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Abstract. In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely

ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing
fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have
implications for modelling fire spread and understanding ecological effects. We collected high resolution
(0.8� 0.8-cm pixels) visual and thermal imaging data during fire passage over 4� 4-m plots of mixed fuel beds

consisting of pine litter and grass during two prescribed burns within the longleaf pine forests of Eglin Air Force Base, FL
in February 2011. Fuel types were identified by passing multi-spectral digital images through a colour recognition
algorithm in ‘Rabbit Rules,’ an experimental coupled fire-atmosphere fire spread model. Image fuel types were validated

against field fuel types. Relationships between fuel characteristics and fire behaviour measurements at multiple
resolutions (0.8� 0.8 cm to 33� 33 cm) were analysed using a regression tree approach. There were strong relationships
between fire behaviour and fuels, especially at the 33� 33-cm scale (R2¼ 0.40–0.69), where image-to-image overlap

error was reduced and fuels were well characterised. Distinct signatures were found for individual and coupled fuel types
for determining fire behaviour, illustrating the importance of understanding fire-fuel heterogeneity at fine-scales.
Simulating fire spread at this fine-scalemay be critical for understanding fire effects, such as understorey plant community

assembly.
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Introduction

Quantifying fire spread through heterogeneous fuel beds and
modelling fire behaviour to predict fire effects has been elusive

in fire science. This could be because complete burns give an
impression of homogeneity in fire behaviour and fire effects, or
due to the difficulty in capturing fine-scale variation in fuel

characteristics and fire behaviour. How fire moves between
patches of fuel can have important implications for under-
standing and predicting both fire spread and ecological effects.

In frequently burned forests, connecting larger scale patterns of
forest structure to small scale patterns in understorey plant
diversity is critical to guiding silviculture and fire management

(Mitchell et al. 2006; Thaxton and Platt 2006; Mitchell et al.
2009; Gagnon et al. 2012). Determining the mechanisms of fire-
fuel synergisms that determine fire effects is the critical first step
in making the links to those coarser scales. The principle of the

ecology of fuels (Mitchell et al. 2009) applied to the longleaf
pine (Pinus palustris) ecosystem highlights the important role of
fine-scale variation in vegetative fuels that drive changes in fire

behaviour. Intuitively, fine-scale variation of fire behaviour

seems a likely determinant of plant community assembly in
frequently burned longleaf woodlands because the high levels
of diversity occur at scales too small (up to 50 species of vascular

plants per square metre) for niche differentiation in the fairly
uniform sandy soils that occur in the habitat (Kirkman et al.

2001).

Understanding fine-scale dynamics between fuel and fire
provides a first step towards examining the role of fuel hetero-
geneity within stands at larger scales. As fire intensity is driven

mainly by overstorey-derived fuels (i.e. pine litter, and more
localised by pine cones) in these forests, understanding the
relationship between the spatial patterns of fire-caused plant

mortality (e.g. Wiggers et al. 2013) in the understorey and
stand structure could provide a mechanistic link between man-
agement actions and patterns of understorey biodiversity and
stand regeneration (O’Brien et al. 2008; Mitchell et al. 2009).

Recent work has shown that fuels in longleaf pine woodlands
are distributed in small scale (,0.5 m2) patches that form
discrete fuel ‘cells’ and have unique, yet non-linear combustion

characteristics (Hiers et al. 2009; Loudermilk et al. 2012).
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Understanding how fire moves between these patches of fuel
has now been quantified, but the complexity of fuel arrangement
reported to date challenges the capacity to model fire behaviour

using current tools (Hiers et al. 2009).
The objective of this study was, firstly, to refine a fuel

recognition technique that uses high-resolution imagery to

classify fine-scale fuel types. These classifications will be used
as inputs to Rabbit Rules (RR), an experimental coupled fire-
atmosphere fire spread model (Achtemeier 2013). This entailed

comparing classified and field recorded fuel types. Secondly,
this study linked fine-scale classified fuel types with spatially
explicit infrared measurements of fire behaviour to analyse,
using a Classification and Regression Tree approach, how those

fuel characteristics relate to fire behaviour at fine-scales. Fire
behaviour in the context of this paper refers to the emitted
radiation of a surface fire recorded with infrared thermography,

and represented as pixel based fire radiative energy (J) and
residence time.

Materials and methods

Study site

This study was conducted at Eglin Air Force Base during 2011.

Eglin AFB, Niceville, FL, the former Choctawhatchee National
Forest, is located on the panhandle of Florida, USA, and serves
as an important reservoir for the longleaf pine ecosystem con-
taining nearly 180 000 ha of longleaf pine and over half of the

remaining old growth (Varner et al. 2000; Holliday 2001). The
study site was within the Southern Pine Hills District of the
Coastal Plain Physiographic Province with deep, well drained

typic Quartzipsamments of the Lakeland series with mean depth
to water table.200 cm (Overing et al. 1995). The climate of the
area is subtropical, with warm, humid summers and mild win-

ters. Mean annual temperatures in the area are 19.78C, with a
mean annual precipitation of 1580 mm, much of which falls
from June to September (Overing et al. 1995). Elevations of the
study sites were 52–85 m above sea level, and all sites had the

minimal topography typical of sand hills (Myers 1990). Vege-
tation was dominated by a longleaf pine overstorey with a
midstorey of various deciduous oaks, e.g. Quercus laevis Wal-

ter, Q. margaretta Ashe, Q. incana Bartram, Q. germinata
Small. Typical fire return intervals are ,2–3 years.

Field fuel measurements

Within two separate prescribed burn units, two 4� 4-m areas

were used for this study to assess fine-scale (sub-metre) fuels
and fire behaviour. Prior to each burn, 10 fuel clip plots (0.5 m2)
were randomly sampled within 10–20 m from around the

perimeter of each 4� 4-m plot. Burnable material was oven-
dried at 708C for 48 h andweighed to the nearest 0.01 g. The fuel
bed within the first plot consisted mainly of loosely packed

pine litter interspersed with tufts of grass consisting mainly
of Andropogon and Schizcharium spp. A single oak bush
(Q. laevis) and scattered forbs were also found within the plot.
Fuel loads ranged between 0.303 and 0.617 kg m�2 with an

average of 0.470 kg m�2. The fuelbed within the second plot
consisted of more firmly packed pine litter interspersed with
tufts of Andropogon spp. and scattered pine cones. Fuel loads

ranged between 0.416 and 1.009 kg m�2 with an average of

0.579 kg m�2. Fuel type and height were also determined by
point-intercept sampling on a 25-cm grid suspended over the
4� 4-m plot. Typical fuelbed height was 0.10 m. A high reso-

lution digital colour photo (using a 16 megapixel Canon Rebel
Txi, Canon USA, Inc., Melville, NY, USA, with 28-mm lens)
was taken from overhead at nadir of the fuel bed immediately

before ignition. Fuel typeswere condensed into general fuel type
categories to compare to the fuel types identified from the
overhead images (described below in ‘fuel recognition

method’). For example, the perched pine litter category (pine
litter suspended within the vegetation) was combined with the
ground pine litter category, creating a simple ‘pine litter’
category.

Fire measurements

On 6 February 2011 (i.e. ‘plot 1’) and 14 February 2011 (i.e.

‘plot 2’), a downward-pointing high resolution infrared ther-
mography system captured fire spreading over the 4� 4-m
plots. The imaging system consisted of a 7 m-tall aluminium
tripod with a FLIR (Forward Looking Infrared) SC660 (FLIR

Systems Inc., Boston, MA, USA) thermal imaging system
(Fig. A1) positioned directly above the 4� 4-m plot. At this
height and with the 458 optics used, the FLIR SC660 had a

spatial resolution of ,0.8� 0.8 cm per pixel (the SC660
microbolometer has an array of 640� 480 pixels). Data were
collected at 1 Hz. Further details on FLIR specifications are

found elsewhere (e.g. Hiers et al. 2009, Loudermilk et al. 2012).
Fire radiative power estimates were based on emitted infrared
radiation and application of the Stefan–Boltzmann Law for a

grey body emitter. Fire radiative energy (FRE) was the time
integrated radiative power within pixels. The digital camera,
used for fuelbed characterisation, was mounted next to the
thermal imaging system.

Fire weather information for each burn was obtained from
one of Eglin Air Force Bases’ ImprovedWeather Dissemination
System (IWDS, Eglin Air Force Base, Niceville, FL, USA)

located on a bombing range less than 8 km from plot 1 and 6 km
from plot 2.Weather data obtained from the IWDS for each burn
was synchronised with fire incidence through the 4� 4-m plots.

IWDS data for plot 1 was: temperature, 12.18C, relative humi-
dity, 42%, averagewind speed, 4.5 km h�1. IWDS data for plot 2
was: temperature, 17.68C, relative humidity, 43%, average wind
speed, 12.4 km h�1. Although this method does not showmicro-

site variation in weather parameters such as wind, it provides
on-site weather parameters for each burn day.

Fuel recognition method

The digital photos (Fig. A2) were used for fuel recognition using
RR. First, fuel types were visually identified in each image. For
the first plot, six fuel types were identified, namely (1) grass

(individual blades, clusters of blades and plants), (2) pine litter
(fresh needles from the previous fall (autumn) deposited from
scattered pine overstorey), (3) fermentation (F) layer (a mat of
partially decayed grass, leaves and pine needles deposited two or

more seasons before the burn), (4) oak leaves scattered from
small bushes (one of which was located within the fuel bed),
(5) live (non-dormant) vegetation and (6) a non-fuel type con-

sisting of bare sand. For the second plot, four fuel types were
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identified, namely (1) grass (individual blades, clusters of blades
andwhole plants), (2) pine litter (fresh needles from the previous

fall deposited from the pine overstorey plus needle-fall from
previous years), (3) pine cones and (4) live (non-dormant)
vegetation. Live vegetation (fuels) was a small component,

mainly consisting of some evergreen oaks (e.g. Q.s virginiana),
vines (Smilax spp.) and saw palmetto (Serenoa repens).

Using a simple image editing program (Microsoft Paint), the

colour characteristics of each fuel type were extracted. Then a
list of colours including RGB components, fuel designation and
fuel reference colour was passed through a colour identification

scheme in RR and classified by designated fuel type colour
(Fig. 1a, d ). No field data on fuel types were used to develop or
calibrate the fuel recognition classification technique.

CART analysis

Weused aClassification andRegression Tree (CART) approach

to analyse the relationships between the fire behaviour mea-
surements and the image derived fuel types. CART has been
successful in previous research where fine-scale fire-fuel rela-

tionships were non-linear (Loudermilk et al. 2012). CART is an
alternative approach to multiple regression that can be used for
simple or complex datasets (Breiman et al. 1984; De’ath and

Fabricius 2000) and is useful in spatial ecology (Prasad et al.

2006; Grunwald et al. 2009). CART analysis uses a binary
recursive partitioning approach, where the variation is itera-

tively split into more homogeneous (low-deviation) terminal
nodes, which then determine their predictive ability (Grunwald
et al. 2009). The CART analysis was processed using the
‘rpart’ library package in the R programming language (v3.0.1,

R Core Team 2013). CART was run for each fire behaviour

(response) variable, i.e. FRE (J) and residence time (above
3008C; s) within each plot. To create an independent fuel vari-

able, the photo derived fuel types were categorised by their
relative biomass and surface area. These categories were
transformed by using an exponential function and known

longleaf pine cone biomass (56.1 g; Fonda and Varner 2004) as
an upper limit, to create a continuous fuel proxy variable
(Fig. A3). These methods provided a simple, yet descriptive fuel

variable that takes into account fuel type, biomass and surface
area. This fuel proxy variable (called ‘fuels’ hereafter) and
x- and y-coordinates (to account for spatial dependencies) were

used as independent variables with each CART model. As the
appropriate scale of measurement is unknown, but determined
to be less than 1 m (Hiers et al. 2009; Mitchell et al. 2009;
Loudermilk et al. 2012), we explored model fit at five scales:

0.8� 0.8-cm, 4� 4-cm, 8� 8-cm, 16� 16-cm and 33� 33-cm
resolution (e.g. Fig. 1). Four models (two fire behaviour
response variables� two plots) were run at these five scales,

resulting in 20 models in total. We assessed the relative con-
tribution (explanatory power) of each independent variable
within each model using the CART output variable importance

rankings (Importance Value, IV). Within models, each variable
is ranked from 1 to 100 using the ‘rpart’ package, where all the
variable rankings total to 100.

Results

Field v. image fuel types

Fuel types classified by the fuel recognition approach using
RR were comparable to the fuel types recorded in the field
(Fig. 2). The two dominant fuel types (grasses and pine litter) as

well as some less abundant, yet potentially important, fuel types
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Fig. 1. Image classification of fuel types using the fuel recognition method coupled with known fuel characteristics (fuel proxy; a, c, e, g) as well as

residence time (b, d, f, h) of fire collected from FLIR camera. Data is illustrated at the original (,0.8� 0.8 cm) scale (a, b, e, f ) and coarsened

(,33� 33 cm) scale (c, d, g, h). Plot 1: 1st row, Plot 2: 2nd row. Fuels legend corresponds to the fuel proxy values (see Fig. A3) and is an approximate

scale dependent on fuels present in plot. Residence time is in seconds.
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(e.g. pine cones, live vegetation) were well represented in
both datasets. Discrepancies (e.g. grasses in plot 1) were likely

due to resolution differences (image: 1� 1 cm v. field data:
25� 25 cm). Forbs and coarse woody debris were not cate-
gorised in the plot images, and were likely not identified

because of their small proportion within the plot (,0.04),
physical fuel overlap (obstruction), as well as colour similarities
between fuels. The F layer was not an explicit fuel type category

recorded in the field, but was recorded as oak or pine litter, or
coarse woody debris that was partially decomposed.

Fuel types and fire behaviour

There were within and between plot differences in fuel type
residence time and FRE (Figs 3, 4). For plot 1, mean residence

time (mean (standard deviation, s.d.), s) (Fig. 3a) was highest for
oak leaves (37.8 (12)) and F layer (37.6 (11)), followed by pine
litter (34.9 (11)), live fuels (33.3 (9)) and grasses (31.3 (10)).

Mean (s.d.) FRE (J) (Fig. 3b) was highest for live fuels (47.6
(20)), followed by oak leaves (44.9 (20)), F layer (41.7 (17)),
pine litter (38.9 (17)) and grasses (38.0 (16)).

For plot 2, mean (s.d.) residence time (s; Fig. 4a) was by far
highest for pine cones (187 (87)), followed similarly to plot 1, by

pine litter (70.3 (31)), live fuels (65.8 (26)) and grasses (65 (30)).
Mean (s.d.) FRE (J) (Fig. 4b) was highest for pine cones
(310 (160)), followed by pine litter (94.2 (50)), live fuels

(86.4 (41)) and grasses (86.1 (47)). The higher residence times
and FRE estimates across fuel types in plot 2 were likely a
product of the (23%) higher fuel loading and more fuel compac-

tion, created by more overlaid leaf litter and grasses,
that contributed to increased smouldering time. Pine cones are
especially known to smoulder for extended periods (Fonda and
Varner 2004). Residence times above 5258Cwere also explored

(Table A1).
There were likely discrepancies between identification of

fuel types, because of colour recognition issues (similar green or

brown colours between fuels) as well as physical intergradation
of various fuel types within the fuelbed. For instance, there was
an obvious discrepancy for bare soil pixels in plot 1 (Fig. 3).

Although bare soils had the lowest relative FRE, as expected,
residence time was more intermediate. These bare soil pixels
were small patches (,10 cm2), and not likely large enough to

Graminoids Pine litter Oak leaves Live veg Bare soil F layer CWD Forbs
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Fig. 2. Comparison of fuel types derived from high-resolution images (,0.8� 0.8 cm) and field recorded data (25� 25-cm point sampling) for plot 1 (a)

and plot 2 (b), including a table of estimated proportions within each fuel type.
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create a fire break that may disrupt fire spread across pixels.
If the bare soil patches were large enough, there would be no
FRE nor residence time estimates as fire wouldmove around the
patch. Furthermore, differences between pine litter, live fuels

and grasses were less distinct in plot 2 than plot 1 (Fig. 3 v.

Fig. 4). This was possible because of coupled effects from more
physical overlap and higher loadings of fuels within plot 2. In

addition, other woody fuels (including more pine cones) may
have been missed (see Fig. 1).

CART results

Model strength varied from 0.08 to 0.69 R2 among all models
and was dependent on fuels within each plot as well as the scale
of the model. Coarsening the resolution improved model

strength (from R2¼ 0.08–0.40 to R2¼ 0.40–0.69), reduced RSE
and improved variable predictive significance (IV) of the fuels
within each model (Table 1). Plot 2 had stronger models

(R2¼ 0.34–0.69) than plot 1 (R2¼ 0.08–0.40), and improved

similarly across scales (R2¼ 0.40–0.69 at 33� 33 cm). For plot 1,
residence time and FRE models had similar performance,
but fuels contributed more to the residence time models
(IV¼ 15–48) than for FRE models (IV¼ 0–38). For plot 2, the

FRE and residence time models also resulted in similar perfor-
mance (R2¼ 0.34–0.69), although fuels contributed more to
FRE models (IV¼ 54–65) than for residence time models

(IV¼ 52–54). We explored CART models at coarser scales, up
to 1� 1m.Model fit remained similar or slightly improved up to
the 1� 1-m scale, but at the cost of reducing the significance of

fine fuels (e.g. grasses, pine litter) in themodel and reducing fuel
and fire heterogeneity across the plot.

For both plots, fuel types were best represented in the
coarsest-scale models (see IVs, Table 1). Plot 1 illustrated,

however, the greatest improvement of fuel representation
through scaling, where error was reduced and fuel type repre-
sentation was strong. For instance, pine litter was distinct from

grasses. Also, pine litter combined with grasses was distinct
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from oak leaves combined with live fuels (Fig. A4). For plot 2,
fuels, driven predominantly by the presence of pine cones, were
the main predictor. Using the fuel proxy approach allowed this

less abundant fuel type to be represented across scales (i.e. no
diminishing influence of pine cones as the scale coarsened;
Fig. 1). In the coarsest model, and besides the significant
influence from the pine cones, there was a distinction between

pine litter and grasses (Fig. A5).

Discussion

From this study, we determined that the fuel colour recognition

method for categorising fuel types fromhigh-resolution imagery
was successful at categorising fuel types and should be appli-
cable for use in fine-scale fire behaviour modelling. This is the

first known fuel recognition method for mapping fine-scale fuel
types within a surface fuelbed, although fuel mapping has been
done extensively across landscapes using other remote sensing

techniques (e.g. Keane et al. 2001; Arroyo et al. 2008; Mutlu
et al. 2008). Furthermore, fuel types were comparable to field
data (Fig. 2), capturing both dominant (e.g. pine litter) and less

abundant, yet important fuel types (i.e. pine cones). These
image-derived fuel types demonstrated combustion variability
between fine fuels (Figs 3, 4). For instance, within plot 1, where
fuels were loosely packed and lighter compared to plot 2, resi-

dence times of combustion varied among grasses, pine litter and
the F layer. Grasses and pine litter output similar FRE,
although grasses burned for shorter durations than did pine litter

and the F layer.
The CART analysis determined that image-derived fuel

types coupled with other fuel properties correlated well to

fine-scale fire behaviour. Model strength (up to 0.69 R2) and
fuel significance (IV) within each model was substantial
(Table 1), especially considering the simple representation of

fuels (Fig. 2). The CART approach showed how variation
among various fine-fuels affected fire behaviour. Within plot
1, pine litter was distinct from grasses in determining fire

behaviour, whereas pine litter combined with grasses was
distinct from oak leaves and live fuels. Within plot 2, pine
cones – a fuel type comprising ,1% of the fuel types – was by
far the most influential fuel type, followed by pine litter and live

vegetation.
The scale of fuel estimation relative to fire behaviour was

particularly important in the CART models. This suggests that

fuel type (e.g. cones, litter, grass), their spatial combustion
properties, and heterogeneity drive fire behaviour patterns.
A scale of 33� 33 cm was ideal for relating fuels and fire

behaviour in our study. Identifying individual fuel types by pixel
(e.g. original fine-scale data,,1 cm2) was, however, important
for quantifying fuelbed heterogeneity and creating the coarser

scale models (up to 33� 33 cm). Multiple fuels within a small
area created a unique fuel environment, that when aggregated,
corresponded well to observed differences in fire behaviour.
Scaling the datasets also reduced potential error in classification

(e.g. shadowing, misclassification, overlapping fuels) as well as
overlay error between imagery datasets (fuel image v. FLIR
images). This was likely inevitable because of micro-scale

weather, combustion patterns (e.g. wind eddies) and small
camera movements.

Although other fuel and fine-scale weather attributes (e.g.

fuel depth, fuel moisture, wind, ambient temperature) were not
included in the CART models, and can be important for
modelling surface fires (e.g. Morvan and Dupuy 2001; Berjak
and Hearne 2002), their inclusion was beyond the scope of this

study and were most likely a component of the unexplained
variation within each model (see Loudermilk et al. 2012). Here,
we focused on determining if and how much of a connection

Table 1. CART model results, using fuels and x- and y-coordinates as predictor variables, across all scales of data

RSE, root square error; FRE, fire radiative energy

Plot Model Number of terminal nodes Variable importance Scale (resolution) R2 RSE

1 FRE (J) 2 y (100) 0.8� 0.8 cm 0.10 16.45

Fire Residence Time (s) 3 y (85), fuels (15) 0.8� 0.8 cm 0.08 10.54

2 FRE (J) 10 fuels (54), y (33), x(14) 0.8� 0.8 cm 0.40 46.25

Fire Residence Time (s) 6 fuels (52), y (38), x (10) 0.8� 0.8 cm 0.34 29.10

1 FRE (J) 6 y (79), x (14), fuels (8) 4� 4 cm 0.15 15.52

Fire Residence Time (s) 3 y (76), fuels (23), x (1) 4� 4 cm 0.10 10.16

2 FRE (J) 9 fuels (56), y (33), x (10) 4� 4 cm 0.45 44.68

Fire Residence Time (s) 15 fuels (44), y (36), x (21) 4� 4 cm 0.47 25.65

1 FRE (J) 6 y (76), x (13), fuels (11) 8� 8 cm 0.18 14.00

Fire Residence Time (s) 4 y (61), fuels (35), x(4) 8� 8 cm 0.14 9.16

2 FRE (J) 10 fuels (60), y (30), x (9) 8� 8 cm 0.48 40.69

Fire Residence Time (s) 15 fuels (48), y (31), x (21) 8� 8 cm 0.52 23.24

1 FRE (J) 10 y (64), fuels (21), x (15) 16� 16 cm 0.28 11.22

Fire Residence Time (s) 5 fuels (54), y (39), x (8) 16� 16 cm 0.21 7.66

2 FRE (J) 10 fuels(65), y (27), x(9), 16� 16 cm 0.57 33.18

Fire Residence Time (s) 15 fuels (57), y (29), x (14) 16� 16 cm 0.57 19.74

1 FRE (J) 6 y(62), fuels (38) 32� 32 cm 0.40 8.18

Fire Residence Time (s) 11 fuels (48), y (46), x (6) 32� 32 cm 0.40 5.44

2 FRE (J) 13 fuels (65), y (27), x (9) 32� 32 cm 0.69 23.78

Fire Residence Time (s) 11 fuels (54), y (33), x (13) 32� 32 cm 0.69 14.27

High-resolution observations of combustion Int. J. Wildland Fire 1021



exists from photo-derived fuel types (and their characteristics)
and actual fire behaviour measurements at this scale, that would
provide a foundation for running the RR fire behaviour model.

The fuel recognition method in RR for identifying fine-scale
fuel types had its limitations. For instance, fuel types may have
been misrepresented, or not represented at all, because of colour

similarities between fuel types as well as physical overlap and
obstruction. This was especially true for some less abundant fuel
types, e.g. forbs and coarse woody debris (Fig. 2). These

discrepancies increased the spread of distributions of fire
behaviour measurements (e.g. Fig. 3), but only to the extent
that differences among the fuel types actually existed. In
addition, convective or radiative heating from the surrounding

combustion environment (Morvan and Dupuy 2001), regardless
of type, may have contributed to the discrepancy among fire
behaviour distributions within fuel types. Fine scale differences

in fuel loadings associated with each fuel type may also play a
role in the variation in local heating. Typically higher fuel loads
create conditions with more fuel compaction and physically

interlaced fuel types. For example, plot two had higher average
fuel loadings (0.579 v. 0.407 kg m2) and range of loadings
(0.416–1.009 kg m�2) than plot one (0.303–0.617 kg m�2).

Our results confirm that heterogeneity of fuel types, as
detected by our fuel detection algorithm, and their biomass
related well with spatial patterns of fire behaviour. Understand-
ing pine litter accumulation may be of particular importance,

given its high resin content and influence on fire behaviour
(Fonda 2001; Hiers et al. 2009). Knowledge of the density,
heights and distances to the nearby pine overstorey (O’Brien

et al. 2008) could be coupled with models of forest matrix wind
patterns (Smith et al. 1972) during seasons of needle-fall to
project litter accumulation rates, distribution and loading across

a larger fuelbed. Furthermore, tufts of grass suspend fallen pine
litter, creating a well ventilated (Nelson and Hiers 2008) and
interlaced fuelbed that determines the continuity of fire spread
and adds to the heterogeneity of fire behaviour and fire effects,

more so than with more homogeneous fuels (Hiers et al. 2009).
The F layer may be affected by seasonal climate and decompo-
sition patterns (Hendricks et al. 2002), but this fuel type was not

determined to be a significant driver in the CART models.
Furthermore, the F layer is often a small component of the
fuelbed in frequently burned longleaf pine forests because there

is little time for decomposition of leaf litter between burns.
Applying the fuel proxy approach presented here, minimised the
effects of loading by incorporating relative biomass approxima-

tions across fuel types. Quantifying the difference in loading
between plots may improve future results. Predictions of fuel
heterogeneity without fuel loading, however, are critical as
measuring loading and fire behaviour within the same fuelbed

remains problematic.
These results support previous research on fine-scale hetero-

geneity of fuel traits and fire behaviour found within this system

(Hiers et al. 2009; Loudermilk et al. 2012) that may provide a
link to understanding fire effects at the same scale (Mitchell
et al. 2006; Thaxton and Platt 2006; Mitchell et al. 2009;

Gagnon et al. 2012). Distinct to Loudermilk et al. (2012), this
study used an advanced technique in classifying fuel types from
high-resolution plot photography that provided thousands of
sample points (image pixels). Loudermilk et al. (2012) was

restricted to fuel type characterisation by field data collection
(similar to this study’s point-intercept approach) with under 170
sample points within the same area. Coupling sub-metre struc-

tural measurements of the fuelbed (see Loudermilk et al. 2012)
and fuel type detection from both high-resolution imagery and
field data may be promising for future work.

This variability at fine scales may have implications for
understorey plant communitymortality and assembly patterns in
high species richness areas (Mitchell et al. 2009; Gagnon et al.

2012). If plant (or seed) mortality depends on exposure to
combustion residence times (Wiggers et al. 2013), heterogene-
ity of fuel types may be an important factor. However, if plant
mortality depends on total energy exposure, heterogeneity of

fuel loadings should be considered (Gagnon et al. 2012).
Exceptions may be found in particular fuel types, such as pine
cones (Fonda and Varner 2004), which in our study burned

longer (mean residence time¼ 187 s) and released greater
radiant energy (mean FRE¼ 310 J) than any other fuel type
(,70 s and ,94 J).

Conclusions

We determined that the fuel recognition method in RR was
sufficient for determining fuel types at a higher resolution than is
possible with typical in-situmeasurements, and these fine-scale

fuels related well to fine-scale fire behaviour. Fuel types were
comparable to field data, capturing dominant as well as less
abundant, yet important fuel types. When linked with fire

behaviour measurements at the same scale, fine-fuels (e.g. pine
litter v. grasses) illustrated unique aswell as coupled combustion
properties. These fuel types, combinedwith other fuel attributes,
determined non-linear fire behaviour characteristics. RR pre-

dicted fire spread well in a coarser scale grassland experiment
(Achtemeier 2013), and using this model to simulate fire spread
at the fine-scale is critical for understanding fire effects, such as

understorey plant community assembly. Our next step in that
process includes using the high-resolution distribution of fuels
to model fire spread and fire spread rate using RR.
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Fig. A3. Fuel proxy used to create a ‘fuels’ independent variable (for

CART analysis) that incorporates influence from biomass and surface area

of various fuel types developed from the fuel recognition method. Prior to

conversion, fuel types were ordered according to approximate relative

biomass to create fuel type categories (i.e. 0,1,2,3,4,5,7). The exponential

function was fit to these category values, with longleaf pine cone biomass as

a target upper limit (56.1 g, Fonda and Varner 2004). Fuel Proxy value¼
exp(fuel type category� 0.576), e.g. fuel proxy for pine cones¼ exp(7�0.576).

Fig. A1. A FLIR SC660 thermal imaging system mounted on a 7 m-high

tripod over an experimental fuel bed. Time-elapsed imagery is captured as a

low-intensity fire spreads through the understorey (surface) fuelbed.

Fig. A2. Original high-resolution digital images of the fuelbed taken for plot 1 (left) and plot 2 (right). Images were cropped to

4� 4-m area (aluminium markings) and oriented before image analysis.
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Fig. A4. Plot 1 CART tree output for model: Residence time (s),Fuels (fuel proxy), x-coordinate,

y-coordinate, at the 33� 33-cm scale. This illustrates several tree ‘splits’ or sources of explained

variation, associatedwith pine litter v. grasses, aswell as pine litter combinedwith grasses v. oak leaves

combined with live fuels. See Fig. A2 for fuel proxy values. FuelType, fuel proxy.

Table A1. Residence times for temperatures exceeding 5258C for all fuel types

We calculated the combustion residence times within five ‘cutoff’ times or percentiles past which only a fraction of combustion at temperatures exceeding

5258C remains active. The value 5258C is considered the lower threshold for flaming combustion. These cutoff times are set at 50, 20, 5 and 1% of the initial

combustion to correspondwith residence time in the fuelsmatrix in Rabbit Rules (Achtemeier 2013). Results for grass and pine needles are common for the two

burns. Fuel loadings for plot 1 were 23% higher than fuel loadings for plot 2, and residence times were more than twice as long in plot 2, mainly because of the

presence of pine cones. Plot 1:With the exception of live fuels, there were sharp declines in residence times for all fuels from 100% to near 50% during the first

4 s of fire. Pine needles and the F layer showed the fastest decline in percentage and therefore the shortest residence times. The shorter residence times found for

grass at 3008C (Fig. 3) were not found at 5258C. Longer residence times were found for live fuels. Analysis for total energy (not shown) found that in the range

5–50 J, variation among the dead fuels was less than 1%. Plot 2: With the exception of pine cones, there were similar declines in residence times for grass and

pine needles from 100% to near 50% during the first 8 s of fire. The shorter residence times found for grass at 3008C (Fig. 4) were not found at 5258C. Longer

residence times were found for pine cones. Residence times for temperatures exceeding 5258C for all fuel types during burns on 6 February 2011 (plot 1) and

11 February 2011 (plot 2)

Plot 1 Grass Pine F Layer Live Oak

50% 5.0 3.5 3.4 9.5 4.6

20% 12.2 10.8 9.0 17.5 12.4

5% 18.0 16.8 16.0 24.0 23.0

1% 23.0 23.0 23.0 27.5 32.0

Plot 2 Grass Pine Cones Live

50% 9.5 9.6 49.0 9.0

20% 19.3 19.3 86.0 18.0

5% 35.0 35.0 126.0 34.0

1% 68.0 68.0 165.0 67.0
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Fig. A5. Plot 2 CART tree output for model: Residence time (s),Fuels (fuel proxy), x-coordinate,

y-coordinate, at the 33� 33-cm scale. This illustrates several tree ‘splits’ or sources of explained

variation, associatedwith pine litter v. grasses, aswell as pine litter combinedwith grasses v. oak leaves

combined with live fuels. See Fig. A2 for fuel proxy values. FuelType, fuel proxy.
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