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In recent years finite-mixture models have been employed to approximate and model empirical diameter
at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution
or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest
stands, to analyse the relationships between the DBH components, age cohorts and dominant species,
and to assess the significance of differences between the mixture distributions and the kernel density
estimates. The data consisted of plots from the Świętokrzyski National Park (Central Poland) and areas
close to and including the North Carolina section of the Great Smoky Mountains National Park (USA;
southern Appalachians). The fit of the mixture Weibull model to empirical DBH distributions had a pre-
cision similar to that of the mixture gamma model, slightly less accurate estimate was obtained with the
kernel density estimator. Generally, in the two-cohort, two-storied, multi-species stands in the southern
Appalachians, the two-component DBH structure was associated with age cohort and dominant species.
The 1st DBH component of the mixture model was associated with the 1st dominant species sp1 occurred
in young age cohort (e.g., sweetgum, eastern hemlock); and to a lesser degree, the 2nd DBH component
was associated with the 2nd dominant species sp2 occurred in old age cohort (e.g., loblolly pine, red
maple). In two-cohort, partly multilayered, stands in the Świętokrzyski National Park, the DBH structure
was usually associated with only age cohorts (two dominant species often occurred in both young and old
age cohorts). When empirical DBH distributions representing stands of complex structure are approxi-
mated using mixture models, the convergence of the estimation process is often significantly dependent
on the starting strategies. Depending on the number of DBHs measured, three methods for choosing the
initial values are recommended: min.k/max.k, 0.5/1.5/mean, and multistart. For large samples (number of
DBHs measured P80) the multistage method is proposed – for the two-component mixture Weibull or
gamma model select initial values using the min.k/max.k (for k = 1,5,10) and 0.5/1.5/mean methods, run
the numerical procedure for each method, and when no two solutions are the same, apply the multistart
method also.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Management and disturbances play an important role in the
forest dynamics as well as in shaping the spatial and dimensional
structure of forest stands (e.g., [62,18,37]). After cuttings and
disturbances regeneration processes start in the gaps and under
open stand canopy; and as a result, among others mixed-species,
two-cohort, two-storied and partly multilayered stands are
created. These resulting stands are usually characterised by
strongly skewed and irregularly descending diameter at breast
height (DBH) distributions. There are two general approaches to
fitting empirical DBH distributions. The first approach is nonpara-
metric and therefore does not require the estimation of parame-
ters. The second, and usually preferred, approach is to identify an
appropriate parametric distribution, such as e.g., the Weibull or
the gamma distribution, and then estimate the unknown parame-
ters. There are several reasons to prefer the latter approach, for in-
stance, nonparametrically binning the data does not provide
information beyond the range of the sample data, whereas some
extrapolation is possible when a parametric model is applied [7].
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mailto:r_podlaski@pro.onet.pl
http://dx.doi.org/10.1016/j.mbs.2014.01.007
http://www.sciencedirect.com/science/journal/00255564
http://www.elsevier.com/locate/mbs


R. Podlaski, F.A. Roesch / Mathematical Biosciences 249 (2014) 60–74 61
When modelling forest dynamics, one must determine the DBH
distributions of tree species representing particular cohorts and
stand layers (e.g., [5,58,11]), among other parameters. Procedures
that allow determination of these parameters from DBH measure-
ments alone, without associated assessments of tree age and
height, are particularly valuable. If the overall DBH distribution
of a stand is treated as a compound of the distributions of trees
belonging to different groups (e.g., cohorts or stand layers) one
may adopt a finite-mixture distribution approach (e.g.,
[73,69,71,46,47]). Mixture distributions are an appropriate tool
for modelling heterogeneous populations (e.g., [12,60,35]). Because
of their usefulness as an extremely flexible method of modelling,
finite mixture models are continuing to receive increasing atten-
tion in forestry, from both practical and theoretical points of view.
Indeed, in the past decade, the extent and the potential of the
applications of finite mixture models have widened considerably
[55].

The single and mixture Weibull and gamma models have often
been used to approximate empirical DBH distributions because of
their flexibility in shape (e.g., [20,32,73,29,72,46,47]). These distri-
butions can conform to a wide variety of DBH data. Because the
overall shape of the empirical DBH distribution is often composed
of multiple basic shapes, a natural alternative is to utilise a mixture
distribution for DBH modelling.

Computation of the parameters for a mixture model can be car-
ried out by various numerical algorithms, such as the expectation–
maximisation (EM) algorithm and the Newton-type methods (e.g.,
[9,36]). The Newton-type methods include quasi-Newton methods,
modified Newton methods, etc. These numerical procedures can be
decomposed into three main parts: initialisation (in which initial
values for all parameters and a criterion to stop the algorithm
should be chosen), iteration, and completion when the criterion
is met. In general, starting from suitable initial parameter values,
the iterations are repeated until convergence is achieved. If the
likelihood function is regular, these methods usually find the most
likely estimates for mixture parameters. However, if the likelihood
function is irregular and has finitely or infinitely many local max-
ima and minima, the algorithms become extremely unstable.
Unfortunately, this concern is a serious obstacle to interpreting
the results when applied to separating finite mixtures. Therefore,
when the likelihood function is not regular, a combination of the
EM algorithm and the Newton-type method is often employed
(the EM algorithm improves the initial values, and the Newton-
type method is used then to estimate the parameters). In many
cases, suitable initial values are difficult to ascertain, especially
for empirical DBH distributions representing uneven-aged stands
of complex structure. An evaluation of the usefulness of the various
methods for choosing the initial values is very important. The
appropriate strategies allow one to estimate the parameters of
the mixture models and to construct accurate DBH models, espe-
cially in difficult situations, such as when the DBH components
of mixture models overlap, in which case the global maximum
may not be found or the estimation process may fail to converge.

The purposes of this study are (1) to verify the two hypotheses
that (a) in mixed-species, two-cohort, two-storied and partly mul-
tilayered stands, two-component mixtures of either the Weibull
distribution or the gamma distribution would be appropriate mod-
els for the DBH distributions; (b) in these models, the DBH compo-
nents, representing age cohorts (and usually stand layers), can be
associated with dominant species; (2) to compare four methods
for choosing initial values for the numerical procedure for estimat-
ing the parameters of mixture models; (3) to propose a new strat-
egy for maximising the likelihood during parameter estimation for
mixture models; and (4) to assess the significance of differences
between the parametric (two-component mixture distributions)
and the nonparametric (kernel density estimation) methods.
2. Material and methods

2.1. Study area

The plots investigated here were randomly sampled in mixed-
species, two-cohort, two-storied and partly multilayered stands
in which DBH distributions of two main age cohorts are partially
overlapping.

The plots were located in the Święta Katarzyna and Święty
Krzy _z forest sections of the Świętokrzyski National Park (Poland;
Świętokrzyskie Mountains; geographical coordinates: 50�500–
50�530N, 20�480–21�050E); and in areas close to and including the
North Carolina section of the Great Smoky Mountains National
Park (USA; southern Appalachians; geographical coordinates:
34�590–36�320N, 78�430–84�130W).

In the Świętokrzyskie Mountains naturally regenerated near-
natural forests chosen for this study are composed of native tree
species. Soils are Distric Cambisols and Haplic Luvisols (subtypes
according to Food and Agriculture Organization, International Soil
Reference and Information Centre, and International Soil Science
Society, [15]). Long-term mean annual temperature was 6 �C, mean
January and July temperatures were �5 �C and 16 �C; the growing
season was ca. 182 days (data from the Święty Krzy _z meteorolog-
ical station at 575 m a.s.l.). The highest temperatures and the high-
est precipitation usually occur in summer, in the middle of the
growing season. Three associations occur: Dentario glandulosae-
Fagetum, Abietetum polonicum and Querco roboris-Pinetum (nomen-
clature after [33]).

In the southern Appalachians, variations in elevation, rainfall,
temperature, and geology provide habitat for nearly 1600 species
of flowering plants, including 100 native tree species and over
100 native shrub species [38]. Great Smoky Mountains National
Park contains some of the largest tracts of wilderness in the East-
ern United States, including 66 species of mammals, over 200 vari-
eties of birds, 50 native fish species, and more than 80 types of
reptiles and amphibians. The study area is part of the Unaka Range
a sub-range in the Appalachian chain, ranging in elevation from
about 300–2040 m a.s.l. The climate and precipitation vary greatly
in relation to elevation and landscape position. The precipitation
averages from 1200 mm annually to approximately 2500 mm at
the highest elevations. High precipitation and cool temperatures
at the higher elevations produce brown, medium textured soils
that have a high content of organic matter in the surface layer.
The warmer temperatures at the lower elevations produce soils
that are redder and that contain more clay in the subsoil. Mean Jan-
uary temperatures range from 2 �C to 10 �C and mean July temper-
atures range from 18 �C to 31 �C [61].
2.2. Field measurements

In the Świętokrzyskie Mountains, eleven 0.25 ha plots were
measured in 2008 and 2009. In the southern Appalachians, nine-
teen 0.067 ha plots were measured from 2003 to 2008; data were
selected from the USDA Forest Service’s Forest Inventory and Anal-
ysis database (documented in [68]). The DBH of all live trees great-
er than 6.9 cm in the Świętokrzyskie Mountains and 12.9 cm in the
southern Appalachians in diameter was measured.
2.3. Data analysis

The stands investigated were categorised in three groups.
Group 1 (two species stands) consisted of 11 stands that were
strongly dominated by two species, from the Świętokrzyski
National Park. Group 2 (multi-species stands with two main spe-
cies) consisted of 10 stands that were medium dominated by two
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species, from the southern Appalachians; the basal areas of the two
dominant species (main species) were greater than 40% of the total
basal area in this group. Group 3 (multi-species stands with no
main species) consisted of 9 stands that were weakly dominated
by two species, from the southern Appalachians; the basal area
of the two most prevalent species did not exceed 40% of the total
basal area (Table 1). The proportion of basal area was always larg-
est for the two dominant species (sp1 and sp2) distinguished in
each plot investigated. The dominant species sp1 was most likely
associated with the young age cohort, the dominant species sp2
was initially associated with the old age cohort.

The tree number per plot varied from 93 to 188 stems in two-
species stands, from 23 to 48 trees in multi-species stands with
two main species, and from 21 to 46 trees in multi-species stands
with no main species (Table 1).

According to McLachlan and Peel [35], a random variable X has a
finite mixture distribution and that fXð�Þ is a finite mixture proba-
bility density function (PDF) when:

fXðxjWÞ ¼
Xk

i¼1

pifiðxjhiÞ; x 2 X ð1Þ

and

W ¼
p1 � � � pi � � � pk

hT
1 � � � hT

i � � � hT
k

� �
ð2Þ

pi are called weights (fractions); fið�Þ are component densities;
i ¼ 1;2; . . . ; k; 0 6 pi 6 1;

Pk
i¼1pi ¼ 1; hi denotes the parameters of

the fið�Þ distribution, W is a complete parameter set for the overall
distribution.

In this study, two theoretical distributions were taken into ac-
count. The Weibull distribution and the gamma distribution, as
PDFs of two mixture distributions consisting of k = 2 individual
PDF components. The number of components was assumed, based
on the analysis of the problem and on the purpose of the research;
two age cohorts determine two components in the mixture. The
functions consisting of two Weibull or two gamma distributions
can be written as:

fðWeibÞXðxjWÞ ¼ p1fðWeibÞ1ðxjh1Þ þ ð1� p1ÞfðWeibÞ2ðxjh2Þ ð3Þ

and

fðgamÞXðxjWÞ ¼ p1fðgamÞ1ðxjh1Þ þ ð1� p1ÞfðgamÞ2ðxjh2Þ; ð4Þ

respectively, where hi ¼ ðai; bi; ciÞ or h�i ¼ ðli; ri; ciÞ. The vectors hi

and h�i serve to provide initial values based on the empirical data;
Table 1
Basal area of species investigated and tree number per plot.

Statistic Dominant species Othe

sp1 sp2 Spec

(m2/ha) (%) (m2/ha) (%)

Two-species stands
Minimum 1.57 11.2 1.86 7.5 0
Mean 16.87 57.1 12.73 40.7 1.4
Maximum 27.99 91.4 31.99 88.7 2
SD 8.82 10.19

Multi-species stands with two main species
Minimum 0.86 2.8 3.92 23.0 4
Mean 5.27 22.3 13.64 51.4 6.9
Maximum 10.95 47.3 26.27 83.9 11
SD 3.34 8.25

Multi-species stands with no main species
Minimum 0.83 4.9 2.45 22.4 5
Mean 3.58 16.0 9.06 35.0 7.6
Maximum 7.21 35.8 21.52 46.6 10
SD 1.87 5.25
see e.g., Macdonald et al. [30]; ai; bi are the shape and the scale
parameter, respectively; ci is the location parameter ðx P ciÞ;
li;ri are the mean and the standard deviation, respectively; i = 1,
2. Therefore, each of these mixture distributions is characterised
by seven parameters: a1; b1; c1; a2; b2; c2 (or l1; r1; c1; l2; r2; c2),
and the parameter p1 characterising the optimal mixture.

The three-parameter Weibull distribution has a PDF given by

fðWeibÞXðxja;b; cÞ ¼
a
b

x� c
b

� �a�1

e�
x�c
bð Þ

a

ð5Þ

The three-parameter gamma distribution has a PDF given by

fðgamÞXðxja;b; cÞ ¼
ðx� cÞa�1

baCðaÞ e�
x�c
b ð6Þ

where Cð�Þ is the gamma function.
The maximum likelihood estimation (MLE) method is used. The

log-likelihood function (lL1ðWÞ) and the minus log-likelihood func-
tion (lL2ðWÞ) are given by [10]:

lL1ðWÞ ¼
Xl

j¼1

nj log PjðWÞ ð7Þ

lL2ðWÞ ¼ �2
Xl

j¼1

nj log
PjðWÞ

Oj

� �
ð8Þ

where PjðWÞ is the theoretical probability that an individual belongs
to the jth interval, Oj ¼

nj

N denotes the observed relative frequency of
the jth interval, and l is the number of intervals. The combination of
the EM algorithm with the Newton-type method was used for min-
imising the lL2ðWÞ function (Eq. (8)) for estimating the parameters
of two-component mixtures [10,36]. This procedure starts from an
initial value (see also Eqs. (3) and (4)):

W0 ¼
p0

1 p0
2

h0T
1 h0T

2

 !
ð9Þ

or using initial values strictly connected with the empirical data;
see e.g., Macdonald et al. [30]:

W0 ¼
p0

1 p0
2

h�0T
1 h�0T

2

 !
ð10Þ

Four methods for choosing initial values for the numerical pro-
cedure were analysed [53,54]:
r species All species

ies number (m2/ha) (%) (m2/ha) Tree number

(N/plot)

0.00 0.0 11.58 93
0.48 2.1 30.08 126.6
1.57 7.9 46.12 188
0.48 10.64

2.31 7.2 14.77 23
6.00 26.2 24.91 33.7

10.45 39.6 41.00 48
2.21 7.55

4.57 41.8 10.93 21
12.00 49.0 24.64 30.3
22.39 67.1 46.19 46

4.78 9.89



R. Podlaski, F.A. Roesch / Mathematical Biosciences 249 (2014) 60–74 63
1. min.k/max.k [46,47]:
W0 ¼
0:5 0:5
h�0T

1 h�0T
2

� �
with h�01 ¼ ðmin :k; sÞ and h�02 ¼ ðmax :k; sÞ;
where min.k, max.k, and s are k-minimum, k-maximum, and
standard deviation (SD) values of the DBH of all trees in the plot
investigated, respectively; min.k is the kth smallest, and max.k is
the kth largest DBH value in a data set (consists of all DBHs in
the plot investigated); for each pair min.k < max.k.
In this study: min.k �min.1 (�minimum), min.5, and min.10;
max.k �max.1 (�maximum), max.5, and max.10. The numerical
procedure starts from min.1 and max.1; then from min.5 and
max.5; finally, from min.10 and max.10. It starts 3 times, and
then should be examine the results to see whether the same
solution was obtained each time.

2. 0.5/1.5/mean:
W0 ¼
0:5 0:5
h�0T

1 h�0T
2

� �
with h�01 = (0.5m,s) and h�02 = (1.5m,s);
where m is the mean DBH of all trees in the plot investigated.

3. sp:
W0 ¼
wsp1 wsp2

h�0T
1 h�0T

2

 !

with h�01 ¼ ðmsp1; ssp1Þ and h�02 ¼ ðmsp2; ssp2Þ;
where the subscripts sp1 and sp2 indicate two dominant tree
species on the plot investigated; wsp1 and wsp2 are the actual val-
ues of the weight (fraction) of trees belonging to the dominant
tree species, respectively; msp1, msp2, ssp1, and ssp2 are the actual
values of the mean DBH and the SD of DBH for dominant tree
species, respectively; msp1 6 msp2.

4. Multistart method [6]:
the grid points on the data space (10 points were employed) are
given by:
u1 � min; u2 ¼ u1 þ
u1 � u10

9
; . . . ; u9 ¼ u8 þ

u1 � u10

9
; u10

� max
where min, and max are minimum, and maximum values of the
DBH of all trees in the plot investigated, respectively.

Each subset of initial values is given by:

w0
c1 ;c2
¼

0:5 0:5
h�0T

c1
h�0T

c2

 !

with: (h�0c1
= (u1,s),h�0c2

= (u2,s)), . . . , (h�0c1
= (u1,s),h�0c2

= (u10,s)),
(h�0c1

= (u2,s),h�0c2
= (u3,s)), ... , (h�0c1

= (u2,s),h�0c2
= (u10,s)), ... ,(h�0c1

= (u9,s),
h�0c2

= (u10,s)).
A complete set of initial values w0 consists of 45 w0

c1 ;c2
subsets.

The numerical procedure starts 45 times, and then should be
examine the results to see whether the same solution was obtained
each time.

The likelihood-ratio chi-square test was chosen to assess the
goodness-of-fit of the models investigated [31,50]:
v2 ¼ �2
Xl

j¼1

nj log
n̂j

nj

� �
ð11Þ

where nj and n̂j are the observed and predicted numbers of trees,
respectively, in the jth DBH class in the plot; l is the number of
DBH classes. The chi-square test has (l � np � 1) degrees of free-
dom, where np is the number of parameters estimated. In addition
to the likelihood-ratio chi-square test, four local error indexes
(DIF.k+, DIF.k�; for k = 1,3) were proposed:

DIF:kþ ¼
max :kðnj � n̂jÞ

N
ð12Þ

DIF:k� ¼
min :kðnj � n̂jÞ

N
ð13Þ

where max.k is the kth largest and min.k is the kth smallest differ-
ences between observed and predicted numbers of trees (the differ-
ence is in the jth DBH class) in the plot, respectively. N is the
number of all trees in the plot. In this study: max.k �max.1 (�max-
imum), and max.3, as well as min.k �min.1 (�minimum), and
min.3. The model with the indexes closest to zero was considered
as the most suitable for DBH modelling.

The absolute errors (E� — calculated for each plot) and the mean
absolute error (ME — calculated for each group of plots) were used
to evaluate the errors for the predicted values of the mean DBH,
and the SD of DBH of the two dominant species distinguished in
the plots investigated. The errors were defined as:

Emsp1 ¼ jmsp1 � l̂1j and Emsp2 ¼ jmsp2 � l̂2j ð14Þ

Essp1 ¼ jssp1 � r̂1j and Essp2 ¼ jssp2 � r̂2j ð15Þ

ME ¼ 1
Ng

XNg

pl¼1

E� ð16Þ

where msp1, msp2, ssp1, ssp2, and l̂i; r̂i are the actual and predicted
(component) values of the mean DBH, and the SD of DBH of the
two dominant species in the plot investigated, respectively; i = 1,
2; pl indicates the plot, pl = 1,2, . . . ,Ng; Ng is the number of plots
in the group g; g = 1, 2, 3. Small values of the errors (especially
Emsp1 and Emsp2 ) permit the assumption that the DBH components
may be associated with dominant species.

The kernel-type estimators are commonly used nonparametric
estimators for density functions (e.g., [51,41]). Let x1; . . . ; xn be
sample points from an unknown density f. Then, its kernel estimate
f̂ is:

f̂ ðxjhÞ ¼ 1
nh

Xn

i¼1

K
x� xi

h

� �
ð17Þ

where Kð�Þ is a kernel function, h is a bandwidth. In this study a
Gaussian density as the kernel and a bandwidth h = 2 cm were used.

In order to verify the precision of the approximation of empiri-
cal DBH data using the two-component mixture distributions and
the kernel density estimation, two statistics were employed:

B ¼ 1
l

Xl

j¼1

ðnj � n̂jÞ ð18Þ

A ¼ 1
l

Xl

j¼1

jnj � n̂jj ð19Þ

where nj and n̂j are the observed and predicted numbers of trees
(for the mixture Weibull model, the mixture gamma model or the
kernel density estimate), respectively, in the jth DBH class in the
plot; l is the number of DBH classes.
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The Fan’s T test [13], in the form T1 proposed by Pagan and Ullah
[40], considers the difference between the two-component
mixture distributions and the kernel density estimate. The Tn test
statistic has a center term that may contribute to some finite
sample bias [28]. To eliminate this effect a modified T1n test statis-
tic was used [40,28]. For a Gaussian density kernel T1n has the
following form [28]:

T1n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

~r
p n

ffiffiffi
h
p

Jn �
1

2
ffiffiffiffi
p
p

nh

� �
ð20Þ

where ~r is proportional to the integrated squared kernel density
estimate; n is the sample size; h is a bandwidth; Jn is the integrated
squared difference between the kernel density estimate and the
two-component mixture distributions — for the mixture Weibull
model or the mixture gamma model (see Pagan and Ullah [40] as
well as Li et al. [28] for details). Under the null hypothesis of
adequation, this test is asymptotically N(0,1).

The calculations were carried out using the mixdist package of R
[31,48] and Mathematica 8 (Wolfram).
3. Results

In stands from the Świętokrzyskie Mountains fir Abies alba Mill.
and beech Fagus sylvatica L. prevailed. In these stands fir and beech
formed two dominant species. The stands from the southern Appa-
lachians were composed of eastern white pine Pinus strobus L., lob-
lolly pine P. taeda L., Virginia pine P. virginiana Mill., eastern
hemlock Tsuga canadensis (L.) Carr., southern red oak Quercus fal-
cata Michx., white oak Q. alba L., northern red oak Q. rubra L., scar-
let oak Q. coccinea Muenchh., chestnut oak Q. prinus L., mountain
magnolia Magnolia fraseri Walt., sweetgum Liquidambar styraciflua
L., red maple Acer rubrum L., yellow-poplar Liriodendron tulipifera L.,
pignut hickory Carya glabra (Mill.) Sweet, black cherry Prunus ser-
otina Ehrh., sweet birch Betula lenta L., sourwood Oxydendrum
arboreum (L.) DC., and black locust Robinia pseudoacacia L. In the
southern Appalachians, pines and oaks dominated among the most
prevalent species (they accounted for more than 35% of the basal
area). The basal area percentage of dominant species sp1 (most
likely associated with the young age cohort) varied from 11.2% to
91.4% in two-species stands, from 2.8% to 47.3% in multi-species
stands with two main species, and from 4.9% to 35.8% in multi-spe-
cies stands with no main species (Table 1). The basal area percent-
age of dominant species sp2 (initially associated with the old age
cohort) varied from 7.5% to 88.7% in two-species stands, from
Table 2
Statistics of the tree DBHs.

Statistic Dominant species sp1 Dominant species sp2 All spe

Mean DBH
(cm)

SD of DBH
(cm)

Mean DBH
(cm)

SD of DBH
(cm)

Mean
(cm)

Two-species stands
Minimum 12.7 4.8 15.1 5.6 14.7
Mean 13.0 13.9
Maximum 27.7 17.5 37.0 29.7 30.6
SD

Multi-species stands with two main species
Minimum 15.1 2.0 23.7 5.3 17.8
Mean 7.4 11.8
Maximum 26.6 25.0 40.8 29.0 28.8
SD

Multi-species stands with no main species
Minimum 15.3 2.1 18.8 3.8 19.0
Mean 5.0 12.4
Maximum 32.2 9.4 63.5 20.8 29.1
SD
23.0% to 83.9% in multi-species stands with two main species,
and from 22.4% to 46.6% in multi-species stands with no main spe-
cies (Table 1). The other species in individual tree groups reached a
maximum of 7.9%, 39.6%, and 67.1%, respectively (Table 1). The to-
tal basal area varied from 11.58 m2/ha to 46.12 m2/ha in two-spe-
cies stands, from 14.77 m2/ha to 41.00 m2/ha in multi-species
stands with two main species, and from 10.93 m2/ha to
46.19 m2/ha in multi-species stands with no main species
(Table 1).

The mean DBH was lower for dominant species sp1 than for
dominant species sp2 in all of the groups investigated (Table 2).
The species most likely associated with the young age cohort were
characterised by lower diameter variation in comparison to the
species initially associated with the old age cohort. The mean SD
of DBH ranged from 5.0 cm to 13.0 cm, and from 11.8 cm to
13.9 cm in the young and old cohorts, respectively (Table 2). Tree
DBH distributions displayed positive skewness, i.e., asymmetry to-
wards positive values. The greatest asymmetry occurred in DBH
distributions in plots representing the multi-species stands with
no dominant species (mean skewness was 1.6963); plots repre-
senting the two-species stands were less asymmetrical (mean
skewness was 1.2034) (Table 2). The DBHs measured ranged from
93 to 188 in two-species stands in the Świętokrzyskie Mountains
and from 21 to 48 in multi-species stands in the southern Appala-
chians (Table 2).

To find parameters of two-component mixture models, first the
weights, the means, and the SDs of the models were estimated, and
next, the appropriate shapes and scales were calculated. The aver-
age values of weights (pi) showed the greater proportion of the 1st
component in the models (Table 3). Greater differences between
component distributions for the 2nd component of mixture models
were observed when analysing the shape of PDF function for par-
ticular groups (Table 3).

In the two-species stands, the consistency of empirical data
with the appropriate theoretical distribution was achieved using
the mixture Weibull model for 6 plots, and using the mixture gam-
ma model for the remaining 7 plots (v2 test, P > 0.05; Table 4). For
multi-species stands dominated by two species, the empirical data
were in accordance with mixture Weibull and gamma models for 9
of the 10 plots (v2 test, P > 0.05; Table 4). For multi-species stands
with no main species, the consistency of empirical data with the
appropriate theoretical distribution was achieved using the mix-
ture Weibull model for 7 plots, and using the mixture gamma mod-
el for 8 plots (v2 test, P > 0.05; Table 4). The best fit for the two
analysed models was achieved for multi-species stands with no
cies

DBH SD of DBH
(cm)

Max DBH
(cm)

Skewness Kurtosis DBHs
measured
(N/plot)

8.8 45 0.4148 �0.9760 93
14.3 67 1.2034 1.5140 126.6
21.3 90 2.7717 9.5660 188

13 0.7449 3.1130

5.4 32 0.1449 �1.1600 23
9.8 51 1.3432 2.4175 33.7

13.8 71 3.4107 13.7273 48
13 0.9386 4.6326

7.7 45 0.7588 �0.8065 21
11.1 56 1.6963 3.3679 30.3
17.1 78 2.8710 10.5005 46

12 0.6649 3.4436



Table 3
Average values of the parameters and statistics of the two-component mixture models.

Statistic 1st Component 2nd Component

Weight Shape Scale Mean SD Weight Shape Scale Mean SD

Mixture Weibull model
Two-species stands
Minimum 0.175 0.694 4.948 4.38 2.04 0.032 2.053 21.503 19.05 1.34
Mean 0.678 1.261 9.816 0.322 11.358 40.899
Maximum 0.968 2.275 18.656 17.59 16.87 0.825 61.397 78.517 76.57 14.60
SD 0.241 0.456 4.585 0.241 16.802 17.268

Multi-species stands with two main species
Minimum 0.279 0.911 2.622 2.54 0.92 0.117 1.070 12.086 10.74 3.49
Mean 0.589 2.054 5.937 0.411 3.508 23.936
Maximum 0.884 5.087 13.924 12.68 6.70 0.721 7.991 50.298 46.98 12.73
SD 0.208 1.391 4.167 0.208 2.134 11.035

Multi-species stands with no main species
Minimum 0.497 0.952 3.095 2.79 1.85 0.067 0.545 4.607 7.95 2.86
Mean 0.765 1.488 6.643 0.235 6.539 28.857
Maximum 0.933 2.545 10.369 9.84 9.57 0.503 15.679 37.827 36.49 15.80
SD 0.160 0.468 2.411 0.160 5.343 10.213

Mixture gamma model
Two-species stands
Minimum 0.283 0.533 1.135 4.73 2.32 0.031 4.586 0.188 23.99 3.15
Mean 0.719 1.546 9.252 0.281 86.637 2.410
Maximum 0.969 4.164 18.935 17.44 15.10 0.717 398.544 6.227 76.70 14.46
SD 0.209 0.977 5.250 0.209 136.525 2.089

Multi-species stands with two main species
Minimum 0.275 0.754 0.671 2.66 1.71 0.099 1.151 0.294 12.36 2.65
Mean 0.646 3.271 3.237 0.354 19.941 3.158
Maximum 0.901 13.863 7.106 13.08 7.83 0.725 81.387 11.571 48.43 12.42
SD 0.189 3.873 2.061 0.189 22.918 3.306

Multi-species stands with no main species
Minimum 0.520 0.889 1.130 2.95 2.04 0.063 0.326 0.168 7.42 2.48
Mean 0.785 2.057 5.224 0.215 57.820 4.013
Maximum 0.937 6.362 13.118 15.30 14.17 0.480 218.334 22.775 36.63 13.55
SD 0.146 1.581 3.853 0.146 71.693 6.841
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main species (Table 4). The average values P (v2 test) show that
empirical DBH data was best approximated by the mixture Weibull
model, however, the mixture gamma model approximated the data
only slightly worse and converged more consistently (Table 4).

The values of local error indexes calculated for the analysed
models varied, for DIF.k+, from 0.007 to 0.152 for the mixture Wei-
bull model and from 0.010 to 0.142 for the mixture gamma model,
while DIF.k�, ranged from �0.162 to �0.010 for the mixture Wei-
bull model and from �0.158 to �0.010 for the mixture gamma
model (Table 4). The greatest average maximal differences be-
tween empirical data and the analysed models were shown for
the multi-species stands, and the smallest for two-species stands.
The application of the mixture gamma model instead of the mix-
ture Weibull model allows one to obtain slightly smaller average
maximal values between empirical data and theoretical distribu-
tions (Table 4).

The analyses presented here have shown that in two-cohort,
two-storied, multi-species stands with two main species and with
no main species from the southern Appalachians, two-component
mixtures of the same distributions of the Weibull and gamma dis-
tribution are appropriate models for the DBHs. In the case of two-
cohort, partly multilayered stands from the Świętokrzyski National
Park the analysed models appear to be less useful. Additionally the
mixture Weibull model and the mixture gamma model approxi-
mated the empirical DBH distributions with similar precision.

The indexes DIF.k+ and DIF.k� varied, for large samples (in the
Świętokrzyskie Mountains), from 0.010 to 0.121 and from �0.092
to �0.010, respectively, as well as for small samples (in the south-
ern Appalachians), from 0.007 to 0.152 and from �0.162 to �0.010,
respectively (Table 4). In this study the goodness-of-fit was not
influenced by the number of DBHs measured.
Theoretically, in mixed-species, two-cohort stands, the two-
component DBH structure can be associated with: (1) age cohorts
and tree species — the first dominant species (in this paper sp1)
dominates a young age cohort, and the second one (in this paper
sp2) dominates an old age cohort; or (2) only age cohorts — domi-
nant species built both generations; a given species occurs in both
young and old age cohorts. The mean absolute error of mean DBH
ranged from 2.4 cm to 5.1 cm for the mixture Weibull model and
from 2.6 cm to 4.5 cm for the mixture gamma model for sp1, while
it ranged from 5.5 cm to 18.1 cm for the mixture Weibull model and
from 5.8 cm to 19.5 cm for the mixture gamma model for sp2
(Table 5). The maximum absolute error for mean DBH was for dom-
inant species sp1 smaller than 15 cm (mixture Weibull model) and
12 cm (mixture gamma model), and for dominant species sp2 smal-
ler than 47 cm (for both tested models) (Table 5). The maximum
absolute error for SD of DBH was for dominant species sp1 smaller
than 22 cm (for both tested models), and for dominant species sp2
smaller than 26 cm (also for both tested models) (Table 5).

The greatest errors of mean DBH were shown for two-species
stands from the Świętokrzyski National Park. The mean absolute
error of mean DBH for dominant species sp1 was 5.1 cm for the
mixture Weibull model and 4.5 cm for the mixture gamma model,
while that for dominant species sp2 was 18.1 for the mixture Wei-
bull model and 19.5 cm for the mixture gamma model (Table 5).
When analysing SD of DBH for two-species stands from the
Świętokrzyski National Park, we obtained the following values:
the mean absolute error for SD of DBH was 4.2 cm and 3.5 cm for
dominant species sp1 for the mixture Weibull model and the mix-
ture gamma model, respectively, and 5.9 cm and 6.0 cm for domi-
nant species sp2 for the mixture Weibull model and the mixture
gamma model, respectively (Table 5).



Table 4
Likelihood-ratio v2 test and local error indexes of the two-component mixture models.

Plot Mixture Weibull model Mixture gamma model

v2 test Local error index v2 test Local error index

P value DIF.1+ DIF.3+ DIF.1� DIF.3� P value DIF.1+ DIF.3+ DIF.1� DIF.3�

Two-species stands
ŚPN21 0.4176 0.024 0.017 �0.046 �0.021 0.3094 0.026 0.023 �0.043 �0.024
ŚPN22 0.9255 0.023 0.014 �0.034 �0.017 0.9023 0.020 0.013 �0.034 �0.014
ŚPN23 0.0027 0.058 0.020 �0.058 �0.023 0.0017 0.059 0.018 �0.060 �0.021
ŚPN24 0.4614 0.017 0.016 �0.024 �0.017 0.3884 0.017 0.015 �0.026 �0.019
ŚPN25 0.0391 0.046 0.020 �0.040 �0.019 0.0796 0.047 0.015 �0.037 �0.017
ŚPN26 0.0594 0.059 0.031 �0.050 �0.022 0.0784 0.046 0.029 �0.051 �0.022
ŚPN27 0.0171 0.047 0.029 �0.040 �0.022 0.0093 0.044 0.028 �0.042 �0.021
ŚPN28 <0.001 0.121 0.031 �0.089 �0.038 <0.001 0.119 0.032 �0.092 �0.037
ŚPN29 0.7915 0.016 0.014 �0.015 �0.011 0.7591 0.018 0.014 �0.023 �0.011
ŚPN30 0.3849 0.047 0.011 �0.047 �0.013 0.3344 0.050 0.010 �0.053 �0.010
ŚPN31 0.0065 0.028 0.020 �0.039 �0.022 0.0106 0.027 0.020 �0.035 �0.017
Mean 0.2823 0.0442 0.0203 �0.0438 �0.0205 0.2612 0.0430 0.0197 �0.0451 �0.0194

Multi-species stands with two main species
3028 0.2266 0.042 0.037 �0.046 �0.031 0.1946 0.044 0.039 �0.046 �0.035
37022 0.1724 0.038 0.029 �0.051 �0.029 0.1791 0.043 0.032 �0.052 �0.027
71025 0.2936 0.068 0.029 �0.029 �0.019 0.2926 0.068 0.029 �0.029 �0.018
57049 0.0614 0.088 0.027 �0.057 �0.028 0.1045 0.071 0.032 �0.053 �0.029
11025 0.2905 0.125 0.029 �0.066 �0.025 0.2400 0.128 0.029 �0.059 �0.023
23057 0.1654 0.071 0.033 �0.052 �0.041 0.1244 0.077 0.050 �0.050 �0.043
75028 0.9595 0.050 0.020 �0.047 �0.019 0.9595 0.049 0.021 �0.045 �0.015
115045 0.4625 0.091 0.057 �0.042 �0.028 0.4921 0.093 0.042 �0.042 �0.023
23046 0.0255 0.066 0.044 �0.162 �0.033 0.0273 0.068 0.048 �0.158 �0.028
193028 0.1956 0.066 0.007 �0.040 �0.014 0.1542 0.068 0.014 �0.037 �0.019
Mean 0.2853 0.0705 0.0312 �0.0592 �0.0267 0.2768 0.0709 0.0336 �0.0571 �0.0260

Multi-species stands with no main species
75045 0.1111 0.090 0.064 �0.129 �0.031 0.0861 0.098 0.064 �0.130 �0.030
183084 0.5500 0.036 0.023 �0.042 �0.022 0.5478 0.035 0.022 �0.043 �0.022
111039 a – – – – 0.8411 0.079 0.045 �0.043 �0.032
99043 0.6513 0.042 0.035 �0.047 �0.022 0.6325 0.049 0.034 �0.048 �0.023
71013 0.6500 0.046 0.017 �0.050 �0.010 0.6350 0.042 0.016 �0.049 �0.010
113079 0.6767 0.072 0.017 �0.036 �0.018 0.7086 0.066 0.018 �0.034 �0.021
199016 0.4292 0.043 0.028 �0.069 �0.045 0.4676 0.043 0.027 �0.067 �0.037
27013 0.0097 0.145 0.028 �0.038 �0.028 0.0092 0.142 0.030 �0.042 �0.028
39065 0.4305 0.152 0.046 �0.093 �0.034 0.4320 0.141 0.046 �0.097 �0.023
Mean 0.4386 0.0783 0.0323 �0.0630 �0.0263 0.4844 0.0772 0.0336 �0.0614 �0.0251

a Lack of convergence of the estimation process; in the paper: DIF.k+, DIF.k� (for k = 1,3) are the local error indexes (see Eqs. (12) and (13)).
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In addition, one may observe that there are only minor differ-
ences between the Weibull and gamma mixture models, and either
of them may be used for analysing the relationships between the
two-component DBH structure and species composition of stands.

The error values led to two conclusions. First, in the two-cohort,
two-storied, multi-species stands, with both two main species and
with no main species, from the southern Appalachians, the 1st DBH
component of mixture models was associated with dominant spe-
cies sp1 and, to a lesser degree, the 2nd DBH component was asso-
ciated with dominant species sp2 (Figs. 1 and 2). Secondly, in most
of the two-cohort, partly multilayered stands from the Świętokrzy-
ski National Park, the two-component DBH structure was associ-
ated with only age cohorts (Fig. 3). In the southern Appalachians
the young age cohorts were composed of dominant species sp1
belonging to the group of both shade-intolerant species, such as
sweetgum and black cherry, and shade-tolerant species such as
eastern hemlock and sourwood. Similarly, the old age cohorts were
composed of dominant species sp2 from the group of shade-intol-
erant species (e.g., loblolly pine and yellow-poplar) as well as
shade-tolerant species (e.g., red maple and sourwood). Generally,
in a lower layer in multi-species stands with two main species,
and with no main species, there occurred dominant species sp1
of different shade tolerances. In the upper canopy layer of multi-
species stands with two main species there prevailed dominant
species sp2 representing shade-intolerant taxa, while in multi-spe-
cies stands with no main species there occurred mostly dominant
species sp2 of average tolerance to shading (e.g., eastern white pine
and chestnut oak). In the Świętokrzyski National Park beech and fir
occurred together in most DBH classes. The young and old age co-
horts were characterised by a similar species composition; beech
and fir trees were growing in the lower and upper stand layers.

Estimation of the parameters of mixture models requires deter-
mining the global maximum of the likelihood function lL1ðWÞ
(which is tantamount to the determination of global minimum of
the likelihood function lL2ðWÞ; see Eqs. (7) and (8)). The effective
determination of global extreme values depends, among other
things, on the choice of initial values. Here, we compared four
methods to choose the initial values; for each of them we com-
pared values at the solution points for the minus log-likelihood
function (Table 6). Of the four methods, the best results were ob-
tained from the multistart method (Table 6). The application of this
method allowed us to determine the global minimum for 29 plots
with the mixture Weibull model and for 30 plots with the mixture
gamma model (Table 6). Of the remaining three methods the best
was min.k/max.k (which enabled the determination of the global
minimum for 25 plots for each tested model), followed by the
0.5/1.5/mean and sp methods (which, with similar effectiveness,
enabled the determination of the global minimum for 19 and 16
plots, respectively) (Table 6). The local minimum or saddle point
instead of a global minimum was found for 9 and 16 cases using



Table 5
The errors for the predicted values of the tree DBH statistics for two dominant species.

Statistic Dominant species sp1 Dominant species sp2

Error for mean DBH (cm) Error for SD of DBH (cm) Error for mean DBH (cm) Error for SD of DBH (cm)

Mixture Weibull model
Two-species stands
Minimum 0.1 0.8 1.5 0.8
Quartile0.25 2.3 1.8 6.8 2.1
Mean 5.1 4.2 18.1 5.9
Quartile0.75 7.4 6.1 26.0 6.8
Maximum 14.6 8.9 46.5 25.2

Multi-species stands with two main species
Minimum 0.3 0.8 0.4 0.1
Quartile0.25 1.2 1.9 1.5 1.5
Mean 2.7 5.0 5.5 4.6
Quartile0.75 3.2 4.0 5.3 4.8
Maximum 8.6 21.7 22.0 16.3

Multi-species stands with no main species
Minimum 1.1 0.9 0.6 0.5
Quartile0.25 1.3 1.0 3.2 4.1
Mean 2.4 2.4 9.0 6.5
Quartile0.75 3.2 2.6 12.3 10.2
Maximum 5.1 7.5 25.2 12.0

Mixture gamma model
Two-species stands
Minimum 0.2 0.2 1.7 0.4
Quartile0.25 2.2 2.0 9.0 2.6
Mean 4.5 3.5 19.5 6.0
Quartile0.75 6.5 4.6 27.1 6.5
Maximum 11.7 8.6 46.6 25.8

Multi-species stands with two main species
Minimum 0.1 0.4 0.3 1.0
Quartile0.25 1.4 2.5 0.8 2.2
Mean 2.6 4.8 5.8 5.4
Quartile0.75 3.1 3.7 6.9 6.4
Maximum 7.7 21.5 23.5 16.9

Multi-species stands with no main species
Minimum 0.7 0.9 0.1 0.5
Quartile0.25 1.3 1.2 4.7 5.7
Mean 2.6 3.4 12.2 7.7
Quartile0.75 3.4 3.6 17.6 10.4
Maximum 5.0 10.8 31.2 15.9

In the paper: E� are the absolute errors (see Eqs. (14) and (15)), mean absolute error (ME) is the mean (see Eq. (16)).

Fig. 1. Multi-species stand with two main species (plot 57049); the 1st DBH component of the mixture models was associated with dominant species sp1 (black cherry) and
the 2nd DBH component was associated with dominant species sp2 (loblolly pine). (A) Mixture models, (B) DBH species structure, (C) mixture Weibull model, (D) mixture
gamma model.
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Fig. 2. Multi-species stand with no main species (plot 75045); the 1st DBH component of the mixture models was associated with dominant species sp1 (red maple) and the
2nd DBH component was associated with dominant species sp2 (mountain magnolia). (A) Mixture models, (B) DBH species structure, (C) mixture Weibull model, (D) mixture
gamma model.

Fig. 3. Two-species stands (plot ŚPN25); the DBH structure was associated only with age cohorts, beech (sp1) and fir (sp2) trees occurred in the young as well as in the old age
cohort. (A) Mixture models, (B) DBH species structure, (C) mixture Weibull model, (D) mixture gamma model.
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the mixture Weibull model and mixture gamma model, respec-
tively, while lack of convergence of the estimation process oc-
curred for mixture Weibull model and mixture gamma model in
19 and 17 cases, respectively (Table 6). The convergence was influ-
enced by the sample size, but there are only minor differences be-
tween small and large samples — more problems occurred in the
case of plots from the southern Appalachians, which were charac-
terised by small data sets (Table 6). The results showed that mul-
tistart and min.k/max.k methods are most useful for choosing
initial values for the estimation of parameters for Weibull and
gamma models.

The values of the B statistic are lowest for the kernel density
estimator (they vary from 0.0004 to 0.0166), which indicates that
the kernel density estimate has the lowest bias (Table 7). The bias
is higher with mixture distribution approximation; the values of
the B statistic take on values from 0.0004 to 0.1023 when the Wei-
bull model was used and from 0.0003 to 0.166 for the gamma mod-
el (Table 7). The values of the A statistic are a measure of the
flexibility of the analysed distributions. The lowest values of the
A statistic were found for the Weibull and the gamma mixture
distributions (from 0.3040 to 1.9546; mean is 0.8148), and the
highest ones when the kernel density estimator was used (from
0.2629 to 1.9883; mean is 0.9166) (Table 7).

Significant differences between the two-component mixture
distributions and the kernel density estimator were obtained for
9 plots (Fan’s T1 test, P < 0.05; Table 7). For these 9 plots the values
of the A statistic were higher when the kernel density estimator
was used (Table 7). In this study, the Weibull and the gamma mix-
ture distributions approximated the empirical DBH data slightly
better than the kernel density estimator (Table 7; Figs. 4 and 5).
4. Discussion

In contrast to simple probability models, mixture models are
much more universal and significantly more flexible for the
approximation of multimodal empirical data. Two-component
mixture models appear to be useful for both fitting the empirical
data (e.g., [73,29,72,24]) and differentiating subpopulations (e.g.,
[69,71,46,47]). When DBH distributions of two age cohorts overlap



Table 6
Values at the solution points for the minus log-likelihood function for the two-component mixture models.

Method to choose initial values Mixture Weibull model Mixture gamma model

Plot min.k/max.k 0.5/1.5/mean sp multistart min.k/max.k 0.5/1.5/mean sp multistart

Two-species stands
ŚPN21 38.14 54.52 a 38.14 40.74 54.24 54.24 40.74
ŚPN22 11.72 11.72 11.72 11.72 12.38 12.38 12.38 12.38
ŚPN23 42.13 42.13 42.13 42.13 43.61 43.61 43.61 43.61
ŚPN24 33.12 33.12 33.12 33.12 34.67 34.67 34.67 34.67
ŚPN25 36.23 36.23 36.23 36.23 33.09 33.09 33.09 33.09
ŚPN26 40.52 40.52 40.52 40.52 39.16 39.16 39.16 39.16
ŚPN27 42.21 42.21 42.21 42.21 44.61 44.61 44.61 44.61
ŚPN28 69.78 69.78 – 69.78 70.01 – – 70.01
ŚPN29 10.44 10.44 – 10.44 10.91 12.67 – 10.91
ŚPN30 22.26 29.90 29.90 22.26 23.18 28.60 28.60 23.18
ŚPN31 67.51 – 53.95 53.95 51.93 69.80 51.93 51.93

Multi-species stands with two main species
3028 11.77 11.77 11.77 11.77 12.34 12.34 12.34 12.34
37022 17.62 17.62 17.62 17.62 17.46 17.46 17.46 17.46
71025 19.63 19.77 19.63 19.63 19.65 19.69 19.65 19.65
57049 17.64 17.64 17.64 17.64 15.84 15.84 15.84 15.84
11025 26.22 26.22 26.22 26.22 28.96 28.96 28.96 27.38
23057 17.80 17.80 17.80 17.80 18.96 – – 18.96
75028 14.13 14.31 – 14.13 – 14.13 – 14.13
115045 22.97 22.97 22.97 22.97 22.47 22.47 22.47 22.47
23046 – – – 20.42 – – – 20.21
193028 7.35 – – 7.35 8.04 8.04 8.04 8.04

Multi-species stands with no main species
75045 – – 21.88 21.88 – – 22.91 22.91
183084 11.73 11.73 11.73 11.73 11.76 11.76 11.76 11.76
111039 – – – – 20.61 – – 20.61
99043 24.57 24.57 24.57 24.57 24.92 24.92 27.57 24.92
71013 11.46 12.39 – 11.46 11.64 12.40 12.40 11.64
113079 10.18 10.18 10.18 9.30 8.93 10.18 10.18 8.93
199016 16.34 16.34 16.34 16.34 15.79 20.52 20.52 15.79
27013 32.09 32.09 32.09 32.09 32.29 32.29 32.29 32.29
39065 14.26 – – 14.26 – – – 14.24

a Lack of convergence of the estimation process; bold numbers indicate that the estimation process stopped in a good status; in the paper: lL2ðwÞ is the minus log-likelihood
function (see Eq. (8)).
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strongly, the resulting stand structures have reverse J and rotated-
sigmoidal shapes. In those cases, the application of single, flexible
distributions such as the Burr Type III distribution [17], is usually a
better solution than the use of mixture models.

Empirical DBH distributions are often multimodal, and this
multimodality can be random, local (due to abrupt, periodical
changes in the growth dynamics of a group of trees, or small-scale
disturbances) or general (connected with the existence of subpop-
ulations in a stand). For small data sets (where there are less than
80 trees) there was apparent random, local multimodality, often in
the form of several local extremes, while for large samples (for a
few hundred trees) there were usually distinct (mostly two) local
maxima connected with the existence of subpopulations. That is
why, when determining the number of mixture model compo-
nents, one should first make use of additional information about
the possible existence of subpopulations in a stand, and then, if
necessary, especially for small samples, apply suitable statistical
tests (e.g., [35]). Summing up, the procedure one should follow de-
pends on what is needed in the research. When one wants to pres-
ent, as precisely as possible, DBH distribution of a specific data set,
then one can fit the number of mixture model components to the
number of random, local extremes. When the purpose of the study
is to make certain generalisations, then one should ignore any ran-
dom, local multimodality and focus on the separation of local max-
ima possibly connected with the existence of subpopulations. In
mixed-species, two-cohort, two-storied and partly multilayered
stands, subpopulations which can shape DBH distributions are
for example particular tree species (especially dominant species),
age cohorts or stand layers. These elements are often intercon-
nected, e.g., two-cohort or two-storied stands can be two-species
stands and then it is possible that particular age cohorts or stand
layers are formed by other tree species. Relationships between
the two-component DBH structure, age cohorts and species com-
position of stands depend, among others, on forest dynamics, dis-
turbances, habitat, type of regeneration and light requirements of
particular species.

Disturbances are the basic factors determining spatio-temporal
dynamics in forest stands (e.g., [18,42]). Most studies have centred
on the extreme ends of the disturbance spectrum (e.g., [37,23]).
Less attention has been focused on the intermediate-scale distur-
bances between these extremes (0.04–0.5 ha in extent), which
may play a larger role in driving the dynamics of forests than pre-
viously anticipated [44]. Relatively discrete events in time which
disrupt forest ecosystems create a continuous gradient of distur-
bance severity ranging from fine-scale to coarse-scale damage.
Fine-scale disturbances (usually < 0.04 ha in extent) eliminate
individual trees locally, while coarse-scale disturbances (usu-
ally > 0.5 ha in extent) cause catastrophic stand break-ups (e.g.,
[8,59]). Models based on birth, growth and death of patches ana-
lyse above of all the effect of disturbances of different size on forest
dynamics (e.g., [52,26]). These models assume that there is a com-
petitive gradient from shade-intolerant, fast-growing, pioneer spe-
cies to shade-tolerant, slower-growing, advanced successional
species. Shade-intolerant species are recruited in pulses, under
the conditions created by perturbation, whereas shade-tolerant
species are recruited more continuously (e.g., [39]).



Table 7
The goodness-of-fit statistics and the modified Fan’s T1 test for the two-component mixture distributions and the kernel density estimation.

Plot Statistics T1 test

Mixture Weibull model Mixture gamma model Kernel model Mixture Weibull model Mixture gamma model

B A B A B A T1n P value T1n P value

Two-species stands
ŚPN21 0.0004 1.2183 0.0003 1.2622 0.0012 1.2777 �1.638 0.9493 �0.942 0.8269
ŚPN22 0.0127 0.8775 0.0235 0.8907 0.0058 1.1608 1.409 0.0794 1.502 0.0666
ŚPN23 0.0139 1.9503 0.0262 1.9546 0.0028 1.9883 2.568 0.0051 2.816 0.0024
ŚPN24 0.0134 0.7966 0.0243 0.7889 0.0019 0.8202 �1.975 0.9758 �1.848 0.9677
ŚPN25 0.1023 1.1748 0.1166 1.1910 0.0166 1.4404 13.965 <0.001 16.839 <0.001
ŚPN26 0.0072 1.2526 0.0137 1.1934 0.0004 1.1482 0.385 0.3500 1.555 0.0599
ŚPN27 0.0232 1.6790 0.0343 1.7211 0.0017 1.6597 �0.830 0.7967 �0.844 0.8007
ŚPN28 0.0087 1.6416 0.0132 1.6925 0.0021 1.7674 �1.034 0.8494 �0.951 0.8293
ŚPN29 0.0102 0.6757 0.0113 0.7518 0.0019 1.0633 �0.281 0.6106 �0.349 0.6364
ŚPN30 0.0048 0.8532 0.0072 0.8651 0.0126 1.2333 1.732 0.0416 2.641 0.0041
ŚPN31 0.0146 1.3949 0.0180 1.3334 0.0040 0.9916 1.421 0.0777 0.910 0.1814
Mean 0.0192 1.2286 0.0262 1.2404 0.0046 1.3228 1.429 0.4305 1.939 0.3978

Multi-species stands with two main species
3028 0.0026 0.5695 0.0051 0.6312 0.0031 0.7989 0.692 0.2446 �0.123 0.5489
37022 0.0101 0.7148 0.0167 0.7244 0.0063 0.9509 1.932 0.0267 2.071 0.0192
71025 0.0110 0.4167 0.0108 0.4090 0.0078 0.8183 7.254 <0.001 7.590 <0.001
57049 0.0124 0.8876 0.0223 0.8009 0.0059 1.1328 3.286 0.0005 2.848 0.0022
11025 0.0018 0.6374 0.0048 0.6617 0.0005 0.5546 �1.248 0.8940 �1.149 0.8747
23057 0.0083 0.5204 0.0062 0.6184 0.0007 0.7441 5.336 <0.001 1.535 0.0624
75028 0.0043 0.3040 0.0040 0.3061 0.0012 0.2629 �1.613 0.9466 �1.658 0.9513
115045 0.0027 0.4482 0.0025 0.4240 0.0016 0.4006 �0.336 0.6314 0.060 0.4759
23046 0.0080 0.8507 0.0152 0.8498 0.0050 1.0175 0.640 0.2612 1.298 0.0971
193028 0.0010 0.6086 0.0036 0.6860 0.0082 1.0477 1.896 0.0289 1.175 0.1199
Mean 0.0062 0.5958 0.0091 0.6112 0.0040 0.7728 1.784 0.3034 1.365 0.3152

Multi-species stands with no main species
75045 0.0006 0.6695 0.0029 0.6883 0.0024 0.5907 �0.210 0.5833 0.408 0.3416
183084 0.0078 0.4151 0.0104 0.4175 0.0044 0.6448 1.137 0.1278 1.179 0.1191
111039 a – 0.0040 0.3974 0.0006 0.3763 – – �1.739 0.9590
99043 0.0034 0.4668 0.0042 0.4742 0.0017 0.4020 �0.900 0.8160 �0.795 0.7867
71013 0.0022 0.5338 0.0027 0.4898 0.0053 0.7693 �0.330 0.6294 �0.244 0.5964
113079 0.0006 0.5687 0.0012 0.5428 0.0045 0.6612 �0.826 0.7955 �0.440 0.6701
199016 0.0080 0.4774 0.0098 0.4639 0.0019 0.4730 �0.861 0.8055 �0.837 0.7987
27013 0.0082 0.6619 0.0124 0.6848 0.0051 0.8212 1.824 0.0341 2.637 0.0042
39065 0.0296 0.5012 0.0514 0.5465 0.0028 0.5472 �0.464 0.6785 0.064 0.4744
Mean 0.0075 0.5368 0.0110 0.5228 0.0032 0.5873 �0.079 0.5588 0.026 0.5278

a Lack of convergence of the estimation process; in the paper: B and A are the goodness-of-fit statistics (see Eqs. (18) and (19)), T1n is the modified Fan’s T1 test statistic (see
Eq. (20)).

Fig. 4. Approximation of the empirical DBH data (A) for the plot ŚPN30 using the mixture models (B)–(D) and the kernel density estimator (C) and (D). The A statistic (see Eq.
(19)) was higher for the kernel density estimator than for the mixture models.
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The development of two-cohort, two-storied, multi-species
stands from the southern Appalachians was influenced by many
natural and anthropogenic factors. Canopy dynamics were driven
by stand initiating disturbances such as large fires and blowdowns



Fig. 5. Approximation of the empirical DBH data (A) for the plot 199016 using the mixture models (B)–(D) and the kernel density estimator (C) and (D). The values of the A
statistic (see Eq. (19)) were almost equal for all models.
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and small, single or multiple-tree mortality events caused by wind,
drought, ice, snow, and lightning strikes (e.g., [65,66,39,49]). Espe-
cially, fire was a significant disturbance agent (e.g., [1,2]). Pine and
oak species were maintained in presettlement southern Appala-
chian forests by periodic fire disturbance (e.g., [21,57]). Insects
and disease also played an important role (e.g., [64]).

Gap size is a major factor in gap colonisation (e.g., [16]). Shade-
intolerant species usually regenerate in large gaps, while a greater
proportion of shade-tolerant species will regenerate in small gaps.
Patches that were originally created in the gaps can have either
loose or dense upper canopy layers at more advanced stages of
maturity. Gaps of different sizes were created in southern Appala-
chian forests, resulting in upper canopy layers of different densi-
ties. Light transmission through forest canopies depends
primarily on tree density, species and the amount of assimilative
apparatus. The resultant two-storied stands can have shade-toler-
ant dominant species in the upper canopy layer (e.g., red maple)
and shade-intolerant dominant species in the lower layer (e.g.,
sweet birch).

The fir and beech forests of the Świętokrzyskie Mountains were
shaped mostly by fine-scale disturbances, and periodically by
intermediate-scale disturbances [44]. Fine-scale disturbances were
caused mainly by wind, ice, and snow, while intermediate-scale
disturbances were connected mostly with the activity of noxious
insects attacking trees that were already weakened due to various
factors [43]. Contrary to southern Appalachians, fire did not consti-
tute a significant disturbance factor in the Świętokrzyskie Moun-
tains. Fir and beech occur in mixed stands owing to their similar
habitat requirements. Both species are considered to be shade-tol-
erant, although fir is more tolerant to light deficiency than beech.
In the Świętokrzyski National Park, in the 20th century, fine-scale
and intermediate-scale disturbances led to the creation of gaps in
the stand and caused a loosening of canopy closure [44]. The pro-
pensity for fir and beech to quickly regenerate both in gaps and in
understory environments has resulted in two-cohort stands in
which fir and beech occur together in both upper and lower canopy
layers [45].

A hypothesis that the DBH components, representing age co-
horts and stand layers, can be associated with the dominant spe-
cies was confirmed for the majority of the stands investigated
from the southern Appalachians but was rejected for most stands
from the Świętokrzyskie Mountains. The results obtained suggest
that: (1) in multi-species stands from the southern Appalachians,
different tree species can be dominant species in specific age co-
horts (i.e., they dominate particular age cohorts); (2) in two-spe-
cies stands from the Świętokrzyski National Park, a tree species
usually has a similar proportion in particular age cohorts. These
differences are probably caused by the greater number of species
and the larger average area of gaps and patches under a loose stand
canopy in the southern Appalachians, as opposed to the Świętok-
rzyskie Mountains [65,67,59,44]. In a larger gap, seedlings and sap-
lings strongly compete and usually one species becomes dominant
in a given age cohort. If a stand is composed of a few or even a doz-
en or so species, different species often dominate the subsequent
age cohort. A different mechanism occurs when there are many
small gaps and patches under a loose stand canopy, situated close
to each other in a forest with two dominant species. In those cases,
one of these two species wins in individual gaps and patches under
a loose stand canopy and the process repeats in each age cohort. As
the result, age cohorts are created composed of the two species
occurring in similar proportions.

Parameter estimation can be especially problematic with mixed
distributions. Of the various methods for estimating these param-
eters, the MLE methods have been the most frequently used. These
methods are generally regarded as the best because they utilise all
information measured for the distribution (e.g., [4,12,56]). The EM
algorithm especially with the Newton-type methods is suitable for
various samples [9,36]. The method of moments (MM) and least
squares (LS) estimation have been also employed. When the
variables are random, the MLE methods provide a consistent ap-
proach to parameter estimation problems and have desirable
mathematical and optimality properties. They become minimum
variance unbiased estimators as the sample size increases and
approximate sample variances that can be used to generate confi-
dence bounds and hypothesis tests for the parameters [35]. On the
other hand the numerical estimations are usually non-trivial.
Maximum likelihood estimates can be biased for small samples.
In the case of some single and double theoretical distributions
the MLE methods are not recommended for small data sets (see
e.g., [56,70]). The MLE is usually sensitive to the choice of initial
values.

For mixture Weibull model and mixture gamma model, without
loss of generality, the parameters can be taken to be the shape and
the scale parameter or the mean and SD (e.g., [31]). Knowing the
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shape and the scale parameter, one can calculate the mean and SD
(and vice versa) for these models. One can generate initial values
from a set of empirical data for indirect estimation; (see e.g.,
[30]). Applying this procedure, we adopt a set of empirical data
as a parameter space for the mean. Four simple methods for choos-
ing initial values were presented and analysed. The multistart
method is very effective (e.g., [14,36]). There are many variants
of this method; the general idea involves choosing a complete
set of initial values that cover the data space in a different ways.
In the study presented here, a complete set of initial values con-
sisted of 45 subsets for the mean. The min.k/max.k method is an
extended version of the classical min/max method (e.g., [53,54]).
In the extended version, we introduced additional pairs of initial
values for the mean, being the kth smallest and the kth largest val-
ues in a data set. We used the 5th and 10th smallest and biggest
values in a data set, respectively. This simple extension signifi-
cantly increased the usefulness of the method. The classical min/
max method appeared to be the least efficient of the six methods
for choosing the initial values in Podlaski [46,47]. In the present
study, the extended version was second to the multistart method.
This comparison of the effectiveness of the classical min/max
method and its extended version confirms the well-known thesis
that the better the initial values cover the data space, the greater
is the probability of finding the global extreme. This study did
not include all of the simple methods for choosing the initial values
in mixture inference; more are described in Böhning [6] and in
McLachlan and Peel [35]. The tested methods for choosing initial
values did not require additional information, they use only stan-
dard data obtained during the measurement of DBHs in a stand
(species and DBH). The application of the presented methods en-
abled the estimation of parameters using both mixture Weibull
model and mixture gamma model, though one should remember
that problems with estimation of parameters increase when the
DBH components of mixture models overlap (which concerns
especially mixture Weibull model) [71,17].

Diameter distribution models have been developed using plots
of various areas; from 0.04 ha to 10 ha (e.g., [63,19,3]). The diame-
ter distribution shape depends on spatial scale (e.g., [22,25,3]). The
number of DBHs measured within a plot is important for reliable
estimation of the distribution function [34,70]. Considerable
reduction in variance and bias has been found in the Weibull
parameters (single model) when sample size changed from 30 to
50, and the further reduction thereafter had a decreasing rate
[56]. Analysing the effectiveness of the tested methods for choos-
ing initial values, the following strategy is proposed for maximising
the likelihood:

1. For small data sets (number of DBHs measured < 80) the multi-
start method is proposed — for the two-component mixture
Weibull or gamma model select initial values using 10 grid
points on the data space (a complete set of initial values con-
sists of 45 subsets should be used).

2. For large samples (number of DBHs measured P 80) the multi-
stage method is proposed — for the two-component mixture
Weibull or gamma model select initial values using the min.k/
max.k (for k = 1,5,10) and 0.5/1.5/mean methods, run the
numerical procedure for each method, and when no two solu-
tions are the same, apply the multistart method also.

The proposed procedure enables, in most cases, the estimation
of the parameters of two-component mixtures of either the Wei-
bull or gamma distribution for different number of DBHs mea-
sured. In the case of distinct random, local multimodality, one
may increase the number of grid points and subsets for initial val-
ues for the multistart method and/or number k for the min.k/max.k
method.
The presented results show high accuracy of the Weibull and
the gamma mixture distributions. This accuracy is similar to or
even higher than the precision of approximates obtained using
the kernel density estimators. It is a very interesting result because
the kernel density estimators are characterised by high flexible
properties [27]. Perhaps, these results are an effect of the accurate
selection of the parametric models (two-component mixture dis-
tributions) to the empirical DBH data. In two-cohort stands the
empirical DBH distributions usually reach the first local maximum,
then they decrease and increase again, reaching the second local
maximum. Two-component mixture models approximate the pre-
sented empirical distributions with high accuracy; they precisely
fitted fragments around the main ‘‘sharp’’ maxima. Smaller local
maxima do not have a significant influence on the quality of the
approximation. Kernel density estimators are less precise in
smoothing the ‘‘sharp’’ extremes. Non-parametric methods may
appear much more useful for approximating the empirical DBH
distributions in the multilayered stands.

5. Conclusions

� In mixed-species, two-cohort, two-storied and partly multilay-
ered stands, two-component mixtures of Weibull or gamma
functions will model empirical DBHs very well because:

1. they allow one to determine precisely two local maxima,
even if they are not clearly marked, despite the occurrence
of random, local multimodality; and

2. they enable us to determine two subpopulations, con-
nected e.g., with dominant species or age cohorts.

� One of the main limitations in applying two-component models
is with problems encountered in parameter estimation. The
likelihood function is often irregular and multimodal and that
is why the numerical algorithms are unstable. Finally, the global
maximum may not be found, or lack of convergence of the esti-
mation process may occur. The closer the initial values adopted
in numerical procedures are to the values for which the log like-
lihood function reaches the global maximum, the more likely it
is that we will assess the parameters correctly. Hence, the
choice of initial values is of critical importance. Depending on
the number of DBHs measured, three methods for choosing
the initial values are recommended: min.k/max.k, 0.5/1.5/mean,
and multistart.
� In two-cohort, two-storied, multi-species stands with various

proportions of dominant tree species, the two-component
DBH mixture model can be used to explain relationships
between the two-component DBH structure, age cohorts and
species composition of stands. The method presented here
allows one to carry out this kind of analysis based solely on
measurements of DBH. This approach may have additional
applications in ecology (e.g., in forest dynamics and forest
modelling).
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