and the estimators applied to the outcomes of the design.
The anomaly in 2004 is spread out over the estimates for
the surrounding years, so the estimators reflect very high EB and
EMSE for mortality in 2004 in Figures 8 and 9, respectively. The
sample design itself makes this single-year anomaly particularly dif-
ficult to evaluate and impossible to definitively separate it from a
possible spatial effect.

Figure 13. The mean over 1,000 iterations of 1,000 samples each from population 3 under sampling error structures 1–4, for the
estimators incorporating outside information for the mortality component by estimation year.
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The empirical mean, bias, and mean squared error, respectively,
for 1,000 iterations of 1,000 samples each from population 4 under
sampling error structure 3, for the CDE, the EWD, and the
MWMOR by growth component and estimation year, are given in
Figures 10–12. Although population 4 has a greater diversity of
conditions than population 1, the differences in estimator perfor-
mance between Figures 10–12, relative to the corresponding graphs
in Figures 1–3, appear to correspond to those that could be expected
by the more severe sampling error structure 3.

Figures 13–15 give the empirical mean, bias, and mean squared
error, respectively, for 1,000 iterations of 1,000 samples each from
population 3 under sampling error structures 1–4, for the estima-
tors incorporating outside information for the mortality component
by estimation year. Although it is true that the outside information
was not perfect, all of the estimators incorporating the outside in-
formation benefited in the form of improved mortality estimates for
the year 2004 and the surrounding years that used observations
spanning 2004. Figure 13 shows that under each of the sampling

error structures each of the estimators exhibit a pattern very similar
to the mortality trend for the population. The patterns differ from
the population trend predictably by sampling error structure. Figure
14 shows more clearly than Figure 13 that the order of the estimates
for each year remains constant through the different sampling error
structures, indicating that sampling error structure did not differen-
tially affect the estimators. Some interaction between the outside
information and sampling error structure is indicated by the posi-
tion of the group of estimators for 2004 relative to the groups of
estimators for the surrounding years. Figure 15 shows that the
EMSE results for the mixed estimator models are often, but not
always, higher than they are for the other models. This effect could
be viewed as the cost of compatibility.

Discussion and Conclusions
I explored some special problems that arise in estimation of the

components of change when the temporal scale of the population
estimand of interest is finer than the scale of observation under both

Figure 14. The EB over 1,000 iterations of 1,000 samples each from population 3 under sampling error structures 1–4 for the estimators
incorporating outside information for the mortality component by estimation year.
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biased and unbiased sampling error structures. In the example sim-
ulations, the temporal scale of observation was 5 years while the
temporal dimension of the population of interest was 1 year. All of
the approaches worked well in the temporal midrange of observa-
tions in the presence of smooth population trends under unbiased
sampling error structures. By interjecting a single year anomaly into
population 3, I presented an especially difficult (but realistic) situa-
tion given the sampling frame. The results of these more thorough
simulations support the simulations and conclusions of Roesch
(2007a) with respect to comparisons between the EWD and this
application of the mixed estimator. The simulations also showed the
variance/bias tradeoff encountered when the MWMOR was used in
the extremity years of observation. Although the MWMOR is
sometimes biased in the presence of trend in the extremity years, the
EMSE was often lower than it was for the other estimators. Of the
four general approaches for estimating the components of forest
change from this annually rotating five-panel sample design: the
centralized moving average estimator, the EWD, the MWMOR,

and the mixed estimator, the first three approaches are very compat-
ible with large monitoring efforts that require intervention-free
results. These three simple approaches where shown to be amenable
when outside information suggests an adaptation to the weighting
scheme. The fourth approach, the mixed estimator, is also amenable
to the incorporation of extraneously derived information and can
easily incorporate complex models. No single estimation approach
has (or could have) been shown to be a panacea and some notable
differences in performance were observed at the temporal extremi-
ties of observation in the presence of temporal anomalies and in the
presence of biased sampling error structures. With respect to trend,
all of the estimators are robust, but the CWD, EWD, and
MWMOR are somewhat nonresponsive to highly variable trends
and all estimators are subject to the smoothing effect of the sample
design considered here. This particular deficiency in the design was
shown here to be readily corrected through the incorporation of
outside information.

This study suggests that one should probably not attempt to

Figure 15. The EMSE over 1,000 iterations of 1,000 samples each from population 3 under sampling error structures 1–4, for the
estimators incorporating outside information, for the mortality component by estimation year.
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choose a single estimation approach to address the widest range of
estimation objectives. The estimators considered here were shown
to differ in their respective robustness to different but realistic, un-
derlying error structures, aspects of which may not always be known.
Rather, an investigator would be well served to embrace the philos-
ophy behind the Thomas and Roesch (1990) and Eastaugh and
Hasenauer (2013) articles that, when real data are involved, there is
value in making estimates using as many theoretical approaches as
possible. When different approaches produce similar results, there is
strong evidence for those results. However, it can be even more
informative when different (but defensible) approaches produce
varied results. When this happens, it is incumbent on the analyst to
figure out why the varied results have occurred. Quite simply, an
analyst should look at the data from as many angles as she or he has
the time and energy for in an attempt to understand fully the natural
phenomena that are being imperfectly observed.
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