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Abstract

Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visu-
alization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere
Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis
and respiration, using algorithms and driving variables such as climate and land use. While it is widely accepted
that interactive visualization can enable scientists to better explore model similarity from different perspectives
and different granularity of space and time, currently there is a lack of such visualization tools.
In this paper we present three main contributions. First, we propose a domain characterization for the TBM com-
munity by systematically defining the domain-specific intents for analyzing model similarity and by translating
them to visualization-specific tasks. Then, we define a classification scheme that can be leveraged for combining
multiple facets of climate model data in one integrated framework that allows scientists to perform multiple levels
of comparison, by seamlessly switching between spatial and temporal perspectives. Finally, we present Similarity-
Explorer, an exploratory visualization tool that facilitates similarity comparison tasks across both time and space
through a set of coordinated multiple views. We present a detailed case study from three climate scientists who
used our tool for a month for gaining scientific insights into model similarity. Their experience and results validate
the effectiveness of our tool.

1. Introduction
Inter-comparison of model simulations is a critical prob-
lem in the climate science domain for understanding climate
change patterns. Consensus among model results is an im-
portant metric used for judging model performance. Anal-
ysis of model output similarity and dissimilarity is a com-
plex problem because of the multiple facets involved in such
comparisons: space, time, output variables, and model sim-
ilarity. The goal of this work is to provide an interactive vi-
sualization tool that integrates space, time, and similarity,
making it easier for climate scientists to explore model rela-
tionships from multiple perspectives.

The output of our work is a result of a six-month-long in-
teraction between visualization researchers and climate sci-
entists, including terrestrial biosphere modelers. Modelers
generally perform their analyses by looking at spatial and
temporal aspects in isolation, by running scripts, such as
MAT LAB and R on the data and by manually setting param-
eters. The first step during the iterative development of our
tool was to provide the scientists with an interactive interface
for selecting parameters and filtering the data. This was not

sufficient as our interactions revealed that modelers needed a
tool for analyzing both space and time within a single inter-
face in order to judge multi-model similarity. Existing tools
are only capable of integrating one or two facets within the
visualization as pointed out by Kehrer et al. [KH13]. This is
inherently challenging as preserving the mental model about
space and time and maintaining symmetry in the visual rep-
resentation of multiple levels of spatiotemporal granularity
requires a systematic encoding and interaction strategy.
To address these challenges, we developed the SimilarityEx-
plorer to provide a multi-faceted visual analysis of climate
models, specifically, terrestrial biosphere models (TBMs).
Using our tool, climate scientists were able to understand
the degree of overall model similarity across time and space,
and then “drill down” to explore further where, when, and
why models were similar and different. A seamless integra-
tion and exploration of these facets in SimilarityExplorer let
them confirm, reject, and form hypotheses about model sim-
ilarity which were not possible before.

Our work consists of three key contributions:

1. As part of the characterization of the domain [Mun09]
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Figure 1: Visualizing the complexity of multifaceted cli-
mate data in terms of multiple models, regions, time and
variables.

of model inter-comparison, our first contribution is a sys-
tematic presentation of the domain-specific intents of cli-
mate scientists and the corresponding facets underlying
the data (Section 4).

2. We bridge the intents and facets through different visual-
ization tasks, and perform a translation of the tasks into
the visualization design through a classification scheme
that informs the design (Section 5).

3. SimilarityExplorer is a tool that implements this classifi-
cation. Our interactions with climate scientists were con-
ducted before, during, and after the implementation phase
for iterative refinement of the tool based on their feedback.
In light of this, we present two case studies which helped
elucidate and validate the benefit that scientists obtained
when using SimilarityExplorer (Section 6).

2. Related Work
Visualization of spatiotemporal data has witnessed a lot of
research over the years. Peuquet [Peu94] had introduced the
popular triad representation framework which is a general
formalization of temporal dynamics in geographic informa-
tion systems. In our tool we imbibe the concepts of when,
where, and why models are similar. The need to integrate
space and time through an exploratory analysis tool was also
proposed by Andrienko et al. [AAD∗10]. They also pro-
posed a visual analytics [AA13] framework for exploring
spatio-temporal data through spatially referenced time se-
ries. They do not focus on a separation of space and time,
which is the guiding principle in pour work. There exists
other approaches towards building for integrating spatial and
non-spatial data [MMH∗13]. Guo et al. [GCML06] proposed
a generalizeable visual analytics approach for integrating
techniques from cartographic, visualization techniques and
machine learning. That methodology is general and can be
applied to spatio-temporal data. The SimilarityExplorer is
focused on model inter-comparison using a similar method-

Figure 2: Similarity computation. Illustration of spatial
and temporal correlations are computed between models M1
and M2 after aggregating the temporal information. The spa-
tial granularity is preserved at the cost of temporal informa-
tion, and vice versa.

ology. For addressing the needs of the climate research com-
munity, there has been some work on hypothesis genera-
tion [KLM∗08] and tool development [LSL∗10]. Steed et
al. introduced EDEN [SST∗12], a tool based on visualizing
correlations in an interactive parallel coordinates plot. Their
focus is on a single model and try to analyze the interde-
pendence among variables. There also exists some general
visualization tools such as Paraview [Kit], Visit [Law] and
VisTrails [Vis] which offers some specialized climate visual-
izations but almost all of them only present the data without
supporting any analysis. Those specialized packages were
integrated in a provenance-enabled climate visualization tool
UV-CDAT [WBD∗13]. However it neither supports multi-
model and multi-variate analysis, nor the dynamic linking
between views. This is crucial in the case of model inter-
comparison as it requires a seamless transition among differ-
ent facets facilitated by intuitive interaction methods, which
is implemented in SimilarityExplorer.

Although there has been a lot of research involving visual-
ization of spatiotemporal data, most of the existing tools only
integrate one or two different facets [KH13]. In the Similar-
ityExplorer we integrate four different facets: space, time,
multiple models and multiple variables. Our adopted tech-
nique is similar in principle with Kehrer et al’s work on vi-
sual analysis of heterogeneous data, multi-model scientific
data with examples from climate research data [KMDH11].

Through a closely-knit collaboration with climate scien-
tists we were able to address the need for tools that emerge
from genuine and interdisciplinary collaboration [OMBE11,
MMDP10], for solving the problems with such complex
data.
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3. Background of Model Inter-Comparison Project
We collaborated with 3 climate scientists from the Oak
Ridge National Lab as part of the Multi-Scale Synthesis
and Terrestrial Model Inter-comparison Project (MsTMIP).
Each of them have at least ten years of experience in cli-
mate modeling and model inter-comparison. MsTMIP is a
formal multi-scale synthesis, with prescribed environmental
and meteorological drivers shared among model teams, and
simulations standardized to facilitate comparison with other
model results and observations through an integrated evalu-
ation framework [HSM∗13].

3.1. Data
The data consist of simulations from 7 different TBMs for
over 20 years at monthly temporal resolution, collected over
a spatial resolution of 0.5 degree. Each produces multiple
output variables, of which three are relevant for the analysis
presented here. For segmenting the globe, the scientists use
11 different eco-regions. The temporal granularity of inter-
est to them were annual, seasonal, and monthly. As shown in
Figure 1 each model can be represented by a spatio-temporal
volume over latitude, longitude, and time. Since each model
is associated with multiple output variables, each model can
be thought of as being a vector of such volumes. The basic
goal of climate scientists is to efficiently subset this array
of cubes along multiple dimensions, in order to understand
model similarity based on multiple facets: when are models
similar, with respect to seasons and months, where are mod-
els similar, with respect to regions, why are models similar,
with respect to the output variables.

3.2. Model Similarity
As a first step in our design study [SMM12], we discussed
with the climate scientists about their existing approaches
for understanding model similarity. To reduce complexity of
the data, they are used to compressing space and time. It
emerged that, from a temporal aspect they are mostly inter-
ested in comparing model behavior for seasons or months
aggregated across all years. Especially in the TBM com-
munity they are not keen on knowing how model behavior
changes over different years. In this context, they perform
two distinct operations on the data for analyzing similarity
from the spatial and temporal perspectives. These operations
are sketched in Figure 2 and described below:
a) Spatial Correlation: For this step,as shown in Figure 2a
the data is pre-processed in such a way that temporal in-
formation is aggregated but spatial granularity is preserved.
For each point on the map, the average value for a time pe-
riod is computed. Temporal granularity can range from long-
term mean (value at one point is the average for all months
and all years within the time period), long-term monthly
mean (12 monthly maps, with each map representing an av-
erage month for the time period), and seasonal mean (four
maps with each map representing an average season for the

time period). Next, correlation between maps of two models
is computed using the Pearson correlation coefficient.
b) Temporal Correlation: In this case, the data pre-
processing helps aggregate spatial information but preserves
temporal granularity (Figure 2b). For the map at each time
step, a spatially averaged or summed value is computed.
Next we compute a time series, which varies based on the
temporal granularity: one value for long-term mean, 12 val-
ues for long-term monthly mean and four for seasonal mean.
At the end the models are represented by their time-series
signatures. While there are multiple ways for comparing
time-series signatures of two models, in discussion with the
scientists, we chose correlation as the measure for temporal
similarity.

4. Domain Characterization
The initial discussion about the data characteristics was fol-
lowed by an analysis of the domain-specific intents through
face-to-face interactions and conference calls. In this sec-
tion, we present the first contribution of our work, which is a
characterization of the domain-specific intents of the climate
scientists and the underlying data facets.

4.1. Domain Specific Intents
We identified four major intents of the climate scientists in
the context of model inter-comparison, which are as follows:
Q1: In general, modelers would like to know the degree of
spatial and temporal correlation of models with respect to
any output variable.
Q2: With multiple models, they would additionally like to
know which models are similar, and when, where, and why
they are similar.
Q3: They would want to understand if different sub-regions
agree or disagree with the global temporal or spatial correla-
tions, or with the same for other sub-regions.
Q4: The above three questions although address different as-
pects of model similarity, we found in our interactions, that
scientists do not always trust the level of abstraction at which
similarity is deduced, as there can always be anomalies that
are not captured. Thus they always wanted to look at the
original distribution of the data to verify their hypotheses
and validate their findings.

4.2. Facets: Space, Time, Variables, Similarity
The inherent complexity involving inter-comparison of cli-
mate models stems from the multifaceted data underlying
the climate models. The facets [KH13] relevant for the cli-
mate model data are space, time, variables, and similarity as
shown in Table 1. Space and time also involve different lev-
els of granularity. The different levels granularity for spatial
data are global (g) and regional (r) and that for temporal data
are annual (a), seasonal(s), and monthly (m), as shown in Ta-
ble 1. Additionally, there are three output variables for each
model.

Similarity among models is the other facet which can be
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Tasks Facets Visualization Design
Space Time Variables Similarity Views Comparison method

identify(p)
g/r a/s/m single

pairwise matrix (maps)
explicit encoding

identify(t) pairwise matrix (area graph)
identify(p, t) multi-way projection

compare(p,v) g,r a,s,m multiple pairwise
matrices (map)

juxtaposition
smlt:maps

compare(t,v) g,r a,s,m multiple pairwise
matrices (area graph)

juxtaposition
smlt:area graph

associate(p)
r s,m single

multi-way, pairwise parcoords, matrix juxtaposition
associate(t) pair-wise time-series, matrix superposition
distribution(p,v)

r s,m multiple
multi-way, pairwise parcoords juxtaposition

distribution(t,v) pairwise time-series superposition

p: Space t : Time v : Variables g: global r : regional a: annual s: seasonal m: monthly smlt : small multiples

Table 1: Translating tasks into visualization design through a classification scheme. The eventual visualization design is
based on the different facets. For this study, model output has different space and time granularity which each need to be
accounted for in the visualization design.

classified based on the following perspectives: i) pairwise: in
this case scientists are interested in observing similarity be-
tween each pair of models and ii) multi-way: in this case sci-
entists are interested in observing similarity among all mod-
els taken together, and iii) one-to-many: in this case scien-
tists might choose one model as a reference. Our collabora-
tors revealed that the third option is rarely used in compar-
ison of TBMs, since no model is known a priori to be any
better as a “reference” than any other. As a result we did not
implement this option in the tool.

5. Visualization Tasks and Design
The next step in our study was to connect the intents and
facets though concrete visualization tasks and subsequently
translate the tasks to visualization design. This led to our
second contribution: a classification scheme for integrating
tasks, facets, and design (Table 1).

5.1. Tasks
For identifying the tasks, we took inspiration from Zhou and
Feiner’s taxonomy [ZF98], among which identify, compare,
associate, and distribution are relevant here. Notably, the
transition from Q1 to Q4 also indicates increasing complex-
ity of the visualization tasks, which we describe below. In
table 1 the abbreviation after task name indicates the facet
they operate upon.
Identify: The intent Q1, that is understanding model-model
similarity is reflected in SimilarityExplorer by three variants
of the identification tasks: finding the degree of spatial cor-
relations among models (identify(p)), finding the degree of
temporal correlation among them (identify(t)), and also find-
ing the degree of overall spatio-temporal correlation (iden-
tify(p, t)). While the first two tasks reflect pairwise similar-
ity, the last one expresses multi-way similarity. In Table 1,
the symbol / reflects an OR operation. So in case of the iden-

tification tasks any granularity of space (g/r) and time (a/m/s)
can be selected using different filters.
Compare: The intent Q2, that is understanding output-
output similarity is reflected in SimilarityExplorer by the
comparison tasks: comparing the degree of spatial cor-
relation (compare(p,v)) and temporal correlation (com-
pare(t,v)) among multiple output variables. These tasks can
involve multiple selections of granularity of space and time
indicating an AND operation as shown by the comma (g,r
and a,s,m). For example, global correlation of models with
respect to one output variable can be compared with the re-
gional correlation.
Associate: The intent Q3 involves combining the under-
standing of similarity by analyzing the region-wise anoma-
lies and trends for the models. This task applies to both spa-
tial (associate(p)) and temporal correlation (associate(t))
for which different views are instantiated. These involve
mainly drill-down and brushing operations and are per-
formed at the regional granularity of space and monthly or
seasonal granularity of time.
Distribution: The intent Q4 is reflected by the distribution
task that helps provide a multi-way perspective on behav-
ior of regions with respect to multiple models (distribu-
tion(p,v)), and on pairwise model-model relationships for
all regions. Scientists could also get additional information
about outlying regions and models using this task, which al-
lows exploration at a greater level of detail than the other
tasks. This task also involves drilling down to the temporal
distribution of a pair of models (associate(t,v)).

5.2. Visual Encoding Challenges
In this section we describe the different challenges related to
translating the tasks to different aspects of visual encoding
and justify our design choices in the process.
Separating space and time: All the tasks described above
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Figure 3: SimilarityExplorer is composed of a set of filters (a), meta views (b, c, d) and data views (e, f). The meta views are
b) a matrix view for showing pairwise similarity, c) a projection view for showing multi-way similarity, and d) a small multiples
view for showing region-wise spatio-temporal similarity. The data views are: e) a parallel coordinates view for showing multi-
model distribution of each variable, and f) a time series for showing temporal distribution of any pair of models.

required us to separate as much as possible, the aspects
of time and space in the features of SimilarityExplorer. Of
course, in the final analysis, time and space are inextrica-
bly linked. One climate scientist remarked that he wanted
no time in his analysis, only space. Upon reflection, we re-
alized that what this user really wanted was more like all
time, i.e., spatial correlations which had been composited
over the entire time interval, with no temporal subsetting.
In this sense, then, the spatial correlations shown are com-
posited over time, and the temporal correlations are com-
posited over space. This is reflected in the encoding by hav-
ing a visual separation between the spatial side and temporal
side; but at the same time, decomposition of space into time
or vice versa, is separated by interactions such as brushing,
filtering and additional views that show different levels-of-
detail.
Preserving the mental model: This was a critical design
issue due to the interplay between space and time, and the
need to associate them in a holistic view [AAB∗10]. Both
geographical maps and time-series could be used to repre-
sent variation of either the spatial or temporal correlation.
In one of the interactive sessions we presented mock-ups
that used time-series to represent the variation of both spatial

and temporal correlation. But without consistent visual cues
linking the representation to space or time, they were con-
fused: “I like this but I have to wrap my head around what
the visualization is telling me: is it space or is it time? It will
be much better if I don’t have to process this in my mind”
We resolved this issue by collectively taking a design deci-
sion: for temporal correlation we would display the variation
of the correlation over time by displaying a time-series that
adapts to the temporal granularity (annual, months, seasons).
On the spatial side, we would display maps showing spatial
correlation for the selected time step. Thus we use consistent
spatial cues in the form of maps and temporal cues in the
form of time series (Figure 3b,d). By brushing over time, we
would see the change in spatial correlation as the displayed
map adapts to the selected time step.
Retaining symmetry while drilling down: Preserving a
symmetrical relationship among the different granularity of
space and time through consistent visual representation was
essential for scientists to keep track of any change that oc-
curred. The change of spatial granularity is reflected by
transforming the maps to represent the selected regions. The
change of temporal granularity is reflected by transforming
the number of steps in a time series (Figure 4). Another im-
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Figure 4: Preserving the mental model and symmetry about spatial and temporal similarity through use of maps for
representing space and use of area graphs for representing time, and by reflecting the change in granularity on both sides.

portant factor is the associativity of the operations: any spa-
tial operation adapts the temporal similarity to reflect the se-
lected region and any temporal operation adapts the spatial
side to represent the correlation for a particular time step.

5.3. Comparison methods
Facilitating visual comparison among the models and output
variables is one of the main goals of this work. We followed
Gleicher et al.’s taxonomy [GAW∗11] of visual comparison
methods for guiding the representation of the different as-
pects of similarity and the eventual placement of the differ-
ent views. As shown in Table 1, the three comparison meth-
ods that are used are explicit encoding, juxtaposition and
superposition. Explicit encoding is used to encode the de-
gree of similarity among the different views with the help of
correlation metrics. For comparison tasks multiple views are
juxtaposed next to each other. We represent multiple time se-
ries by superposing them in the same view (Figure 3f). Dif-
ferent interaction mechanisms like filtering, brushing, link-
ing, and drilling-down allow scientists to browse through the
multiple perspectives of similarity.

6. SimilarityExplorer
Our third contribution is the design of the SimilarityEx-
plorer, an exploratory visualization tool for analyzing mul-
tifaceted, multi-granularity, climate model similarity. This
design was guided by the domain characterization pre-
sented in Section 4, and was informed by the classifica-
tion scheme described in Section 5. The scientists’ analysis
needs motivated our design decision of using multiple linked
views [Rob07], a visualization approach that is appropriate
for flexible analysis of multifaceted data. There is an implicit
hierarchy [Shn96] in the type of views in SimilarityExplorer,
which are similarity views and data views.

6.1. Similarity View
With the help of similarity views, we explicitly encoded spa-
tial and temporal correlation between models, based on the
computation we had described in Section 3.2. The different
similarity views are described below:

Matrix View: A model is a primary unit of comparison. Our
collaborators needed a view that would show both spatial
and temporal correlation for the models in one integrated
view, that would be flexible enough to adapt to different
granularity of space and time. We took inspiration from the
multi-form matrix [MXH∗03] designed by MacEachren et
al. and designed a matrix view that reflects pairwise simi-
larity between models (Figure 4). In keeping with the idea
of preserving the mental model about space and time, it
is divided into two halves across the diagonal: the cells in
the lower triangle represent the pairwise spatial correlation
through color-coded maps and the cells in the upper trian-
gle represents the temporal correlation between two models.
The color coding uses a continuous color map( [col11]) and
reflects the degree of correlation, with orange for correla-
tions on the spatial side and purple for correlations on the
temporal side. The color map adapts to the range of corre-
lation values: if there are negative correlations, a divergent
color map is used.
Scientists can perform the following tasks using the matrix
as shown in Table 1: i) identification tasks by filtering the
view by different regions or time and ii) comparison tasks
launching multiple matrices of different variables (Figure 6).
For the latter case, we could have encoded a derived statistic
that would explicitly encode the average correlation based
on multiple variables, in a single matrix. However, the sci-
entists were interested in analyzing the high or low correla-
tions for the individual variables. Thus we use the option of
juxtaposing multiple matrices for the different variables.
The effect of changing spatial and temporal granularity are
shown in Figure 4. The initial view shows the view for
global, annual correlation. On selection of a sub-region,
i.e., Europe, maps for Europe are shown on the spatial side,
while the temporal side gets updated to show the annual av-
erage correlation for Europe. On selection of seasonal gran-
ularity, the area graph gets updated to a time-series repre-
senting the four seasons and shows the maps for the selected
season. Thus spatial and temporal operations are symmetri-
cal: they affect both sides of the matrix and the color-coding
reflects the correlation for the selected time step.
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Figure 5: Data View: Parallel Coordinates. The ability to examine the region-wise range and distribution of variables enables
climate scientists to relate the meta views to the patterns in the data view, i.e., parallel coordinates, and additionally, find
clusters and outliers. For NPP, we can see a cluster of polylines for the regions South American Tropical and Tropical Asia for
all models, indicating multi-model similarity for those regions.

Projection View: After presenting the matrix view to our
collaborators, they felt the need for representation which
gave a high-level overview of all models with respect to each
other. This prompted us to design the projection view (Fig-
ure 3c) that shows multi-way similarity among models.
Thus, it overcomes the limitation of the matrix view, which
is only able to show pairwise patterns. As mentioned in Ta-
ble 1, the projection view is used to mainly identify which
models are more similar, triggering the subsequent analysis
steps for exploring the reason for similarity.

The projection view is generated by using the spatial or
temporal correlation between models as the distance metric
and then using multidimensional scaling (MDS) for map-
ping the data points onto a two-dimensional scatter plot. The
physical proximity of models encodes their overall similar-
ity. Initially, some of our collaborators were confused by the
projection view but on seeing the merits of getting a multi-
way overview of similarity they became more appreciative
of its utility. One of them commented: “The axes have no
meaning here and we are not used to seeing this, but I really
like the all-way comparison we can perform which we could
not do before”. This view adapts to different selections of
time steps or regions.
Small Multiples View: The small multiples ( [VDEVW13],
[TGM83] view as shown in Figure 3d supports drilling down
into the correlation patterns for each individual region. The
drill down operation can be initiated from both the spatial
side and temporal sides of the matrix: drill down from the
spatial side shows a map representing spatial correlation for
a region and a selected time step; and that from the tempo-
ral side shows time series representing variation of temporal
correlation for a region. One of the design options was to
show a global map for the spatial drill down, with individual
regions being color-coded based on spatial correlation be-
tween two models. However, this would not have been sym-

metrical with the temporal side, as there would be a map
for each time-step and it is visually complex to represent so
many maps, and still preserve the mental model about the
relationships.
Using this small multiples view, scientists can perform sev-
eral comparisons: i) by selecting a cell within a matrix the
region-wise spatial and temporal correlation for that pair is
shown, which lets them compare anomalies between global
and regional patterns, ii) by comparing across space and
time, scientists can understand the cause of anomalies , and
iii) by comparing these small multiples for different vari-
ables, scientists can hypothesize about which output vari-
ables affect similarity of models across different regions.

6.2. Data View
Using the data view scientists can drill down to the distribu-
tions of different variables and gain information about out-
liers which the similarity views might not show. Below we
describe the data views:
Parallel Coordinates: For each output variable, we use par-
allel coordinates (Figure 5) for enabling scientists to ana-
lyze the multi-model similarity based on the region-wise dis-
tribution of the variable. In discussion with the scientists,
we found that multivariate relationships among the different
output variables are not of interest in their analysis. Instead
of modeling parallel coordinates conventionally, where vari-
ables are mapped on to the vertical axes and data objects are
mapped to polylines, we use one parallel coordinates plot
per variable. We use each vertical axis to represent a model
and a polyline connecting the different axes represents the
value of a variable for a given region. We compute a global
scale across all models, for mapping the values so that they
are comparable. The regions are represented by a categorical
color scale. The number of data points, that is the number of
polylines, depends on the temporal granularity selected. For
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Figure 6: Comparing multiple output variables and ana-
lyzing their distribution (Q2, Q4)
.annual correlation, there is only one polyline per region, for
seasons there are four, and in the case of the lowest level of
temporal granularity, months, there are twelve polylines for
each region.
Brushing by time and region allows the scientists to look at
only specific instants of time, a few regions, or both. By ob-
serving the trajectory of polylines, scientists could perform
a multiway comparison of region-wise distribution across
models. By linking the parallel coordinates with the ma-
trix view, they can also associate the degree of correlation
among models with the data distribution across the different
regions. In case of comparison of multiple variables, multi-
ple parallel coordinates plots can be instantiated.
Time Series: The temporal correlation represented by the
area graph in the matrix is based on a pair of time-series
for each time-step. Since correlation is just one of the ways
of representing the relationship between two time-series, the
scientists were also interested in looking at the original time-
series to find any additional information, like the high or low
temporal distribution, or any anomalies. Based on this re-
quirement, we designed a time series view that shows the
temporal distribution of any variable for a pair of models.
The view is instantiated when any cell on the temporal side
of the matrix is selected (Figure 3f).

7. Case Study and Evaluation
We describe the features of the SimilarityExplorer with two
different scenarios that our climate scientist collaborators
used for analyzing model similarity.

7.1. Understanding Output-Output Similarity (Q2,Q4)
The climate scientists wanted to compare how models be-
have with respect to two output variables: Net Primary Pro-
ductivity (NPP) and Net Ecosystem Exchange (NEE) for the
month of September. Considered to be two of the most im-
portant “vital statistics” of ecosystems, NPP represents the
amount of productivity that is available for growth, while
NEE reflects the input/output balance of carbon to and from
the ecosystem. Both output variables are critical for under-
standing the atmospheric carbon cycle. As shown in Fig-
ure 6, all the models seemed to be more spatially correlated
with respect to NPP (on the top) than NEE (on the bottom).
This prompted the scientists to look at the region-wise distri-
bution of the variables for confirming this. The parallel co-
ordinates plot for NPP (Figure 5, on the left) showed a high
number of parallel lines between highly correlated models
like BIOME-DLEM and DLEM-CLM. But the high correla-
tion for BIOME-DLEM is absent for NEE (Figure 5, on the
right), where lines are more scattered in different directions,
reflecting the different input/output balance points for car-
bon across ecosystems in different regions.

Additionally, by using parallel coordinates plot, the sci-
entists found that NPP (Figure 5, on the left) shows higher
spread among the values than NEE (Figure 5, on the right).
The high spread and high values of NPP for the Visit
model appear to be outliers. The scientists concluded that
these outlying regions were causing the Visit model to be
quite different from the rest. This can also be seen in the ma-
trix plots, by the consistently low spatial correlation between
Visit and most of the other models, for both variables.
However, for NEE, the distribution for Visit is identical to
the distribution for the other models: in this case the lack of
correlation causes Visit to be different from the rest.

The outlier regions, Tropical Asia and
South American Tropical, appeared to be similar
for all the models, as shown by the clustered polylines for
NPP. The scientists confirmed that this was an expected
pattern for tropical regions for NPP; such a pattern was
expected to be absent for NEE, which was also confirmed
by observing the parallel coordinates plot.
By using SimilarityExplorer the climate scientists were thus
able to discover that the models had better agreement for
tropical areas where there is little seasonality in growing
conditions, like temperature. The models had lower agree-
ment for temperate and boreal ecosystems that have distinct
and more variability in growing conditions. One of our col-
laborators commented that “this would allow them to de-
velop hypotheses on performing additional experiments" and
that "the free-style nature of the exploration lends well to
shift from one variable to another and support root-cause
analysis”.

7.2. Exploring Model-Model similarity (Q1, Q3)
Gross Primary Productivity (GPP) is arguably the most im-
portant ecosystem variable, indicating the total amount of
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Figure 7: Comparing model similarity for GPP and analyzing spatio-temporal anomalies for winter and summer (Q1,
Q3). Using the projection view, scientists were able to select similar models; using the matrix view they could compare spatial
and temporal correlation (indicated by the numbers); and identify anomalies using the small multiples view.

energy that is fixed from sunlight, before respiration and de-
composition. Climate scientists need to understand patterns
of GPP in order to predict rates of carbon dioxide increases
and changes in atmospheric temperature. The motivation for
this scenario was to compare multiple models with respect
to GPP by exploring model similarity for the Europe and
Eurasia sub-regions; for the summer and winter seasons,
and compare those trends with the correlations for tropical
and temperate regions..

As shown in the summer view in Figure 7, the model pairs
of CLM-CLM4VIC and BIOME-LPJ appear to be similar,
based on their relative proximity in the projection view. They
selected these models and instantiated the matrix view (Fig-
ure 7). This showed high spatial correlation but low temporal
correlation for the CLM-CLM4VIC model pair for summer,
as well as for winter season. For comparing the trends with
the temperate and tropical regions, they used the small mul-
tiples view. The notable deviations were i) SA tropical
which showed higher temporal correlation across summer
and winter for this model pair, and ii) Tropical Asia
which showed higher temporal correlation than Europe
and Eurasia sub-regions for the winter season.

For the BIOME-LPJ pair, the models appeared to be
more similar during summer than winter based on the pro-
jection view. The drop in spatial correlation during winter
was confirmed by the matrix views. However, the tempo-
ral correlation was higher in winter than during summer.
From the small multiples view, the scientists found that
during summer the SA Tropical, Tropical Asia
and SA Temperate regions had lower spatial corre-
lation than Europe and Eurasia sub-regions; while
Tropical Asia and SA Temperate had lower tem-
poral correlation compared to the same. Both spatial
and temporal correlation for this model pair seemed
to increase for the winter season for the SA Trop-

ical, Tropical Asia and SA temperate region.
This trend was contrary to the pattern for the Europe-
Eurasia region.

By using SimilarityExplorer the climate scientists were
able to visualize the interdependency between seasonality,
region, and model. The fact that the SimilarityExplorer made
their analysis more streamlined and efficient was validated
from one of their comments: “Without this toolm scientists
would literally print hundreds of plots and pin them on the
wall, this tool solves this problem”. They also appreciated
the fact that “the tool can be easily extended for more mod-
els, the benefit is being able to do this with 20 models”.

8. Conclusion and Future Work
In this paper, we have presented SimilarityExplorer, a vi-
sual analysis tool for comparison of multifaceted climate
models. We have demonstrated that by closely collaborating
with a group of climate scientists, we could translate their
intents into concrete visualization tasks, and subsequently
those tasks into visualization design. The climate scientists
are naturally more familiar and comfortable working in one
of the two facets of space and time than the other. Most of
their exploratory thinking, tools and analyses tend to be bi-
ased toward one of them, at the expense of investigations into
the other. Because of the relative ease with which users can
‘cross the diagonal’ from one realm of analysis to the other,
the scientists found that “the SimilarityExplorer offset such
natural prejudices and facilitated commensurate symmetry,
resulting in more complete exploration and understanding”.

We believe our approach of providing multiple perspec-
tives on occurrence and causality of similarity is generaliz-
able to other domains that involve spatiotemporal data, like
urban data. We are looking forward to add more features to,
and apply SimilarityExplorer for solving problems related to
such different domains.
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