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4.1 INTRODUCTION

4.1.1 Crop Protection and Current 
Challenges

Although insects, pathogens, mites, nema-
todes, weeds, vertebrates, and arthropods are 
different in many ways, they are regarded as 
pests. They are a major constraint to crop pro-
ductivity and profitability around the world 
caused by direct and indirect damage to valu-
able crops. Insect pests, pathogens, and weeds 
account for an estimated 45% of pre- and post-
harvest losses worldwide (Pimentel, 1991), in 
addition to losses caused by vertebrate pests 
(Strand, 2000). Each year, farmers are con-
fronted with several questions and uncertain-
ties on how best to manage potential threats 
posed by pests to valuable crops, particularly 
when a significant amount of resources is com-
mitted to cultivation and production process, in 
expectation of profitable yields. Finding ways 
to address these problems has led to changes 
in agriculture production systems over the 
years, with an increase in the use of chemical 
pesticides to minimize pest damage. However, 

some unintended consequences, such as emer-
gence of pest resistance due to repeated use of 
pesticides, mean resurgence of pests and crop 
damage are still of great concern, in addition to 
lingering negative effects of pesticide residues 
on the environment.

These uncertainties have led to pertinent 
questions such as: What can be done to mitigate 
the risks caused by disease and pests to valu-
able crops? Can weather forecasts reliably help 
predict the risk of disease and pest outbreaks? 
To what extent can we have forewarning for 
effective management of pests and diseases 
with minimal inputs? Are the incidences or 
severity of these diseases and pests avoidable 
or predictable? If predictable, can farming prac-
tices be improved by incorporating weather 
information into existing management strate-
gies, for instance to improve the effectiveness of 
pesticides through minimal and timely applica-
tions, to manage pests, but also reduce risks?

Faced with huge risks of crop damage and 
many uncertainties, farmers need effective and 
sustainable solutions every season to ensure 
profitability. This is especially so in many parts 
of the world where expanding agricultural 
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productivity depends on timely, effective, and 
accurate use of information gathered from mul-
tiple sources (including, for example weather 
forecasts). Weather information is especially 
critical for making management decisions to 
avoid or mitigate potential disease and pest 
outbreaks, improve crop development, and 
achieve profitable yields.

For a pest attack or disease outbreak to 
occur, three basic factors must be present; a 
susceptible host plant, a virulent pathogen 
or pest, and favourable environmental fac-
tors that facilitate disease initiation or pest 
attack. Favourable weather factors (e.g. tem-
perature, rainfall, wind, relative humidity) 
may exist within the canopy, on a local scale 
within the field, or on a regional scale, across 
several farms. Seasonal variability in weather 
patterns influenced by preceding or prevailing 
climatic conditions not only creates a condu-
cive environment for pest population develop-
ment and distribution, but also influences crop 
growth and development, and ultimately final 
yield. Therefore, understanding the delicate 
balance between host and pest sensitivity to 
environmental factors such as weather is criti-
cal for survival of vulnerable host crops, or a 
successful attack by aggressive pests or viru-
lent pathogens. Infestations mostly occur when 
environmental conditions are favourable for 
initial attack and subsequent interactions with 
the host. Conducive weather conditions or lack 
there of, are therefore critical for both pest the 
population and crop development.

However, since no two growing seasons are 
the same, extreme weather events driven by cli-
mate variability, in addition to increasing global 
demand for crops, and productivity pressure, 
have pushed cultivations into regions where 
conditions are becoming more favourable for 
invasive pest development, making crops in 
those regions more predisposed to non-native 
pest attacks. The ever-expanding worldwide 
trade and globally increasing demands for 
food and plant products have also led to crop 

production pressure, an increase in pests’ resist-
ance to pesticides that in the long term may 
increase pest activities even further, due to 
intensification of cropping, reduced crop rota-
tion, and increased monoculture (Rosenzweig 
et al., 2001).

4.1.2 Weather, Pest, and Crop 
Interactions

Whatever the nature of interactions between 
pests and host crops, weather factors create 
an additional layer of uncertainty to already 
complex dynamic interactions between a pest 
and its host plant. Understanding the nature 
of this complex interaction requires an inter-
disciplinary approach to identify critical com-
ponents needed to develop management tools 
to address the pest and disease concerns of 
a farmer. The relationship between two or 
more organisms within the immediate ecosys-
tem of a crop, in many ways can facilitate the 
extent of damage caused by a pest, or symp-
toms observed on host tissues. For example, a 
warmer than usual condition that favours pest 
attack may equally favour a competitor, or be 
conducive for a crop variety to resist attack, 
whereas reverse conditions such as stress 
may predispose the same variety to successful 
attacks by pests or pathogens. However, unfa-
vourable dry conditions may actually be det-
rimental to both crop growth and pests (e.g. 
fungal pathogen sporulation).

The dynamic nature of sequences of ecologi-
cal processes is hard to predict due to many 
uncertainties inherent in such complex inter-
actions. This complexity and uncertainties, 
therefore, create opportunities for scientists 
across different fields to study, understand, 
and develop management strategies in solv-
ing emerging pest problems faced by farmers. 
Achieving comprehensive integrated manage-
ment through a multidisciplinary approach is 
a viable option to mitigate the potential risks 
of disease or pest epidemics. However, any 
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integrated approach starts with examining the 
three key components individually, i.e. crop, 
pests, and weather, followed by understanding 
how the delicate interactions that exist among 
them could be exploited in mitigating potential 
threats of pest and disease attacks.

4.2 WEATHER

In the past, favourable weather conditions 
such as warm weather that boosts the pest 
population, or mild winter temperatures that 
increase the chance of pest survival through the 
winter, are known to increase the use of agri-
cultural chemical pesticides, thereby heighten-
ing health risks and increasing ecological and 
economic costs. In the future, extreme weather 
events from climate variability are expected to 
contribute directly and indirectly even more to 
a potential increase in pest damage and the use 
of chemical pesticides to control the increased 
pest pressure (Rosenzweig et  al., 2001, 2000; 
Yang and Scherm, 1997).

4.2.1 Weather Factors and Derived 
Variables

Weather variables including temperature, 
rainfall, and relative humidity, have been tested 
and reported on extensively in many disease 
studies (Bailey et  al., 1994; Nokes and Young, 
1991; Wharton et al., 2008; Olatinwo et al., 2008, 
2009, 2010). In some studies, individual com-
puter programs have been developed based on 
various weather parameters to make predic-
tions, while others studies have incorporated 
computer programs into commercial advisory 
equipment (Cu and Phipps, 1993; Grichar et al., 
2005; Jensen and Boyle, 1965, 1966; Linvill and 
Drye, 1995; Parvin et al., 1974; Shew et al., 1988; 
Wu et al., 1999).

Whether excessive, optimal, or insuffi-
cient, temperature and rainfall are perhaps the 
most important variables affecting crop–pest 

interactions. For example, many pest species 
favour warm and humid conditions, while 
moisture stress may cause direct or indirect 
effects to crop development, making crops 
more vulnerable to damage by pests, especially 
at the early stages. Pest infestations often coin-
cide with favourable climatic conditions or 
weather patterns, such as early or late rains, 
drought, or increases in humidity, which in 
themselves can reduce yield.

In most cases, favourable temperature is crit-
ical for pest development, population growth, 
pest epidemics, the extent of damage caused to 
crops, and the overall crop yield. Cold-blooded 
pests (i.e. insects) are sensitive to tempera-
ture, and therefore insects typically respond to 
higher temperature, which increases the rate 
of development and reduces the time between 
generations. However, very high tempera-
tures may also reduce insect longevity. Warmer 
winters (mild winters) reduce winterkill of 
pests through the winter, thereby allowing a 
greater number of pests to survive through a 
normally expected harsh winter season, and 
consequently, increase insect populations in 
subsequent growing seasons. Rosenzweig 
et  al. (2001) noted that drought resulting from 
extreme high temperatures and reduced rain-
fall, changes the physiology of host species, 
leading to changes in the insects that feed on 
them, and can reduce populations of friendly 
insects (such as predators or parasitoids), spi-
ders and birds, and ultimately influences the 
impact of pest infestations. In addition, abnor-
mally cool, wet conditions can also bring on 
severe insect and plant pathogen infestations, 
although excessive soil moisture may drown 
soil-residing insects.

In addition to temperature and precipita-
tion, relative humidity is another weather vari-
able that has been shown in many studies to 
be related to the development of fungal patho-
gens (Damicone et  al., 1994; Jensen and Boyle, 
1965, 1966; Jewell, 1987; Olatinwo et  al., 2008, 
2009, 2011; Shew et al., 1988; Wu et al., 1999). In 
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monitoring the likelihood of infection initiation 
through sporulation of fungal spores, the avail-
able moisture on a leaf surface can be estimated 
using relative humidity, since it correlates with 
wetness of a leaf surface within a canopy. It is a 
critical component for estimating the likelihood 
of successful infection initiation and foliar dis-
ease development by fungal pathogens (Jensen 
and Boyle, 1965, 1966). Generally, a relative 
humidity of ≥95%, equivalent to saturation, is 
assumed to indicate a level of leaf wetness or 
moisture on the leaf surface sufficient for spor-
ulation and infection initiation on leaf tissue. 
Although leaf wetness as a weather parameter 
is rarely measured, a few empirical methods 
(Matra et  al., 2005) have been used to derive 
leaf wetness durations from meteorological 
parameters. Dew is another important weather 
parameter that also influences leaf wetness 
duration and plays a significant role in facilitat-
ing germination of spores and entrance of dis-
ease spores into crop tissues (Das et al., 2007).

The infection process of a disease such a 
Downey mildew (Bremia lectucae) may occur 
rapidly (i.e. within 48 h when the leaf wetness 
requirement is met) to the extent that sufficient 
time is unavailable for fungicide application 
or for any meaningful control measure to be 
taken (Strand, 2000; Scherm and van Bruggen, 
1993). Strand (2000) noted that, for such dis-
eases, obtaining leaf wetness and the period of 
wetting information from weather forecast can 
provide farmers with sufficient lead-time to 
take adequate control measures for preventing 
disease outbreak.

In developing disease and pest models, 
input variables are not limited to only air 
temperature, rainfall, and relative humid-
ity, but also include other variables such as 
wind speed, wind direction, soil temperature, 
soil moisture, and solar radiation. Depending 
on pest model needs and knowledge about 
the biology of a pest of interest or the cor-
responding host plant, additional weather 
variables may be required for developing a 

predictive model. Therefore, measurements of 
other weather parameters can be obtained by 
using different techniques and equipment at 
the field level.

4.2.2 Critical Weather Variables for Pest 
Forecasting

Whether complex or simple, a disease or pest 
model mostly requires essential environmental 
variables as inputs to be operational, depend-
ing on individual pathogen or pest sensitivity 
to environmental factors. Access to weather 
data and derived variables from temperature, 
rainfall, humidity, and other measurements, is 
essential for developing, testing, and evaluat-
ing these models. For example, models that 
are based on insect phenology, using derived 
variables from degree-days accumulation, are 
more applicable in most environments, since 
they utilize knowledge about individual pest 
species and its sensitivity to baseline tem-
perature that correlates with pest population 
growth. This is usually determined from prior 
laboratory experiments, field trials, and specific 
information about the pest biology. For exam-
ple, Dawidziuk et  al. (2012) found that higher 
winter temperatures could increase the ability 
of Leptosphaeria maculans and L. biglobosa pseu-
dothecia to discharge ascospores into the air, 
causing damaging and early plant infections in 
oilseed rape.

Rainfall patterns (i.e. frequency and inten-
sity) are among the commonly used weather 
information that is needed for timely schedul-
ing of pesticide applications to prevent pest 
development or protect crops with signs of early 
symptoms of a pest attack. In the past, farmers 
have also used prevailing weather information 
to modify the microclimate conditions within 
the canopy (i.e. by lowering the humidity) to 
reduce the likelihood of infection initiation and 
disease development (Strand, 2000).

For example, the significance of weather 
parameters in the development of the thrips 
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population has been reported in several stud-
ies, including Thrips palmi (McDonald et  al., 
1998), onion thrips Thrips tabaci (Edelson and 
Magaro, 1988; Morsello et  al., 2008), tobacco 
thrips (Morsello et  al., 2008), and western 
flower thrips F. occidentalis (Katayama, 1997). 
The tobacco thrips (Frankliniella fusca Hinds) 
and the western flower thrips (Frankliniella occi-
dentalis Pergande) are particularly important 
thrips species that have a significant economic 
impact on several crops in the southeastern 
United States (Olatinwo et al., 2008, 2009, 2011). 
The population peaks of important thrips in 
field crops and vegetables in the southeastern 
US mostly occur during the first and second 
week of May (McPherson et al., 1999; Riley and 
Pappu, 2000, 2004). Therefore, management 
decisions such as scouting for pests at weekly 
(McPherson et  al., 1999) or biweekly intervals 
may be expensive and particularly time con-
suming, apart from when weather information 
is available for monitoring population progres-
sions (Olatinwo et al., 2011).

After repeated fungicide applications, many 
diseases such as leaf spots of peanut may 
develop resistance to fungicides (Culbreath 
et al., 2002; Woodward et al., 2010). Monitoring 
environmental conditions such as rainfall, rela-
tive humidity, leaf surface wetness, and tem-
perature to optimize pesticide applications is 
critical for reducing infection initiation and dis-
ease development (Alderman and Beute, 1986; 
Jensen and Boyle, 1965, 1966; Shew et al., 1988; 
Wu et  al., 1999). Although chemical pesticides 
are effective tools for managing diseases and 
pests, they can be inefficient methods for man-
aging pests due to unintended negative impacts 
on the ecosystems. Constantly monitoring these 
weather variables are important for delivering 
an effective pest management strategy, through 
timely pesticide applications that minimize the 
overall negative impacts on the environment.

Compared to only 5 or 10 years ago, access 
to readily available weather information 
makes many farm management decisions less 

complicated, especially for disease or pest mod-
els that require historical weather data, prevail-
ing weather conditions, and weather forecasts 
for predicting potential pest risks. However, 
some gaps still exist in terms of weather data 
reliability and in translating complex weather 
information to timely warnings that may sig-
nificantly reduce the risks associated with pest 
attacks. With increasing global access to mobile 
phones, electronic text messages, emails, and 
dynamic internet website information (i.e. that 
incorporates weather forecasts into existing 
pest models) are becoming effective means of 
instantly communicating pest risk informa-
tion to farmers. To earn the trust of end-users, 
the uncertainty inherent in pest models and 
weather forecasts used in generating a risk alert 
must be addressed and concisely presented 
to users, since the accuracy and reliability of 
disseminated risk information are critical for 
management decisions and adoption of such 
products.

Apart from the general weather forecasts, 
which are limited to the meteorological ele-
ments and factors such as maximum and mini-
mum temperature, type, duration and amount 
of precipitation, cloudiness, and wind speed 
and direction, there are other types of forecast 
(Das et al., 2007) that might be useful depend-
ing on the required range of the forecast. These 
include the nowcasting and very short-range fore-
casts, the short- and medium-range forecasts, and 
the long-range forecasts. Whatever the type or 
source of weather data, reliability is crucial.

4.2.3 Sources of Weather Data and 
Reliability

Weather information is available from sev-
eral sources, including from national govern-
ments such as in the US, the National Weather 
Service (NWS; http://www.weather.gov/) or 
automated weather networks that are man-
aged by Land Grant Universities, such as the 
Georgia Automated Environmental Monitoring 
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Network (AEMN; www.Georgiaweather.
net), one of the largest automated weather 
station networks in the southeastern USA 
(Hoogenboom, 2000, 2001; Hoogenboom 
et  al., 2003) and AgWeatherNet, managed by 
Washington State University (www.weather.
wsu.edu). In some cases, weather data from 
some regional networks have been integrated 
with pest prediction models, as demonstrated 
by the NSCU-APHIS Plant Pest Forecasting 
(NAPPFAST) system (Magarey et  al., 2007). 
Therefore, it is not surprising to see auto-
mated weather stations becoming more avail-
able to complement other sources of weather 
data for implementing pest predictive models. 
However, spatial resolutions of the weather 
data sources for most of the existing pest fore-
cast models are coarse due to insufficient cover-
age by the monitoring stations. With the rapid 
advancement of technology in agriculture, 
there is a growing need for customized local 
weather forecasts to enhance pest and crop pro-
duction decisions at a local farm level.

Strand (2000) noted that improved technol-
ogy has made automated weather stations 
more accessible; in particular, the availability 
of internet services, mobile phone applications, 
and other portable hand-held devices is mak-
ing data from such stations even more accessi-
ble to farmers and stakeholders. In fact, several 
regional networks of automated weather sta-
tions including AgWeatherNet (http://weather.
wsu.edu/awn.php), Georgia Automated 
Environmental Monitoring Network (http://
www.georgiaweather.net/), North Dakota 
Agricultural Weather Network (http://ndawn.
ndsu.nodak.edu/), and many others are now 
available. However, some limitations still 
exist on the type of weather data available. 
Also, due to limitations in spatial coverage by 
existing networks, it is impossible to obtain 
farm-specific forecasts or measurements for 
monitoring biological processes (pests and dis-
eases) on a specific field scale or within the crop 

canopy at every farm in a region, if such param-
eters are need for making pest predictions.

The distance from a farm location where 
weather information is needed for making 
management decisions, to the nearest station 
on the weather network may play a critical 
role in pest prediction accuracy. Available data 
through the station may not accurately repre-
sent the current weather conditions on a farm 
that is perhaps 10–20 miles away, yet it could be 
the nearest and only source of weather informa-
tion available for making meaningful manage-
ment decisions at the field level. However, the 
accuracy of on-farm measurements could be 
improved by developing correlations or statis-
tical relationships between measurements in 
the field and data from the nearest stations of 
an automated weather station network. This 
type of technique may enhance pest prediction 
accuracy and integration of weather informa-
tion into farm management schemes (Strand, 
2000; Weiss, 1990). Weather variables also play 
a crucial role as inputs in models for predicting 
insect vector/pathogen population dynamics. 
For instance, weather patterns were shown to 
have a significant but indirect effect on the inci-
dence of Tomato spotted wilt virus transmitted 
by thrips in peanut (Olatinwo et al., 2008, 2009). 
Several studies have also used weather param-
eters as a management tool for monitoring 
pests/vectors and diseases/pathogens in valu-
able crops (De Wolf and Isard, 2007; Magarey 
et  al., 2007; Wharton et  al., 2008). However, 
innovative approaches to weather forecasts are 
also emerging.

The Weather Research and Forecasting 
(WRF: http://www.wrf-model.org) model 
is a next-generation mesoscale numerical 
weather prediction system designed to serve 
both operational forecasting and atmospheric 
research needs. The WRF model developed by 
the National Center for Atmospheric Research 
(NCAR) features multiple dynamical cores, a 
three-dimensional variational (3DVAR) data 
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assimilation system, and a software architecture 
allowing for computational parallelism and 
system extensibility. The WRF model is suit-
able for a broad spectrum of applications across 
scales ranging from metres to thousands of kil-
ometres. Potential applications of WRF in plant 
disease and insect vectors were recently evalu-
ated (Olatinwo et al., 2011, 2012), of which two 
examples are discussed as case studies later in 
this chapter.

Implementing a disease or pest model 
requires easy access to reliable sources of 
weather data, and knowledge of the pest and 
host crop. Although several weather para meters 
may be required, as mentioned earlier, the key 
inputs from weather measurements mostly 
include temperature, rainfall, and relative 
humidity. Since not all inputs needed for devel-
oping a model are available through the stand-
ard weather station data, other variables that 
are not measured are either calculated, com-
puted, or derived from actual weather meas-
urements. Usually, this is done by using tested 
algorithms, statistical analyses, and math-
ematical functions in calculating new derived 
variables. A good example is leaf wetness  
(i.e. the wetness of a leaf surface) that can be 
estimated from the relative humidity as men-
tioned earlier. Derived variables are extremely 
important when instruments for measuring the 
variables are limited or impossible to deploy for 
collecting reliable data. Therefore, in this case, 
the leaf wetness can be estimated from relative 
humidity measurements from the local weather 
station to help determine the likelihood of spor-
ulation of fungal pathogens on a leaf surface. 
The data from regional scale weather monitor-
ing networks obtained from different sources 
is as important in monitoring pest outbreaks as 
the on-farm measurements of weather param-
eters for monitoring disease or pest devel-
opment within the canopy. A regional-scale 
weather forecast is a useful source of data input 
for disease and pest models, and is needed for 

monitoring disease epidemiology and pest pop-
ulation dynamics on a larger scale.

4.3 PESTS

4.3.1 Sensitivity and Vulnerability to 
Weather Factors – Extreme Events and 
Prevailing Climate

Sensitivity of pests to temperature and rain-
fall usually varies by species. Extreme weather 
conditions such as high temperatures, low 
temperatures, a decrease in precipitation, or 
extreme flooding could have direct effects on 
pests and crops, while host crops (depend-
ing on individual variety) may be indirectly 
affected through weather influences on soil 
processes, nutrient dynamics, and abiotic 
stressors that predispose crops to disease and 
pest attacks. Ultimately, variability in temporal 
and spatial weather conditions due to short- 
and long-term climate variability could have 
an impact on soil conditions, water availability, 
agricultural yield, and susceptibility of crops 
to pest and pathogen infestations (Rosenzweig 
et al., 2001).

The USPEST.org (http://uspest.org/wea/) 
is an Integrated Pest Management (IPM) 
model and forecasting web resource for agri-
cultural, pest management, and plant biosecu-
rity decision support in the US. The internet 
site provides over 78 degree-day and 18 hourly 
weather-driven models serving many IPM, 
regulatory, and plant biosecurity uses in the 
United States and specializes in IPM needs for 
the Pacific Northwest, according to available 
information on the site. Degree-day data pre-
sented on the site are very useful for monitor-
ing pest developments and prevailing weather 
conditions, and in evaluating different options 
available for management through the grow-
ing season. Models developed based on a sim-
ple technique of degree-days, may utilize air or 
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soil temperatures to describe the phenology of 
an individual pest, and helps determine when 
they reach a pre-determined population thresh-
old that would warrant pest management 
actions. The information may also be useful 
for scheduling pesticides application based on 
known biology of the pest. Strand (2000) noted 
that the degree-days technique has been use-
ful for controlling insect pest populations, such 
as the European corn borer, rice water weevil, 
and pink bollworm, particularly in tree, veg-
etable, and field crops, where pesticide applica-
tions may be accurately timed using phenology 
models.

According to Rosenzweig et al. (2001, 2000), 
and Yang and Scherm (1997), mild winter 
weather or other extreme events such as abnor-
mally high summer temperatures are expected 
to increase in frequency, and may directly or 
indirectly contribute to increase the risk of 
pest damage in the near future. Currently, 
there are few examples of known pests of valu-
able crops other than soybean cyst nematode 
(Heterodera glycines) and sudden death syn-
drome (Fusarium solani f. sp. glycines) that have 
recently expanded their geographical ranges 
due to more favorable conditions for develop-
ment (Hartman et  al., 1995; Rosenzweig et  al., 
2000; Roy et al., 1997). The dynamic nature (i.e. 
expanding or shrinking) of geographical ranges 
of several important insects may accelerate 
with changing global climate, resulting in grad-
ual expansion of the reach of pests beyond the 
traditional ranges we currently know. Matching 
this shift with early detection methods and 
effective management strategies to deal with 
potential threats from invasive pests shifting 
beyond known ranges into a new geographical 
region will be critical. Seasonal pest monitoring 
efforts may be strengthened by using weather 
forecasts that provide forewarning information 
and a scouting guide for locating areas where 
favourable conditions are met and impending 
pest population increases or emergencies are 
expected.

4.3.2 Weather Forecasts for Early 
Warning/Scouting of Pest

Detecting an impending disease outbreak 
or pest attack early enough by itself serves as 
a strong management tool. According to Das 
et al. (2007), ‘the projections for optimum flight 
periods from daily synoptic weather forecasts 
facilitate the detection of invasions of pest and 
disease vectors and also the timing of pesticide 
applications to intercept and eliminate pest 
infestations during displacement from breeding 
areas.’ Since the cost of pesticide application 
constitutes a sizeable amount of a farmer’s total 
overall cost during a given crop production sea-
son, minimizing the use of agrochemicals will 
likely make more cash resources available to a 
farmer by reducing the overall costs needed to 
increase the acreage that is protected against 
pests or diseases. It will also free-up resources 
to provide additional plant nutrition needed 
to increase crop productivity, while reducing 
environmental contamination from chemical 
residues. In view of this, the use of weather 
forecasts in predictive models for early warning 
of an impending attack, scouting of insects, or 
early detection of diseases and weeds, can not 
only help minimize the volume of agrochemi-
cals applied, but also make the applications 
more effective. It will prevent overuse of chemi-
cal pesticides and reduce the development of 
chemo-resistant strains of pests and pathogens 
(Das et al., 2007).

A carefully evaluated disease model coupled 
with the weather forecasts from WRF output 
as discussed later in this chapter could provide 
an approach for routine spatiotemporal predic-
tions of potential threats for many diseases of 
valuable crops, especially those for which IPM 
can play an important role in the long term. The 
easy to understand spatiotemporal distribu-
tion map would provide growers with a simple 
to understand warning and ample time to take 
preventative measures in protecting high value 
crops.
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4.4 CROPS

4.4.1 Agronomic Dependence on 
Weather Factors – Planting Days, 
Phenology, and Host Maturity

Genotypic and phenotypic traits of a crop 
can make it either vulnerable or resistant to 
pest attack. Susceptibility of a crop to weather-
induced stresses, and infestations or infections 
caused by pests or diseases, vary among crops, 
among different varieties within the same crop, 
and among different growth stages within the 
same crop variety (Das et  al., 2007). Over the 
years, crop breeders have selected several traits 
in breeding programmes (depending on the 
crop), to meet consumer expectation, to address 
crop vulnerability to pests and diseases, to 
improve productivity, and increase profitabil-
ity. These needs led to intermittent releases of 
improved crop varieties that differ in many 
ways, ranging from attributes such as maturity 
(early or late), yields (high or low), how sensi-
tive or tolerant they are to environmental fac-
tors (such as drought), and how susceptible 
they are to pathogens and pest attack (resist-
ance or susceptible).

Availability of different crop varieties with 
varying levels of sensitivity to pests makes 
variety selection decisions by farmers a criti-
cal component of any IPM approach. It pro-
vides farmers with a decision tool for pest 
management. For example, selecting an early 
maturing variety may be uniquely suitable for 
cultivating a crop at a specific period, to avoid 
diseases or insect pest attacks during the latter 
part of the growing season as a management 
strategy. In view of this, for an IPM strategy, 
weather forecasts (i.e. temperature) serve as 
a useful means to monitor crop phenology 
effectively, estimate crop growth and devel-
opment, and quantify changes under varying 
environmental conditions through the growing 
season. Accumulation of average daily temper-
ature above a pre-determined base temperature 

(degree-days; unique to individual species) is 
a common and simple technique that has been 
used in the past for monitoring crop develop-
ment and insect pest phenology.

The cropping systems model (Strand, 2000) is 
a more comprehensive approach that utilizes 
complex mathematical equations, incorporated 
with weather parameters (air and soil tem-
perature, rainfall, etc.,) and derived variables 
including degree-days, to generate information 
on the status of crops, their pests, and potential 
threats under multiple scenarios, and probable 
management options. Although there are few 
examples of cropping system models, some 
have been developed into products with pest 
models as an optional module in the manage-
ment decision process (Boote et al., 1983; Jones 
et  al., 2003). Overall, an important benefit of 
this type of model is that it allows simultane-
ous evaluations of interactions between crop 
and pest components, potentially providing a 
farmer with more in-depth information needed 
to improve overall crop-pest management deci-
sions (Tsuji et al., 1998).

4.4.2 Synchronization of Pest Emergence 
and Host Development; Avoidance and 
Planting Dates

Whether it is traditional or genetically 
improved crop varieties, both are critically sen-
sitive to environment factors such as changing 
weather patterns. Although drought-tolerant 
varieties of various crops are mostly available 
to farmers, many varieties are still prone to 
infections or infestations under stressful envi-
ronmental conditions such as drought or flood-
ing. Manipulating planting dates, i.e. planting 
early or late, or planting an early- or late-
maturing variety, coupled with weather fore-
casts, is an approach that farmers can exploit 
to avoid population peaks of pests or insect 
vectors, thereby lowering the probability of 
host vulnerability and risk of potential attack 
(Strand, 2000).
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Olatinwo et  al. (2008, 2009) described the 
synchronization of peanut planting date and 
early populations of thrips as critical compo-
nents in managing Tomato spotted wilt virus in 
the southeastern US. Like several other soil-
borne pathogens, development of sugar beet 
cyst nematode (Heterodera schachtii) is quite 
sensitive to changes in soil temperature, and 
therefore its population in the soil is usually 
measured using degree-days based on soil tem-
perature. Studies (Olatinwo et  al., 2006a,b,c), 
have exploited this sensitivity in monitoring 
progression of sugar beet cyst nematode gener-
ations in greenhouse experiments and in vege-
table fields during the growing season. Roberts 
and Thomason (1981) indicated how early 
plantings of sugar beet could take advantage of 
cooler temperature when H. schachtii nematode 
is inactive and unable to attack due to tempera-
ture conditions that are below the required base 
threshold for development. Therefore, select-
ing the most suitable variety (i.e. at the begin-
ning of the season) based on variety phenology 
and seasonal weather forecasts or prevailing 
weather conditions may strengthen a farmer’s 
ability to manage pest attack effectively within 
an IPM approach.

Weather factors influence insect occur-
rence and govern the general distribution and 
numbers of insects, and, therefore, can either 
foster or suppress insect life. Das et  al. (2007) 
noted that temperature and relative humidity 
control the time interval between successive 
generations of insects as well as the numbers 
produced in each generation, while wind pat-
terns are an important factor for the migration 
of insect pests. Strand (2000) also noted that fre-
quent and heavy rainfall characterized by run-
off and flooding could serve as an impetus for 
conducive and suitable habitats for locust sur-
vival and population growth. A study by Prior 
and Streett (1997) on strategies for the use of 
entomopathogens in the control of the desert 
locust found that, although preventing locust 
outbreaks by destroying flightless nymphs 

(which can be monitored using weather 
information) might be desirable, emergency 
measures are usually preferred to control the 
destructive swarms of desert locust adults.

Interactions involving crops, pests and the 
environment can be very complex to untangle. 
However, almost all components of an IPM 
strategy including variety, biological control 
agents, planting date, crop rotation and other 
cultural practices are either directly or indi-
rectly affected by environmental factors such 
as changing weather patterns or climate vari-
ability. For example, a crop variety might not 
do well under extreme weather conditions, or a 
biological control agent might be less effective 
and out-competed by targeted pest if the envi-
ronmental conditions are unfavourable for it 
to establish. A planting date might be too early 
or too late if soil temperature is not suitable for 
planting. Even the amount of moisture on plant 
surfaces and wind speed/direction might affect 
uptake and coverage of pesticide applications, 
respectively. Hence, environmental limitations 
to any of these factors could have serious con-
straints for effective and successful implemen-
tation of IPM methods, and, thus, efforts to 
control diseases and pests of valuable crops at 
critical periods during the growing season.

4.5 EFFICIENT CROP PROTECTION 
PRODUCT

4.5.1 Weather-Based Forecasts and IPM

IPM is a crop production technique that 
is generally accepted as an effective strategy 
for balancing between management of pests 
using a minimum amount of chemical pes-
ticides and reducing the negative impacts of 
pesticide applications on the environment. It 
is fast becoming a favoured approach in many 
regions across the world because it combines 
multiple management techniques including 
use of resistant varieties, a natural enemy, and 
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biological control agents, improved cropping 
practices such as crop rotation, tillage, and 
irrigation methods, and a minimal amount of 
pesticide use, based on weather forecasts and 
timely applications of pesticides. As part of an 
IPM, weather information is critical for select-
ing the most suitable variety (i.e. early or late 
maturing, according to phenology), and the 
best planting date(s) to avoid diseases or pest 
pressure at an early stage of crop development. 
Hence, IPM provides farmers with a variety of 
choices to plan and take preventative measures 
against disease development and pest attacks 
from pre-planting throughout the growing sea-
son until final harvest.

Scientific and technological advances in 
biotechnology, agro-meteorology, and com-
puter science are complementing traditional 
methods of pest management with newer and 
more efficient techniques that have produced 
transgenic resistant varieties, high-resolution 
weather forecasts, and accurate pest predictive 
models. Where IPM has been implemented, it 
has demonstrated that both emerging technolo-
gies and traditional pest management meth-
ods can be complementary to each other in 
preventing threats posed by pests to valuable 
crops. Profitable and efficient crop production 
is achievable with IPM techniques, while mini-
mizing the impacts of chemical pesticides and 
fertilizer inputs on the environment.

In addition to the use of chemical pesticides 
to improve crop productivity, selecting a resist-
ant variety that can tolerate or resist pathogens 
or pest attacks is not only good for the envi-
ronment, but also relatively inexpensive com-
pared to pesticide applications alone. Generally, 
resistance expressed by a crop variety is a prod-
uct of genetic traits of that variety, the virulence 
of the corresponding pathogen or pest, and 
how they interact with other components such 
as weather, soils, and cultural practices within 
the environment. Genetic engineering and bio-
technology have so far played a significant role 
as tools in crop improvement, turning out new 

cultivars each year to address crop production 
needs. They have improved and complemented 
the traditional crop breeding methods, through 
relatively quick gene transfer techniques that 
have resulted in new varieties with desirable 
traits against potential impacts of pests and 
diseases. A good example is genetically engi-
neered corn carrying bacteria (Bacillus thuring-
iensis) endotoxin gene, which makes it tolerant 
to insect attacks.

Strand (2000) alluded to other examples such 
as genetically engineered carrots with antifun-
gal genes from tobacco that offer protection 
against powdery mildew. In some cases, crops 
are engineered to tolerate herbicide applica-
tions, while competitive weeds at the target 
site are killed. This type of crop improvement 
(resistant host crop) provides farmers with 
another tool to fight pest attacks, in addition to 
the use of weather information for short-term 
monitoring of pests. However, a sudden break-
down in crop resistance to a pathogen or a pest 
due to frequent use of pesticides may be cata-
strophic for overall crop production. Resistance 
to a single pest or disease may be less effective 
when multiple pests are involved, but perhaps 
more effective when used in combination with 
other techniques and as one of the components 
of an IPM approach.

Apart from increasing pest resistance to 
pesticides due to repeated use, there are other 
negative impacts of chemical residues on the 
ecosystems, including contamination of sur-
face and groundwater, and beneficial organ-
isms. Hence, strategies for managing pests by 
farmers will continue to shift to an integrated 
management approach that reduces both the 
frequency and the amount of chemical appli-
cations released into the environment. IPM is 
a viable option the farmer can explore and be 
improved upon every year through precise and 
timely applications of pesticides. With signifi-
cant progress made in the field of science and 
technology, pest models have been coupled 
with high-resolution weather forecast data to 
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predict the risk of an impending increase in 
pest populations or favourable conditions for 
infection initiation and disease development. 
Olatinwo et  al. (2011, 2012) recently exam-
ined the application of this promising scien-
tific approach for managing insect vectors and 
a peanut disease in the southeastern United 
States. The disease and insect vector models 
were coupled with the weather predictions or 
forecasts provided by the WRF model. A part 
of this study (Olatinwo et al., 2012) evaluated a 
potential short-range forewarning concept that 
triggers an alert and generates a 3 × 3 km grid 
high-resolution map when a favourable condi-
tion for the potential onset of a disease is met.

4.5.2 Existing Products

How farmers consume weather forecast 
information is by itself important. Several web-
based pest models that are driven by weather 
information can now deliver location-specific 
risk alerts using simple web graphics. Most 
existing internet-based interactive systems/
models can output spatial and temporal distri-
bution maps to depict the potential level of pest 
risks which is easy enough for farmers or stake-
holders to understand and incorporate into a 
quick decision process for monitoring the like-
lihood of a pest outbreak. Measurements and 
observations from regional weather networks 
are coupled with disease and pest predic-
tion models, while online maps are generated 
and frequently updated on a regional scale, 
for monitoring likelihood of infections or out-
breaks in valuable crops. Examples of internet-
based interactive systems include the potato 
late blight in Michigan (http://www.lateblight.
org/forecasting.php) described by Wharton 
et  al. (2008); the AWIS Weather Services, Inc 
(http://awis.com); the Oklahoma mesonet 
peanut leaf spot advisor (http://www.mes-
onet.org/index.php/agriculture/category/
crop/peanut/leaf_spot_advisor) based on a 
model described by Damicone et  al. (1994); 

North American Plant Disease Forecast Center, 
North Carolina State University (http://cdm.
ipmpipe.org/); HortPlus (http://www.hort-
plus.com/Brochure/MetWatch/MWSoftware.
htm); and a web-based tool for Fusarium Head 
Blight risk assessment (http://www.wheatscab.
psu.edu). AgWeatherNet also incorporates sev-
eral disease models for cherry and grass for 
the state of Washington, USA (www.weather.
wsu.edu). These web-based IPM risk assess-
ment tools usually generate distribution maps 
that are very easy to understand and useful for 
monitoring the potential level of risks across a 
given area. Generally, they are models that have 
been developed based on an in-depth under-
standing of how weather factors affect biology 
and development of a particular pest and eval-
uated with local data.

The University of California, Davis also 
developed an online database of IPM models 
(http://www.ipm.ucdavis.edu/WEATHER/
index.html) from a large collection of research 
summaries of phenology models for insects, 
mites, diseases, plants, and beneficial organ-
isms. This internet-based interactive system is 
a useful source of information on key weather 
parameters that are needed as input for design-
ing a successful IPM strategy that improves 
crop productivity. In addition to local weather 
conditions, some systems also include para-
meters such as type of soil, type of crop, and 
phenological stages, as well as level and type of 
insect pest infestation. Usually, a combination 
of these parameters is considered in offering 
advisories for decision-making on sowing, har-
vesting, irrigation, nutrient management, and 
chemical application (Dacom, 2003).

A typical internet weather-based pest fore-
casting web site frequently updates predic-
tions or risk assessments using the most recent 
weather data (depending on parameters) 
available as input. The output/predictions, in 
most cases, are translated into simple manage-
ment recommendations that farmers can use in 
deciding what action is needed, if any. Seeley 
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(2002) noted that insect and disease control, 
pheromone release, irrigation, freeze preven-
tion, maturity indices, and fruit damage have 
benefited from weather database prediction 
programs. This is largely due to the significant 
improvement in computer technologies that 
deliver new tools, and increasing accessibility 
to information disseminated through media 
such as the internet and cell phones using push 
technology.

4.5.3 Case Studies

We examined two case studies on the sig-
nificance of weather-based pest forecasting for 
efficient peanut protection in Georgia, USA. 
The early leaf spot disease of peanut caused 
by a fungal pathogen, and the Tomato spotted 
wilt virus (TSWV) of peanut transmitted by two 
major thrips vectors, were examined as exam-
ples of complex pathogen–vector interactions. 
The two case studies explored the potential 
application of the high-resolution WRF model, 
which is a next-generation mesoscale numerical 
weather prediction system designed to serve 
both operational forecasting and atmospheric 
research needs (Prabha and Hoogenboom, 
2008).

4.5.3.1 Case Study 1: WRF model and Early 
Leaf Spot in Peanut

Cercospora arachidicola S. Hori is a major 
fungal pathogen that causes early leaf spot 
in peanut (Arachis hypogaea L.), a devastating 
foliar disease of peanut that can result in com-
plete defoliation of susceptible peanut culti-
vars. The disease accounts for significant yield 
losses in the absence of fungicide applications 
(Cantonwine et  al., 2006), and it is a major 
problem for peanut production in the south-
eastern United States, mostly resulting from 
inadequate and untimely applications of fun-
gicides. In Georgia, losses due to peanut leaf 
spot diseases were approximately $42 million 
in 2005 (Kemerait, 2006). Generally, symptoms 

of infection typically appear in the lower can-
opy and later progress to the upper canopy. 
Economic losses can increase significantly 
from ineffective monitoring where timely man-
agement of leaf spot is required (Jacobi et  al., 
1995a,b; Woodward et al., 2010).

Although applications of fungicide remain 
an effective tool for managing leaf spot in pea-
nut, Culbreath et  al. (2002) and Woodward 
et al. (2010) noted that repeated applications of 
fungicides can lead to risks of fungal pathogen 
resistance. Therefore, timely and effective man-
agement of the disease rely on good monitor-
ing of environmental conditions, i.e. rainfall, 
relative humidity, leaf wetness, and tempera-
ture, which are required for infection to occur 
(Alderman and Beute, 1986; Jensen and Boyle, 
1965, 1966; Shew et al., 1988; Wu et al., 1999).

For early leaf spot, weather information is 
crucial for developing prediction models (Cu 
and Phipps, 1993; Linvill and Drye, 1995), espe-
cially for monitoring favourable conditions 
for disease development on host crops during 
the growing season. Jewell (1987) identified a 
strong correlation between early leaf spot inci-
dence and cumulative hours of relative humid-
ity (RH  ≥  95). The Oklahoma peanut leaf spot 
model described by Damicone et al. (1994) cal-
culates the daily ‘infection hours’ based on 24 h 
of temperature, and leaf wetness or relative 
humidity. According to Grichar et  al. (2005), 
other systems have used a similar combination 
of relative humidity/leaf wetness and tempera-
ture to forecast favourable conditions for dis-
ease development and scheduling of fungicide 
applications.

Olatinwo et al. (2012) demonstrated the pos-
sibility of coupling the high-resolution WRF 
data output with a leaf spot disease model, i.e. 
Oklahoma peanut leaf spot model in predicting 
favourable conditions for early leaf spot infec-
tion. The spatial–temporal distribution maps 
of infection threats generated from the cou-
pled models highlighted the usefulness of the 
approach. Maps of areas identified as having 
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favourable conditions for the disease could 
complement field scouting for early leaf spot 
symptoms and for timely applications of man-
agement measures. The coupled model output 
(risks distribution maps) is particularly useful 
at the beginning of the growing season when 
management decisions are taken at critical pea-
nut development phases.

The spatial and temporal distribution prob-
ability of leaf spot occurrence (Figure 4.1) 
showed that peanut fields in southeast Georgia 
and the coastal areas would be more vulner-
able to leaf spot risk due to favourable weather 
conditions during the period evaluated. The 
infection hours required for leaf spot devel-
opment from the coupled models increased 
along the coastal areas where the required 
optimum number of infection hours (36 h) was 
met earlier, compared to southwest and central 
Georgia. The probability of favourable condi-
tions for infection was 0.8–0.9 along the coastal 
areas. After several days, the trend extended to 
the southwest and central parts of Georgia dur-
ing the evaluated period of this study.

It is important to note that the disease model 
used the prevailing variability in weather con-
ditions for each grid location, i.e. 3 × 3 km grid 
to produce the distribution map, which could 
assist farmers with timely applications, rather 
than using a pre-determined traditional spray 
calendar, which does not take into account the 
prevailing weather conditions during the grow-
ing season. The alert of favourable conditions for 
the potential onset of early leaf spot at a resolu-
tion of 3 × 3 km grid was demonstrated in the 
study (Figure 4.1). Developing an early warning 
tool based on the approach would be useful for 
locations where weather stations are currently 
not available. The spatiotemporal distribution 
could be produced by coupling the two models, 
i.e. WRF and the Oklahoma peanut leaf spot model. 
This could be useful by itself or complement 
existing tools for disease management activities 
such as scheduling of fungicide applications.

4.5.3.2 Case Study 2: WRF Model and 
Thrips-Vector Populations

Several million dollars in crop damage 
are reported annually due to infestations of 
tobacco thrips (Frankliniella fusca Hinds) and 
western flower thrips (Frankliniella occidenta-
lis Pergande), which are economical pests of 
valuable crops such as cotton (Gossypium hir-
sutum L.) and peanut (A. hypogaea L.). Both 
thrips are also important vectors that transmit 
TSWV to field crops, ornamentals, and vegeta-
bles (Olatinwo et al., 2008). As with many insect 
pests, the populations of both thrips species are 
sensitive to changes in seasonal temperature. 
The population growth relies on favourable 
weather conditions such as prolonged tempera-
tures above a minimum developmental thresh-
old (i.e. base temperature) during the season. 
Therefore, access to accurate weather informa-
tion is critical for predicting thrips’ population 
dynamics during early spring when thrips’ 
population information could assist farmers in 
mitigating damage to crops.

Among many factors, Lewis (1997) noted 
that the thrips’ infestation of a crop depends 
on favourable weather conditions for popula-
tion growth, while several studies (Brown et al., 
2005a,b; Chaisuekul and Riley, 2005; Harding, 
1961; McDonald et  al., 1998) have linked rain-
fall patterns and temperature to thrips vectors 
and spotted wilt development. Heavy rainfall 
was reported to have a negative effect on thrips’ 
larvae survival (Kirk, 1997) and adult flight 
(Lewis, 1997), while increased temperatures 
during the spring were associated with greater 
thrips’ activity and population growth (Kirk, 
1997; Lewis, 1997; Lowry et  al., 1992; Pearsall 
and Myers, 2001). Harding (1961) suggested that 
cool temperatures and rains are detrimental to 
thrips’ colonization on onions in south Texas. 
Thrips often migrate into cropping fields dur-
ing the spring after overwintering on unculti-
vated plants or alternative hosts (Groves et  al., 
2002, 2003; Kirk, 1997; Lewis, 1997; Pearsall 
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and Myers, 2001). Hence, the timing of peanut 
emergence in relation to the movement of viru-
liferous thrips vectors into a cultivated field can 
significantly affect the incidence of TSWV for the 
remainder of the season (Culbreath et al., 2003).

Olatinwo et  al. (2008, 2009) noted a high 
probability of spotted wilt if the number of 
rain days during March was greater than or 
equal to 10 days and planting was before 11 
May or after 5 June. The total evapotranspira-
tion in April and the average daily minimum 
temperature in March similarly increased the 
risk of spotted wilt. Knowing in advance the 
level of spotted wilt risk expected in a peanut 
field could assist growers with evaluating man-
agement options and significantly improve 

the impact of their decisions against spotted 
wilt risk in peanut (Brown et  al., 2005a, 2008; 
Olatinwo et al., 2010).

Stormy weather conditions have been 
linked to mass flights of thrips. Weather fronts 
and incipient thunderstorms are reported to 
discourage the mass flight of thrips, thereby 
resulting in high densities above the soil sur-
face due to the landing attempts of thrips (Kirk, 
2004; Lewis, 1964, 1965, 1973, 1997), while 
Morsello et al. (2008) also found that the num-
ber of thrips captured in flight has a positive 
relationship with the number of wet days or 
days with precipitation. In peanut, populations 
of adult thrips vectors F. occidentalis and F. fusca 
were reported to be greater for early planting 
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FIGURE 4.1 Spatiotemporal distribution of the probability of occurrence of early leaf spot of peanut (Arachis  
hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, during the period from 4 May to 22 May 2007 for Georgia, 
USA (Olatinwo et al., 2012). 
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in April or late planting in June compared to 
planting in May (Mitchell and Smith, 1991; 
Todd et al., 1995). Field observations also indi-
cate a higher level of spotted wilt associated 
with early- and late-planted peanuts compared 
to those planted during the middle of the plant-
ing season (Brown et al., 2005b, 2008; Olatinwo 
et al., 2008).

Studies (Kirk, 1997; Lewis, 1997; Lowry et al., 
1992; Pearsall and Myers, 2001) have shown 
that a higher thrips activity and population 
growth are linked to an increase in temperature 
during the spring, while Morsello (2007) and 
Morsello et al. (2008) found that the numbers of 
F. fusca captured in flight was positively related 
to degree-days. Olatinwo et al. (2008, 2009) eval-
uated potential application of the WRF model 
in developing high-resolution spatial and tem-
poral distribution maps of favourable condi-
tions for thrips’ development. Results based on 
degree-day models showed that southwestern 
Georgia is more favourable for thrips’ devel-
opment during the early part of the growing 
season examined, with a varied rate of devel-
opment according to thrips species (Figure 4.2). 
The high-resolution forecasts map of favour-
able conditions could serve as a scouting guide 
in places where weather information is limited, 
thereby assisting growers in pest management 
decisions and timely application of pesticides.

4.5.4 Accuracy, Limitations, and 
Uncertainties

Initially, computational resource require-
ments for running the high-resolution weather 
WRF model were a great challenge in the 
implementation of this approach. However, 
computational limitations and access to high-
resolution weather data are no longer major 
constraints compared to earlier years. A 3-day 
forecast range of high-resolution disease pre-
diction based on WRF forecast data is achiev-
able and now possible (Olatinwo et  al., 2011, 
2012). For thrips, the degree-day accumulation 

demonstrated the potential application of 
WRF in pest management, although Olatinwo 
et  al. (2011) noted that degree-day calculation 
alone does not necessarily translate to the exact 
changes in population of thrips. Depending on 
the individual pest model, several biotic and 
abiotic factors may still be necessary to be able 
to estimate the population accurately.

Growers can incorporate model predictions 
into a decision support system for routine dis-
ease or pest management decisions. The tradi-
tional spray scheduling of fungicide applications 
by growers as a preventative means of control-
ling many diseases of valuable crops such as 
leaf spots, usually calls for intermittent pesticide 
applications at a regular intervals (e.g. 15 days 
through the season), irrespective of incidence 
or severity of a disease or pest population pres-
sure. Olatinwo et al. (2011) observed that the tra-
ditional approach generally does not consider 
weather factors in scheduling pesticide applica-
tions, except for avoiding rainfall or other factors 
that could hinder the pesticide application pro-
cess. However, spraying at intervals irrespective 
of disease or pest biology, may lead to unnec-
essary sprays that have the potential to leave 
behind a high amount of chemical pesticide resi-
due harmful to the environment.

Developing weather-based forecasting for  
efficient crop protection is, therefore, not 
only necessary, but the implementation of the 
approach is obviously dependent on several fac-
tors for it to be successful and operational. Some 
crops require an in-depth understanding of bio-
logical processes and extensive studies on pests 
of interest, to identify and accurately measure 
the parameters needed for quantitative fore-
casts, while additional knowledge and research 
may be required for others. Overall, there are 
uncertainties inherent in the biotic or abiotic 
parameters that are needed for qualitative fore-
casts or accurate predictions. The extent of these 
uncertainties could significantly affect the accu-
racy of a model, creating an unreliable assess-
ment of pest populations and potential risks 
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of crop damage, which could complicate farm-
ers’ decisions on suitable management options. 
Therefore, in addition to reliable weather fore-
casts and thorough knowledge of a disease or 
pest required to develop predictive models, eval-
uating predictions from such models with actual 
field observations is a cautious and critical step 
required in the process, as it provides an added 
level of confidence to end-users in terms of accu-
racy of the model.

4.6 CONCLUSIONS

The threat of a disease epidemic or pest 
outbreak is real; hence constant monitoring is 
required to avert risks of significant damage 
to valuable crops from one year to the next. 

Therefore, accurate and reliable weather-based 
pest forecasting remains a critical component 
in current and emerging IPM strategies. It is 
not only important to protect valuable crops, 
improve crop productivity, or increase eco-
nomic returns for farmers, but also vital for effi-
cient use of pesticides and overall protection of 
the environment. Obviously, there are several 
uncertainties inherent in using weather para -
meters for disease/pest forecasts. However, as 
our knowledge on the biology of individual 
diseases or pests improves through new sci-
entific findings and application of emerging 
technologies in fields such as computing and 
statistics, the accuracy of weather-based pest 
forecasts is expected to become a lot more reli-
able in the future, thereby enhancing successful 
implementation of long-term IPM strategies.
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FIGURE 4.2 Spatial and temporal distribution of potential thrips accumulated generations in the southeastern United 
States using predictions from the Weather Research and Forecasting (WRF) model and the base temperature requirement 
for tobacco thrips (Frankliniella fusca) and western flower thrips (Frankliniella occidentalis) for 2007 (Olatinwo et al., 2011). 
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