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The degree of spatial complexity in the environment, or clutter, affects the quality of foraging habitats for
bats and their detection with acoustic systems. Clutter has been assessed in a variety of ways but there
are no standardized methods for measuring clutter. We compared four methods (Visual Clutter, Cluster,
Single Variable, and Clutter Index) and related these to the probability of detecting bat calls. From June to
July, 2005–2006, we used Anabat detectors to conduct acoustic surveys for 2–4 nights at each of 71 points
representing three visual clutter classes. We used a cluster analysis to identify groups of plots with sim-
ilar characteristics. We used backwards stepwise discriminant analyses to identify important plot struc-
ture variables that differentiated among clutter classes and used discriminant analyses to test the
effectiveness of the plot structure variables in classifying plots into visual clutter classes or clusters.
Two clutter volume indices (Indexmax and Index15m) were computed for each plot by calculating the ratio
of vegetation volume to available space in the plot. We assessed the effects of the clutter estimation
methods on the probability of detecting bats in low and high frequency phonic groups. Occupancy rates
ranged from 0.30 to 0.78 and probability of detecting any bat was P0.78 for each period; however, few
identifiable calls were recorded. Live tree basal area, midstory live stem count, and canopy crown volume
were the most effective measures of clutter for bats because each was a plausible predictor of bat detec-
tion and the former two were important for discriminating among plots with differing structure. The use
of clutter indices has promise but such methods need to be tested prior to implementation. In future
studies of bat foraging habitat, quantitative measures should be used to assess clutter so it is possible
to make comparisons among habitats or studies.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The degree of spatial complexity in the environment, or clutter
(Fenton, 1990), is an important factor in the selection of foraging
habitat by insectivorous bats (Humes et al., 1999; Law and Chidel,
2002; Erickson and West, 2003; Patriquin and Barclay, 2003).
Worldwide, most bat species are insectivorous (Jones and Rydell,
2003), but there is considerable variation among these species in
their use of clutter. Species that forage in cluttered habitats tend
to have low wing loading (mass/wing area) or small aspect ratios
(wingspan2/wing area) which make them better adapted for
foraging in these environments (Norberg and Rayner, 1987).
Although most Vespertilionid bats tend to have low wing loading
(Norberg and Rayner, 1987), a slight change in body size can have
a significant impact on habitat use. For example, Patriquin and
Barclay (2003) found Myotis bats (wingloading 0.067–0.069, aspect
ratio 6.37–6.65, Farney and Fleharty, 1969) were present in
cleared, thinned, and unharvested patches of boreal forest, but
silver-haired bats (Lasionycteris noctivigans; wingloading 0.081,
aspect ratio 7.29, Farney and Fleharty, 1969) avoided unharvested
patches of forest. Ability to forage effectively in clutter may also
depend on echolocation call structure. High frequency broadband
calls are most efficient for locating prey against a cluttered
background (Siemers and Schnitzler, 2004), but even species that
use such calls, like northern long-eared bats (Myotis septentrionalis)
and little brown bats (M. lucifugus), modify their echolocation
calls in dense vegetation by increasing frequency and slope,
and decreasing call duration (Broders et al., 2004; Wund, 2006).
Species with lower frequency calls, such as big brown bats



2 J.M. O’Keefe et al. / Forest Ecology and Management 322 (2014) 1–9
(Eptesicus fuscus) and hoary bats (Lasiurus cinereus) tend to forage
in openings (Menzel et al., 2002) or above the forest canopy
(Menzel et al., 2005). As an alternative to echolocation, some spe-
cies merely listen for prey-generated sounds when foraging in
echo-cluttering environments (Arlettaz et al., 2001).

Clutter is also important to consider when designing acoustical
studies and interpreting recorded data because dense vegetation
may obscure bat calls (Patriquin et al., 2003), as well as decrease
the number or types of bats that use a habitat. For example, when
multiple detectors are set at a point within a forest, those oriented
toward the lowest clutter record more bat passes than those facing
areas of higher clutter (Weller and Zabel, 2002). Further, clutter-
adapted bats may be more difficult to detect because they often
use low intensity calls (e.g., M. auriculus, Fenton and Bell, 1979)
and attenuation rate increases with call frequency (Lawrence and
Simmons, 1982). However, in a study in open, thinned, and intact
forest habitats in Alberta, Canada, Patriquin et al. (2003) found that
40 kHz sounds are detected 18 m from the source regardless of the
complexity of habitat structure, but 25 kHz sounds are not detected
as readily in intact forest patches. Missed calls may be interpreted
as (false) absences or lower activity levels. Dense clutter may also
affect the quality of recorded calls (but see Obrist et al., 2011). Calls
from mature forests are less likely to be identifiable than calls from
other habitats such as clearings and trails (Britzke, 2003), and there
is a weak negative correlation between forest canopy cover and the
proportion of identifiable passes (Ford et al., 2005). Poor quality
calls are difficult to identify to species or may be misidentified.

Although clutter affects bat behavior and the design and
interpretation of acoustic studies, and there are many methods
for measuring clutter, there is no standardized global reference
method. In most studies, bat activity is compared among habitat
types such as thinned, unthinned, and old-growth forests (Humes
et al., 1999) or open lake, open river, and forest edge (Wund,
2006), but this method does not facilitate comparisons among
study areas. One technique for assessing clutter is to classify sites
into predefined clutter categories by visual inspection (e.g., Loeb
and O’Keefe, 2006), a method that may not be accurate unless
the categories are very broad (e.g., gap or forest). Bradshaw
(1996) used a camera to construct vertical profiles of clutter den-
sity based on a method developed by MacArthur and Horn
(1969), but this method was not fully assessed. Law and Chidel
(2002) estimated clutter for different vegetation strata by scoring
clutter on a scale of 1–4. A similar method developed by the USDA,
Forest Service Forest Inventory and Analysis Work Unit (1991) is
the ‘‘zone percent’’ technique in which vegetation density is quan-
tified by estimating the percent contribution of different types of
vegetation to each of three canopy layers within an imaginary plot
cylinder, but this method could be time consuming and subjective
in speciose environments, such as broadleaf deciduous forest.
Quantitative habitat variables such as canopy closure and canopy
height (Ford et al., 2005), distance to vegetation (Broders et al.,
2004), and live tree basal area (Yates and Muzika, 2006) have been
used as indices for clutter in studies of bat habitat use and echolo-
cation, but we know of no studies that have compared the efficacy
of these measures as clutter indices. Avina et al. (2007) developed a
method to assess clutter within an area of known volume as it re-
lates to bat activity; however, the overall vegetation volume mea-
surement developed by these authors was not a good predictor of
bat activity (Titchenell et al., 2011). Jung et al. (2012) related bat
species composition and activity to three-dimensional forest struc-
ture using Light Detection and Ranging (LiDAR) data collected via
helicopter; their data show that, when available, LiDAR is an
important tool for measuring the effects of clutter on forest bats.

Our goal was to develop an efficient, on-the-ground method for
measuring vegetative clutter that could easily be applied to other
forested ecosystems. Here we compare four methods for defining
vegetative clutter. For the Visual Clutter Method, we classified sur-
vey sites into three clutter classes (high, medium, or low) based on
visual assessments by one observer and used a discriminant anal-
ysis to identify important variables for differentiating among the
three clutter classes. Next we applied the Cluster Method, in which
we measured several plot structure variables, used a cluster anal-
ysis to identify groups of plots with similar characteristics, and
then used a discriminant analysis to determine which variables
best discriminated among the groups. We used the results of the
discriminant analyses for the Visual Clutter and Cluster methods
to determine the relative importance of individual plot structure
variables as indices of clutter (Single Variable Method). Finally,
we used a Clutter Index Method, creating clutter volume indices
based on the ratio of vegetation volume to available space in a cyl-
inder the same radius as the plot. With this method, our goal was
to quantify clutter in a comprehensive way that was repeatable
among observers and habitat types. To test the effectiveness of
each method, we related measures of clutter to the probability of
detecting bat calls. We assumed that probability of detection varies
inversely with clutter either because bat presence or richness will
decline, or because bats are more difficult to detect with increasing
clutter.
2. Materials and methods

2.1. Study area

We conducted our study from June to August 2005–2006 on the
Wayah Ranger District of the Nantahala National Forest in Macon
County, North Carolina. Our study sites were in the Trimont Ridge
(TR; 83� 290 E, 35� 110 N) and Wine Springs (WS; 83� 340 E, 35� 110

N) tracts. TR was approximately 2658 ha with elevations ranging
from 700 m to 1200 m and WS was approximately 2183 ha with
elevations ranging from 800 m to 1600 m. While oaks (Quercus)
and hickories (Carya) were common overstory hardwoods in both
tracts, yellow poplars (Liriodendron tulipifera) were more prevalent
in TR and sugar maples (Acer saccharum) and yellow birch (Betula
alleghaniensis) were common in WS. White pine (Pinus strobus)
was the most common overstory conifer in both tracts. Upland
hardwood stands dominated TR (54%; 1448 ha), followed by cove
hardwood stands (35%; 936 ha), mixed pine-hardwood stands
(8%; 225 ha), and white pine stands (2%; 45 ha). Upland hardwood
stands also dominated WS (57%; 1239 ha), followed by cove hard-
wood stands (32%; 708 ha), mixed pine-hardwood stands (11%;
232 ha), and conifer stands (<1%; 4 ha). Based on stand ages in
2005, approximately 143 ha (5.4%) of TR were early successional
(615 yr), 325 ha (12.2%) were sapling/pole (16–39 yr), 732 ha
(27.5%) were mid-successional (40–79 yr), and 1459 ha (54.9%)
were late-successional (P80 yr). In WS, 144 ha (6.6%) of the area
was early successional, 112 ha (5.1%) was sapling/pole, 500 ha
(22.9%) was mid-successional, and 1428 ha (65.4%) was late-suc-
cessional. Small streams (1–2 m wide) were common on the land-
scape, while larger streams were rare; bat activity is low near these
small streams (O’Keefe et al., 2013). In summer (May–August),
mean minimum and maximum daily temperatures were 16.8 �C
and 28.0 �C in 2005, and 15.3 �C and 27.8 �C in 2006. Total precip-
itation in the same period was 45.0 cm in 2005 and 23.1 cm in
2006. Temperatures and remotely sensed precipitation estimates
are for Wayah Bald, �13 km southwest of the study area center
(State Climate Office of North Carolina).
2.2. Sampling

We conducted three sampling sessions of 2–3 nights per year
and sampled 12 forest stands per session. One stand was sampled



Table 1
Fourteen plot structure variables measured in 0.04 ha plots at bat survey points
(n = 71) in temperate deciduous forests in southwestern North Carolina, USA, June–
August, 2005–2006.

Variable Definition

ulstmct understory live stem count/0.04 ha
udstmct understory dead stem count/0.04 ha
ucrnvol mean understory crown volume (m3)
ustmvol mean understory stem volume (m3)
mlstmct midstory live stem count/0.04 ha
mdstmct midstory dead stem count/0.04 ha
mcrnvol mean midstory crown volume (m3)
mstmvol mean midstory stem volume (m3)
clstmct canopy live stem count/0.04 ha
cdstmct canopy dead stem count/0.04 ha
ccrnvol mean canopy crown volume (m3)
cstmvol mean canopy stem volume (m3)
ltba live tree basal area (m2/0.04 ha)
dtba dead tree basal area (m2/0.04 ha)
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twice, so a total of 71 stands were sampled. Each of the 12 survey
points in a session represented a unique combination of three vari-
ables: elevation (TR = low, WS = high), aspect (general facing of N
or S), and visual clutter (high, medium, or low). We numbered
311 potential stands and randomly selected stands from this list
for each session. In general, low clutter stands contained 66 or
P95 year old hardwoods or mixed pine-hardwoods; medium clut-
ter stands contained 70–100 year old hardwoods; and high clutter
stands contained 10–25 year old hardwoods or mixed pine-hard-
woods. The senior author assigned visual clutter (high, medium,
low) designations to all stands in the field. For each stand, we gen-
erated a random point using an extension to ArcView 3.2 (ESRI,
Redlands, California) and set detectors at the position closest to
the random point that was >25 m from the stand edge, streams,
trails, or canopy gaps >10 m wide.

We used an Anabat II detector (Titley Electronics, Ballina, New
South Wales, Australia) connected to a compact flash storage
zero-crossings interface module (CF ZCAIM) to passively sample
each point from 20:30 to 6:30 EDT for 2–4 consecutive nights dur-
ing each session. Anabats and ZCAIMs were housed together in
waterproof containers with the microphone nested at the base of
a 45� PVC tube; boxes were set on tripods �1.3 m high and ori-
ented downhill in a position where no vegetation directly ob-
structed the microphone, which pointed upwards (Weller and
Zabel, 2002). We randomly assigned detectors to points to mini-
mize bias due to variable reception rates for different detectors
(Britzke, 2004) and Anabat sensitivity was set at 7.

Acoustic data were analyzed with Analook software (v 4.9j) for
MS-DOS; we used a filter to exclude call fragments and insect
noise. The filter we used was identical to the default filter, except
minimum frequency sweep parameter was 0 and bodyover param-
eter was 160 (Britzke, 2003). We verified that selected files repre-
sented bat calls by visual inspection. We did not identify most
passes to species because only 21 and 66 bat passes were of suffi-
cient quality for identification (P5 pulses per sequence) in 2005
and 2006, respectively. However, we visually assessed the
presence of bats in high frequency (characteristic frequency,
FC > 30 kHz) and low frequency (FC 6 30) phonic groups for each
detector night, where FC was defined as the frequency at the end
of the flattest portion of a bat call (Corben, 2004). Hoary bats, sil-
ver-haired bats, and big brown bats were the low frequency bats
that occurred in the areas surveyed; high frequency bats were east-
ern small-footed bats (M. leibii), northern long-eared bats, little
brown bats, tri-colored bats (Perimyotis subflavus), and eastern
red bats (Lasiurus borealis; O’Keefe, 2009). We constructed compre-
hensive presence/absence histories (MacKenzie et al., 2006) for all
surveys by assigning a one to detector-nights where P1 bat call
was recorded and a zero to detector-nights with no bat calls. We
treated each sampling night as one visit when generating detection
histories by phonic group for each site. Twelve points surveyed in
August 2005 were dropped from the acoustical analysis because CF
cards were filled with excessive insect noise. Thus, we analyzed
detection data for 60 sampling points.

2.3. Plot structure data

We collected vegetation data in 0.04 ha circular plots at each
sampling point. Because we were working in steep terrain, we ap-
plied a correction factor to the plot radii in the direction of the
slope to ensure that the vertically-projected area (0.04 ha) was
consistent among plots. Radii for the uphill and downhill plot lines
were obtained by dividing the original plot radius (11.3 m) by
cos(arctan(plot slope in decimal form)) (Abella et al., 2004). Within
a nested 0.01 ha circle, we measured the diameter at breast height
(dbh) for all live and dead stems >1.4 m tall; stem counts were sub-
sequently multiplied by 4 for comparison with whole plot data.
Outside the nested plot, we tallied dbh for all live and dead trees
>10 cm dbh and >1.4 m tall. In addition, for each quarter plot, we
selected a live reference stem or tree from each of three canopy
layers (understory, midstory, and canopy); first, we selected a live
reference stem from any layer that was closest to plot center, then
the next closest stem of another layer until we had measured trees
from each layer. When possible, for the entire plot, each reference
stem of a particular layer was a different tree species to account for
variation in volume by species when generalizing to the entire plot.
Canopy trees were defined as the tallest trees >10 cm dbh in a par-
ticular stand, the midstory layer included saplings 4–10 cm dbh
with crowns completely beneath the upper canopy layer, and
understory trees were saplings or shrubs >1.4 m tall and <4 cm
dbh. For each reference tree, we recorded diameter at breast height
(dbh) and crown width (average of the longest axis and its perpen-
dicular). We used a clinometer to measure stem and crown heights
for each reference tree. For each plot, we calculated the average
volume for the stems (circular cylinder, Vstem) and crowns (ellipti-
cal cylinder, Vcrown) of reference trees in each of three canopy lay-
ers. Plot data were condensed into 14 variables representing plot
structure (Table 1).

We developed two clutter indices (Indexmax and Index15m) by
calculating a ratio of vegetation to available space in each plot;
we considered space occupied by vegetation to be unavailable to
bats in flight. To calculate Indexmax, we first determined the volume
occupied by all of the vegetation in each plot (Vveg total). To do this,
we calculated total crown volume (Vcrown total) and total stem vol-
ume (Vstem total) by combining measurements for Vcrown and Vstem

from the three canopy layers (see Table 1 for variable definitions).
Vcrown total was defined as:

ðulstmctÞðmeanVcrown understoryÞ þ ðmlstmctÞ
� ðmeanVcrown midstoryÞ þ ðclstmctÞðmeanVcrown canopyÞ ð1Þ

Vstem total was defined as:

ðulstmctþ udstmctÞðmeanVstem understoryÞ
þ ðmlstmctþmdstmctÞðmeanVstem midstoryÞ
þ ðclstmctþ cdstmctÞðmeanVstem canopyÞ ð2Þ

Subsequently, Vveg total was defined as:

Vcrown total þ Vstem total ð3Þ

Next we determined the actual volume of each plot. We deter-
mined the height of the tallest reference tree in each plot
(heightmax) and used this value to calculate the volume of a cylinder
the same height as the tallest reference tree. Thus, each plot had a
unique value for volume.
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Maximum height plot volume (Vplot max) was defined as:

ðpÞð11:3mÞ2ðheightmaxÞ ð4Þ

Finally, we defined Indexmax as:

Vveg total=Vplot max ð5Þ

To calculate Index15m, we determined the volume occupied by
vegetation 615 m from the ground (V15m veg). We chose 15 m as a
conservative estimate of the height at which we should be able
to detect calls from all of the common bats in our study area (given
that a 100 dB 40 kHz sound attenuates to non-detectable at �27 m
at 15 �C, 65% relative humidity; Lawrence and Simmons, 1982). For
the bat community in our study area, the approximate mean FC for
calls from all bat species is 35 kHz. For each plot, we truncated the
measurement data for crown and stem heights to 15 m (i.e.,
heights >15 m were replaced with 15 m). Next we calculated total
crown volumes up to 15 m (V15m crown total) and total stem volumes
up to 15 m (V15m stem total) by combining measurements for stem
counts and crown (V15m crown) and stem volumes (V15m stem).
V15m crown total was defined as:

ðulstmctÞðmeanV15m crown understoryÞ þ ðmlstmctÞ
� ðmeanV15m crown midstoryÞ þ ðclstmctÞðmeanV15m crown canopyÞ ð6Þ

V15m stem total was defined as:

ðulstmctþ udstmctÞðmeanV15m stem understoryÞ
þ ðmlstmctþmdstmctÞðmeanV15m stem midstoryÞ
þ ðclstmctþ cdstmctÞðmeanV15m stem canopyÞ ð7Þ

Subsequently, V15m veg was defined as:

V15m crown total þ V15m stem total ð8Þ

We determined a standard volume for all plots using 15 m for
height, (V15m plot):

ðpÞð11:3mÞ2ð15mÞ ð9Þ

Finally, we defined Index15m as:

V15m veg=V15m plot ð10Þ
2.4. Statistical analyses

We used SAS 9.1 (SAS Institute, Inc., 2004) to analyze plot data.
To remove the effects of differing scales, we standardized
(PROC STDIZE) each of the 14 plot structure variables (Table 1)
by subtracting the mean and dividing by the standard deviation.
To assess the Visual Clutter Method, we performed a backwards
stepwise discriminant analysis (PROC STEPDISC) to identify a sub-
set of the 14 standardized plot structure variables that best ac-
counted for the variation among the three visual clutter groups.
For each significant variable we used an analysis of variance (PROC
ANOVA) with a Tukey means separation procedure to test for sig-
nificant differences among the three visual clutter classes. Next,
we entered significant variables into a discriminant function anal-
ysis (PROC DISCRIM) to test their effectiveness in classifying the
plots into the three visual clutter classes.

For the Cluster Method, we entered the 14 plot structure vari-
ables into a cluster analysis (PROC CLUSTER) to find meaningful
groupings in the data. Because there is no generally accepted clus-
tering technique (Manly, 2005) we explored several methods and
selected Ward’s Minimum Variance Method, which minimizes
within cluster sum of squares (SAS Institute Inc., 2004). We defined
primary (n = 2) and secondary (n = 4) clusters using the first two
levels of nodes encountered in a tree diagram (PROC TREE). No
additional clusters were considered because we felt that >4 clutter
groups would be difficult to assess visually. We performed a back-
wards stepwise discriminant analysis (PROC STEPDISC) to identify
the subset of the 14 plot structure variables that best accounted for
variation between primary clusters. For each significant variable,
we used an analysis of variance (PROC ANOVA) with a Tukey
means separation procedure to test for significant differences be-
tween the primary clusters. Next, we entered significant variables
into a discriminant function analysis (PROC DISCRIM) to test their
effectiveness in classifying the plots into the primary clusters. We
repeated the stepwise discriminant analysis, ANOVA, and discrim-
inant function analysis for plots in the secondary clusters.

For the Clutter Index Method, we tested for correlations be-
tween the clutter indices (Indexmax and Index15m) and 14 plot struc-
ture variables (raw numbers) with Pearson product-moment
correlations (PROC CORR). While we do not report correlations
among the plot structure variables, only midstory stem volume X
midstory crown volume and canopy stem volume X canopy crown
volume were correlated at r > 0.7. ANOVA tests and correlations
were considered significant if P 6 0.05.

Using program PRESENCE (Hines, 2006), we measured the ef-
fects of clutter covariates on the probability of detecting bats in
high and low phonic groups. The following methods were repeated
for each of the 2 phonic groups. We used the null detection model
as a base for 19 additional models relating probability of detection
to the different methods of clutter assessment: visual clutter
groups, primary clusters, secondary clusters, the plot structure
variables (Table 1), Indexmax, and Index15m. All quantitative covari-
ates were standardized in SAS by subtracting the mean and divid-
ing by the standard deviation. We adjusted ĉ in PRESENCE when
there was a lack of evidence of model fit (MacKenzie and Bailey,
2004). We used Akaike’s information theoretic procedures to rank
models by their respective values for quasi-Akaike’s information
criterion (QAIC) and computed Akaike weights (wi) to compare
the plausibility of competing models (Burnham and Anderson,
2002). We considered the model with the lowest value for QAIC
to be the best model and models with DQAIC 6 2 to be plausible.
3. Results

Bat activity was low and few of the recorded calls were identi-
fiable. We recorded 479 echolocation sequences in 2005 (two ses-
sions) and 790 in 2006 (three sessions). Low frequency bats were
detected in 7 of 20 low clutter plots, 4 of 20 medium clutter plots,
and 7 of 20 high clutter plots. High frequency bats were detected in
more sites: 18 of 20 low clutter plots, 17 of 20 medium clutter
plots, and 12 of 20 high clutter plots. Only 87 call sequences were
identifiable; we identified calls from big brown bats, tri-colored
bats, and Myotis bats; 82 of these sequences were recorded in 10
low clutter sites.
3.1. Visual clutter method

Five plot structure variables were important for differentiating
the three visual clutter classes although only 1 variable, canopy
live stem count, differed between the low and medium clutter
groups (backwards stepwise discriminant analysis, Table 2).
Understory and midstory live and dead stem counts were greatest
in high clutter plots and lowest in low and medium clutter plots
(Table 2). Canopy live stem count was high in medium clutter plots
(Table 2). Using the five variables in Table 2, a discriminant analy-
sis correctly reclassified 22 of 24 (91.7%) high clutter plots, 15 of 24
(62.5%) medium clutter plots, and 17 of 23 (73.9%) low clutter
plots. One high clutter plot was misclassified as a medium clutter
plot and one as a low clutter plot, nine medium clutter plots were



Table 2
Means and standard errors (S.E.s) by visual clutter class for five variables retained by
stepwise discriminant analysis of 14 plot structure variables measured in 0.04 ha
plots around bat survey points in temperate deciduous forests in southwestern North
Carolina, USA, June–August, 2005–2006. F and P are the results of ANOVA tests for
each variable.

Discriminating
variablea

Visual clutter class (number of plots)

High
(n = 24)

Medium
(n = 24)

Low
(n = 23)

Mean S.E. Mean S.E. Mean S.E. F P

ulstmct 314.0Ab 61.1 113.3B 15.7 97.4B 27.5 9.13 0.0003
udstmct 120.7A 23.7 10.3B 2.7 9.6B 2.9 20.71 <0.0001
mlstmct 87.8A 7.8 29.8B 3.8 21.9B 4.8 39.61 <0.0001
mdstmct 18.5A 3.5 4.8B 1.4 3.5B 1.0 12.97 <0.0001
clstmct 23.4AB 1.9 26.5A 1.6 18.8B 1.5 5.20 0.0079

a Refer to Table 1 for variable definitions.
b Means followed by the same letter within a row are not significantly different

(P > 0.05).
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misclassified as low clutter plots, and five low clutter plots were
misclassified as medium clutter plots and one as a high clutter plot.
3.2. Cluster method

We defined two primary and four secondary clusters for the
plot data from the tree graph (cluster analysis, Fig. 1). Six plot
structure variables best discriminated between primary clusters
A and B (backwards stepwise discriminant analysis, Table 3). Plots
in cluster A were characteristic of mature stands, with greater mid-
story crown volume, a higher dead tree basal area, and greater live
tree basal area (Table 3). Plots in cluster B had the characteristics of
early successional stands, with more live understory stems and live
and dead midstory stems. Using the six variables in Table 3, a dis-
criminant analysis correctly reclassified 47 of 47 plots in cluster A
and 23 of 24 plots in cluster B.

Nine variables differentiated the secondary clusters (backwards
stepwise discriminant analysis, Table 4). Plots in cluster A1 had the
structure of late successional stands, with fewer under and midsto-
ry stems, greater understory crown volumes, greater midstory
crown volumes, fewer live canopy stems, and greater live tree ba-
sal area (Table 4). Plots in cluster A2 had the structure of mid to
Fig. 1. Ward’s minimum variance cluster groupings for bat survey points based on 14 p
southwestern North Carolina, USA, June–August, 2005–2006. A and B represent the two
late successional stands, with fewer understory and midstory
stems than in B1 and B2 plots, with smaller crowns than in A1
plots. Plots in cluster B1 were indicative of sapling/pole or mid-
successional stands, with higher stem densities in all layers but
smaller crowns and lower live tree basal area. Plots in cluster B2
had the structure of recently harvested sites, with higher stem
counts in the understory and lower stem counts in both the mid-
story and canopy. Using the nine variables listed in Table 4, a dis-
criminant analysis correctly reclassified all plots into their original
groupings (A1, A2, B1, and B2).
3.3. Clutter index method

Indexmax ranged from 0.06 to 3.8 for 71 plots (>1 for 38 plots, see
Discussion), with values of 0.06–3.49 for low visual clutter plots,
0.56–3.81 for medium clutter plots, and 0.17–2.96 for high clutter
plots. Indexmax was negatively correlated with understory dead
stem count (r = �0.26, P = 0.03) and midstory live stem count
(r = �0.24, P = 0.05). Indexmax was positively correlated with can-
opy live stem count (r = 0.35, P = 0.003), live tree basal area
(r = 0.43, P < 0.001), canopy stem volume (r = 0.24, P = 0.04), mid-
story crown volume (r = 0.28, P = 0.02), and canopy crown volume
(r = 0.5, P < 0.001). Index15m ranged from 0.03 to 2.66 for 71 plots
(>1 for 29 plots, see Discussion), with values of 0.03–2.21 for low
clutter plots, 0.2–2.66 for medium clutter plots, and 0.16–2.0 for
high clutter plots. Index15m was positively correlated with under-
story stem volume (r = 0.37, P < 0.01), understory crown volume
(r = 0.31, P < 0.01), canopy live stem count (r = 0.42, P < 0.001),
and live tree basal area (r = 0.36, P < 0.01).
3.4. Detection models

In the null models, the probability of occupancy was 0.36 ± 0.08
for low frequency bats and 0.78 ± 0.05 for high frequency bats. Bats
were recorded on every survey night in 2005 and 2006 but never
simultaneously in every site surveyed. Of 12 active detectors, 2–
11 recorded bats on any given night.

For low frequency bats, there were two plausible models for
probability of detection: live tree basal area (wi = 0.25) and pri-
mary cluster (wi = 0.17; Table 5). Live tree basal area was inversely
related to detection probability for low frequency bats and this
lot structure variables measured in 0.04 ha plots in temperate deciduous forests in
primary clusters, and A1, A2, B1, and B2 represent the four secondary clusters.



Table 3
Means and standard errors (S.E.s) by primary clusters for six variables retained by
stepwise discriminant analysis of 14 plot structure variables measured in 0.04 ha
plots around bat survey points in temperate deciduous forests in southwestern North
Carolina, USA, June–August, 2005–2006. F and P are the results of ANOVA tests for
each variable.

Primary cluster (number of
plots)

Discriminating
variablea

A (n = 47) B (n = 24)

Mean S.E. Mean S.E. F P

ulstmct 94.7 10.6 335.2 61.9 26.88 <0.0001
mlstmct 25.7 3.1 88.3 7.6 82.56 <0.0001
mdstmct 4.0 0.7 18.8 3.6 28.72 <0.0001
mcrnvol 65.5 6.5 13.2 2.0 32.43 <0.0001
dtba 0.09 0.02 0.03 0.01 3.58 0.0628
ltba 1.3 0.04 0.6 0.07 64.06 <0.0001

a Refer to Table 1 for variable definitions.

Table 5
Model parameters and standard errors (S.E.s), quasi-Akaike’s Information Criterion
(QAIC), difference in QAIC value when compared to the model with the lowest QAIC
value (DQAIC), and Akaike weight (wi) for models relating clutter methods to
detection probabilities for low frequency bats at 60 survey points in southwestern
North Carolina, USA, June–July, 2005–2006.

Models for low
frequency batsa

Parameter
estimateb

S.E.b QAIC DQAIC wi

ltba �1.2739 0.3839 95.07 0.00 0.2509
primary cluster (A) �2.3162 0.7313 95.82 0.75 0.1724
dtba 98.76 3.69 0.0396
ccrnvol 99.06 3.99 0.0341
secondary cluster 99.16 4.09 0.0325
visual clutter class 99.36 4.29 0.0294
cstmvol 100.04 4.97 0.0209
mdstmct 100.21 5.14 0.0192
Index max 100.69 5.62 0.0151
ucrnvol 100.93 5.86 0.0134
udstmct 100.98 5.91 0.0131
ulstmct 101.20 6.13 0.0117
mcrnvol 101.61 6.54 0.0095
mlstmct 101.64 6.57 0.0094
cdstmct 102.33 7.26 0.0067
Index 15m 102.36 7.29 0.0066
mstmvol 103.00 7.93 0.0048
clstmct 103.56 8.49 0.0036
ustmvol 103.59 8.52 0.0035

a Refer to Table 1 for variable definitions.
b Parameter estimates and S.E.s reported only for plausible models.
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phonic group was more likely to be detected in plots in primary
cluster B (Fig. 2A and B), which had the characteristics of early suc-
cessional stands (Table 3). For high frequency bats, there were two
plausible models for probability of detection: canopy crown vol-
ume (wi = 0.35) and midstory live stem count (wi = 0.13, Table 6).
Midstory live stem count was inversely related to detection prob-
ability, but canopy crown volume was directly related to detection
probability (Fig. 2C and D). Visual clutter groups were not good
predictors of detection probability and, aside from live tree basal
area, midstory live stem count, and canopy crown volume, plot
structure variables were not important predictors.

4. Discussion

We found that quantitative measurements of individual vari-
ables (Single Variable Method) were the most effective measures
of clutter relative to the other methods we tested. Midstory live
stem count, canopy crown volume, and live tree basal area were
better predictors of bat detection in our study, and midstory live
stem count and live tree basal area were important in discriminant
analyses. These variables related to bat detection as expected. For
high frequency bats, midstory live stem count was inversely re-
lated to detection probability and canopy crown volume was di-
rectly related to detection probability, whereas for low frequency
bats live tree basal area was inversely related to detection proba-
bility. A higher midstory live stem count would characterize a plot
with a cluttered midstory, while a greater crown volume should
characterize a plot in which canopy trees shade out and eliminate
Table 4
Means and standard errors (S.E.s) by secondary clusters for nine variables retained by ste
around bat survey points in temperate deciduous forests in southwestern North Carolina, U

Secondary cluster (number of plots)

Discriminating variablea A1 (n = 10) A2 (n = 37)

Mean S.E. Mean S.E.

ulstmct 75.6ABb 23.2 99.9A 11.9
udstmct 49.2AB 36.8 12.8A 3.7
ucrnvol 9.0A 1.0 2.7B 0.2
mlstmct 22.4A 7.9 26.6A 3.3
mdstmct 2.8A 1.9 4.3A 0.8
mcrnvol 108.0A 19.9 54.0B 4.9
clstmct 18.9A 2.9 24.5AB 1.0
ltba 1.26A 0.1 1.3A 0.1
dtba 0.01A 0.01 0.1A 0.02

a Refer to Table 1 for variable definitions.
b Means followed by the same letter within a row are not significantly different (P > 0
midstory stems, thus providing a more open flyway for bats. For
low frequency bats, a stand with higher live tree basal area should
represent a closed canopy; bats might choose to fly above the can-
opy and out of the range of detection in these conditions. There
was moderate support for a greater probability of detecting low
frequency bats in early successional-type stands, such as those in
Primary Cluster B. Midstory live stem count was also important
for distinguishing among plots classified by Visual Clutter and both
Cluster methods, while live tree basal area was important in distin-
guishing among primary and secondary clusters. Relative to the
other methods we considered, there are several benefits to using
a single variable to assess clutter. Measurements are easy and
repeatable among observers and using a single variable facilitates
comparisons among habitat types or study areas. However, be-
cause variable definitions or characteristics may vary with habitat
type (e.g., the definition of midstory stems may differ for a 15 year
old versus a 50 year old hardwood stand) some variation among
studies or habitats may occur; thus, it is critical to provide clear
variable definitions.

We found that quantitative measures of clutter were good pre-
dictors of bat detection. Although it is feasible to combine multiple
pwise discriminant analysis of 14 plot structure variables measured in 0.04 ha plots
SA, June–August, 2005–2006. F and P are the results of ANOVA tests for each variable.

B1 (n = 17) B2 (n = 7)

Mean S.E. Mean S.E. F P

233.4B 29.3 582.3C 174.5 19.49 <0.0001
90.8B 12.1 122.3B 72.2 6.48 0.0006

2.0B 0.3 1.4B 0.6 42.60 <0.0001
96.5B 8.4 68.6B 14.3 30.80 <0.0001
25.9B 4.0 1.7A 1.2 26.10 <0.0001
15.7C 2.5 7.0C 2.2 21.53 <0.0001
27.9B 1.7 8.9C 2.3 14.27 <0.0001

0.7B 0.1 0.4B 0.1 22.75 <0.0001
0.03A 0.01 0.03A 0.02 3.05 0.03

.05).



Fig. 2. Relationship between probability of detecting bats and measures of clutter. For low frequency bats, live tree basal area (A) and primary cluster (B) were important
predictors. For high frequency bats, canopy crown volume (C) and midstory live stem count (D) were important predictors. X axes are labeled with untransformed data.
Detection data are for acoustic survey points in temperate deciduous forests in southwestern North Carolina, USA, June–July, 2005–2006.

Table 6
Model parameters and standard errors (S.E.s), quasi-Akaike’s Information Criterion
(QAIC), difference in QAIC value when compared to the model with the lowest QAIC
value (DQAIC), and Akaike weight (wi) for models relating clutter methods to
detection probabilities for high frequency bats at 60 survey points in southwestern
North Carolina, USA, June–July, 2005–2006.

Models for high
frequency batsa

Parameter
estimateb

S.E.b QAIC DQAIC wi

ccrnvol 1.6684 0.7063 122.28 0.00 0.3468
mlstmct �0.9810 0.2590 124.25 1.97 0.1295
Indexmax 125.19 2.91 0.0809
ucrnvol 125.61 3.33 0.0656
cstmvol 126.36 4.08 0.0451
mstmvol 128.22 5.94 0.0178
visual clutter class 128.36 6.08 0.0166
ustmvol 128.59 6.31 0.0148
Index15m 128.62 6.34 0.0146
udstmct 128.68 6.40 0.0141
ulstmct 128.87 6.59 0.0129
mcrnvol 128.98 6.70 0.0122
mdstmct 129.06 6.78 0.0117
primary cluster 129.07 6.79 0.0116
ltba 129.41 7.13 0.0098
clstmct 130.06 7.78 0.0071
dtba 130.13 7.85 0.0068
cdstmct 130.16 7.88 0.0067
secondary cluster 130.30 8.02 0.0063

a Refer to Table 1 for variable definitions.
b Parameter estimates and S.E.s reported only for plausible models.
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predictors in probability of detection models, we chose to assess
each measure separately to determine if a single easily-measured
variable might explain probability of detection. Clutter measure-
ments are rarely used as covariates when calculating probability
of detection for bats, although several studies have examined the
relationship between clutter and habitat use or activity (e.g.,
Erickson and West, 2003; Ford et al., 2006; Yates and Muzika,
2006; Titchenell et al., 2011). In two studies in southern Missouri,
a measure of clutter was used as a covariate in detection models
(Yates and Muzika, 2006; Starbuck, 2013). Understory density
was the only clutter variable considered in detection probability
models for bats using hard and mixed pine-hardwood forest by
Yates and Muzika (2006), but this variable was not an important
predictor of detection probabilities. Percent stand stocking, which
was derived from 10-factor prism measurements on tree density
and basal area, is negatively related to probability of detection
for 4 bat species in open savannas and woodlands and closed can-
opy forests (Starbuck, 2013). However, detection probability for
the northern long-eared bat, which emits the highest frequency
echolocation calls of the bats detected in Starbuck’s (2013) study,
was not affected by stocking. Perhaps clutter measurements are
not typically considered in models of detection because research-
ers simply avoid placing detectors in cluttered areas (Weller and
Zabel, 2002). However, when surveying for bats in forests of vary-
ing clutter, quantitative measures of clutter may be important
covariates in detection models (Patriquin et al., 2003; Starbuck,
2013, this study).

In this study, we took detailed measurements of crown volume
and observed a trend for increasing canopy (tallest trees) crown
volume with decreasing visual clutter. Canopy crown volume,
which should be directly related to canopy closure, is probably a
more reliable predictor of clutter than canopy cover because 10–
25 cm dbh (i.e., midstory) tree density is lowest when the tallest
trees in a stand account for a high proportion of canopy crown area
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(Donoso, 2005). Jennings et al. (1999) define canopy cover as the
proportion of the forest floor covered by the vertical projection of
tree crowns and canopy closure as the proportion of the sky
obscured by vegetation; they note that the two terms are often
confused. Because canopy cover measures the presence or absence
of canopy (Jennings et al., 1999), it can be high in both mature
stands with little understory (which we would define as low clut-
ter for bats) and in young stands with dense understory (high clut-
ter); thus, canopy cover may not be a good way to assess clutter for
bats. Canopy closure is less subject to sampling bias when com-
pared to canopy cover and may be a better measure of clutter be-
cause it is directly related to tree heights within a stand (Jennings
et al., 1999).

The notion of a Clutter Index Method has promise for describing
plot or stand-level clutter, but this method needs to be refined to
better reflect the space available to bats for foraging. At present,
the measure does not account for the spatial distribution of vege-
tation and, thus, the distribution of clutter that might impede bat
flight or block reception of ultrasounds. Although our goal was
for the indices to range from 0 to 1, Indexmax and Index15m were
>1 for 54% and 41% of plots, respectively. We also decided a priori
that effective indices would be directly related to visual clutter
(e.g., low visual clutter would have a low clutter index). However,
we found no clear relationship between the indices and visual clut-
ter classes. Indexmax was positively correlated with canopy crown
volume; thus, overestimating the contribution of crowns may have
been a primary cause of error in the Clutter Index Method. How-
ever, Index15m was not correlated with canopy crown volume. Clut-
ter indices might be more reliable if crowns are measured only to
the edge of a plot and for each tree or sapling in a plot rather than
for a small group of reference trees. We do not have sufficient evi-
dence to recommend one method over another. Titchenell et al.
(2011) also found that an overall measure of vegetation volume
was not a good predictor for bat activity.

The Visual Clutter Method was simple, but this type of classifi-
cation scheme was not a good predictor of the probability of bat
detection in our models, nor is it repeatable among observers or
studies. Furthermore, we were less successful in discriminating be-
tween medium and low visual clutter classes with the discriminant
analyses, suggesting that we were not good at visually assessing
differences in clutter levels for the stands in our study area. How-
ever, it is worth noting that we recorded more identifiable echolo-
cation sequences in forests that we designated as low clutter. In
future studies of forests similar to the broadleaf deciduous forests
in this study, using only two visual clutter classes (e.g., forest and
open, or high and low forest clutter) may be more appropriate and
effective. As further evidence of the merits of using only two
groups, classification rates were higher for the two primary clus-
ters than for the three visual clutter classes. In our southern Appa-
lachian study area, forests might be grouped by the characters of
primary clusters A and B (Table 3). Type A stands had more well-
developed midstories, with higher stem densities (�25 stems in
an 11.3 m radius plot) and mean crown volumes (�65 m3). These
late-successional type stands also had higher basal areas of stand-
ing live (32.5 m2/ha) and dead (1.5 m2/ha) trees. Type B stands had
moderate understory stem counts, but low live and dead tree basal
areas, suggesting they were in early stages of succession.

When the objective of a study is to relate bat activity to man-
aged forest types and ages in a heterogeneous landscape, it may
be desirable to account for at least two clutter groups when
describing available habitat and calculating probability of detec-
tion. However, using a higher number of groups may yield a more
accurate representation of the various levels of clutter. Although
nine variables were needed to differentiate the four secondary
clusters, classification rates were higher for the secondary clusters
(100%) when compared to three visual clutter classes (62.5–91.7%).
We suspect that classification rates were lower for visual clutter
classes because we chose three classes a priori and then ‘‘forced’’
stands into one of the three classes. If >2 classes are to be used
to describe clutter, we suggest that definitions for clutter classes
be based on defined ranges of values for common stand descrip-
tors, such as stem density or mean crown volume, in multiple can-
opy layers. However, because qualitative methods were not always
the best predictors of detection probability, we recommend using
quantitative measures to assess clutter when possible. Quantita-
tive variables may provide a better assessment of fine-scale clutter
than qualitative variables, and this is important because bats may
select areas with reduced fine-scale clutter (Loeb and O’Keefe,
2006; Ober and Hayes, 2008; Smith and Gehrt, 2010), even within
cluttered stands.
5. Management implications

The amount of clutter in forests has received a great deal
attention as a factor that can affect bat habitat use, and managers
need information on the best way to reduce clutter in many for-
ested areas (Hayes and Loeb, 2007). However, without quantitative
and repeatable measures of clutter, it is difficult for managers to
transfer the results of studies in one area to their particular
management areas. We present some quantitative and repeatable
measures of clutter that can be used across many forest types
and age classes allowing managers to develop better strategies
for creating high quality bat habitat.

Bats occupied a wide range of clutter levels in forests in our
study area, but were most likely to be detected in uncluttered for-
ests (i.e., stands with low live tree basal area and midstory live
stem counts, and high canopy crown volumes). We do not discount
the suitability of cluttered forests as foraging or commuting habitat
for some bat species, but high clutter may impede detection of
such bats. Although we placed detectors at points where vegeta-
tion did not obscure the microphone (Weller and Zabel, 2002),
and occupancy rates for all bats were high for most of the sites
we surveyed, we recorded few high quality calls suitable for iden-
tification. Thus, for forest managers with limited resources (time
and detectors) and the goal of comparing bat activity among forest
types and ages, it might be more effective to place detectors in the
lowest clutter point within a survey stand (e.g., on a skidder trail or
in a canopy gap). Furthermore, for presence–absence surveys in
forested environments, such as those now required for federally
endangered species in the eastern U.S. (USFWS, 2013), it will be
important to tailor methods so that clutter does not impede detec-
tion of target bat species. Active sampling, in which the researcher
holds the detector and points it in the direction of bats as they are
detected, may also yield more identifiable recordings (e.g., Jung
et al., 2012).

In complex forests, we suggest that either a very simple classi-
fication system (i.e., two classes) or quantitative measurements
will be necessary for studies that seek to relate bat activity or pres-
ence to habitat characteristics. We tested a novel method for clut-
ter classification, the Clutter Index Method, and found that it
performed poorly relative to other clutter methods. Novel methods
and emerging technologies, such as LiDAR measurements of forest
structure (e.g., Jung et al., 2012), should be tested thoroughly prior
to implementation in long term studies.
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