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Abstract. Upland oak-hickory forests in Arkansas, Missouri, and Oklahoma experienced oak
decline in the late 1990s and early 2000s during an unprecedented outbreak of a native beetle, the
red oak borer (ROB), Enaphalodes rufulus (Haldeman). Although remote sensing supports fre-
quent monitoring of continuously changing forests, comparable in situ observations are critical
for developing an understanding of past and potential ROB damage in the Ozark Mountains. We
categorized forest change using a normalized difference water index (NDWI) applied to multi-
temporal Landsat TM and ETM+ imagery (1990, 2001, and 2006). Levels of decline or growth
were categorized using simple statistical thresholds of change in the NDWI over time. Corre-
sponding decline and growth areas were then observed in situ where tree diameter, age, crown
condition, and species composition were measured within variable radius plots. Using a machine
learning decision tree classifier, remote sensing-derived decline and growth was characterized in
terms of in situ observation. Plots with tree quadratic mean diameter at breast height ≥21.5 cm

were categorized remotely as in severe decline. Landsat TM/ETM+-based NDWI derivatives
reveal forest decline and regrowth in post-ROB outbreak surveys. Historical and future
Landsat-based canopy change detection should be incorporated with existing landscape-based
prediction of ROB hazard. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.8.083687]

Keywords: change detection; Landsat TM/ETM+; normalized difference water index; in situ
data; insect outbreak.
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1 Introduction

In recent years (ca. 1995 to 2005), upland oak forests in Arkansas, Missouri, and Oklahoma
experienced an episode of oak decline in concert with an unprecedented outbreak of the native
longhorned beetle, the red oak borer (ROB), Enaphalodes rufulus (Haldeman) (Coleoptera:
Cerambycidae). During this time, high ROB population levels were observed as contributing
factors to the decline of multiple red oak species.1–3 The ROB population densities began rising
sharply from low populations in the late 1990s to peak in the early 2000s,4 and then decreased
from 2003 through 2007, returning to near-endemic densities.5 When population densities
remain consistent with native conditions, the ROB is not considered a pest.6 However, during
outbreak conditions, high population levels result in damage to the heartwood of oaks as numer-
ous insects create galleries in the xylem of infested trees [Fig. 1(a)]. In addition, larval feeding in
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recently formed xylem tissue weakens the host tree’s ability to transport water and nutrients,
resulting in crown dieback [Fig. 1(b)].1,7,8

The ROB is known to target only certain deciduous forest species. Northern red oak (Quercus
rubra L.) is the principal host in Arkansas,9 and experienced the greatest amounts of dieback and
mortality, but other oak species also experienced mortality.8,10,11 In general, red oak species
(Section Erythrobalanus) were most affected, including black oak (Quercus velutina Lam.),
southern red oak (Quercus falcata Michx.), and scarlet oak (Quercus coccinea Muenchh).
Species of white oak (Section Lepidobalanus), including white oak (Quercus alba L.), post
oak (Quercus stellata Wangenh.), and chestnut oak (Quercus prinus L.) were less affected.1,8,12

The recent outbreak of the ROB resulted in various degrees of damage to at least 122,000 ha of
oak forest within portions of the Ozark National Forest (ONF), with >75% mortality of mature
oaks in heavily infested stands.12 The occurrence and duration of this outbreak is unprecedented
in recorded history.6,13 It is valuable to develop and test simple, repeatable, and cost-effective
methods for monitoring the ROB disturbance and its aftermath on a forest-wide scale.

1.1 Landsat-Assisted Forest Monitoring

Depending on the question of interest, the fundamental requirements of forest remote sensing may
be high spatial resolution imagery with stereo capability14 or airborne LiDAR (Ref. 15). This
reflects a historical interest to complement purely in situ forest survey with aerial photography.16,17

Nevertheless, relatively coarser spatial resolution remote sensing-assisted change detection has
been successfully demonstrated for examining and quantifying meaningful forest canopy cover
changes on a regular basis.18 With the Landsat sensors providing the longest orbital record of
forests at 30 × 30 m spatial resolutions (1982-present with relatively small gaps), this cost effec-
tive19 monitoring legacy continues. Further, significantly improved spectral and radiometric prop-
erties inherent in Landsat 8 Operational Land Imager (OLI; launched February 11, 2013 and
acquiring data since May 30, 2013), contribute to a bright future for this 30 × 30 m platform.20

1.2 Vegetation Indices

A normalized difference water index (NDWI) may be calculated using the near-infrared (NIR)
and middle-infrared (MIR) portions of the electromagnetic spectrum.21 Healthy tree leaves
reflect most of the Sun’s NIR radiation, and water stored in the cells of healthy vegetation absorb
MIR radiation.22 Because the NDWI is sensitive to the amount of leaf layers detected,21,22 it may
be useful for differentiating between full, healthy tree crowns and sparse, stressed crowns.

Fig. 1 (a) Old feeding tunnels exposed on a partially decomposed fallen dead Quercus rubra log,
and (b) Crown dieback in a northern red oak canopy (Q. rubra).
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Its sensitivity to variations in the moisture content in leaves21–23 makes it useful, considering
that low leaf moisture is an indication of drought and some pests.23 Detection of these variables
increases NDWI’s value in characterizing a variety of forest canopy changes.

1.3 Statement of the Problem

Careful in situ and laboratory observations of the unprecedented ROB damage (e.g., Ref. 3)
reveal serious risk to lumber quality and other forest services to both public and extensive private
forest land interests. Although aerial observer surveys were conducted by the USDA Forest
Service during the outbreak, tools are needed for systematically monitoring dynamics of the
oak hickory forest canopy in relationship to populations of this specific insect. Key dates of
interest include low population levels in 1990, and peak outbreak population levels in
2001.24 Repeated monitoring also implies a study of postoutbreak conditions while taking
into account other forest events, such as an unprecedented January 2009 ice storm that severely
damaged forest canopies across the Ozark Mountains.

Although remote sensing observations alone may provide some insights, there is a specific
need in this case to compare, in conjunction with remote sensing, ROB-related in situ conditions
after the fact. There are other forest dynamics, such as lumber activities and other driving forces
behind oak mortality that are best understood through in situ observation. AlthoughWang et al.23

examined Landsat NDWI-derived forest change in conjunction with Forest Inventory and
Analysis data for the Mark Twain National Forest in Missouri, there is a need to also address
ONF changes using ROB-specific field data in conjunction with postoutbreak satellite obser-
vations. Therefore, this targeted in situ study, combined with a multitemporal Landsat NDWI-
derived change detection workflow for low, peak outbreak, and postoutbreak conditions,
addressed the following questions:

1. What after the fact in situ characteristics are found in areas where changes are detected
using Landsat NDWI derivatives from imagery acquired before and during the peak
ROB outbreak (1990 to 2001)?

2. Do in situ data reflect variations in multiple levels of positive and negative changes
detected using Landsat NDWI derivatives?

3. What new information is provided by in situ combined with Landsat NDWI derivatives
regarding forest recovery or other changes that occurred after the outbreak?

2 Methods

2.1 Study Area

The ONF in Arkansas covers ∼426;000 ha and extends to the southernmost portion of the Ozark
Mountains. The terrain of the ONF is mountainous and rugged, with vegetation dominated by a
variety of oak-hickory species interspersed with pine forest.25 The largest contiguous portion of
the ONF is the area of interest for the combined in situ and Landsat-derived change detection
study. Targeted ONF field surveys from 48 variable radius plots measured in the summer of 2009
were collected as an in situ comparison.

2.2 Remote Sensor Data

2.2.1 Landsat imagery

The Landsat imagery in the NDWI change detection workflow was downloaded from the Global
Land Cover Facility.26 They were acquired by Landsat 5 TM (October 5, 1990; September 15,
2006) and Landsat 7 ETM+ (September 9, 2001). These specific dates were chosen because of
the relatively low levels of cloud cover during image acquisition, and because they correspond to
forest conditions before, during, and after the ROB outbreak.
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The Landsat 5 TM and Landsat ETM+ imagery were orthorectified and coregistered using
EarthSat’s international GeoCover protocol. The NASA Stennis Space Center assessed this geo-
metric correction protocol and reported a global root-mean-square error of ∼50 m when com-
pared with geodetic control. Since 50 m exceed the dimensions of a Landsat pixel, the question
of geometric correction is warranted. However, the relative geometric fidelity of the USA
imagery utilized in this study, while not reported quantitatively in the NASA assessment, is
visually excellent. This can be attributed to the inclusion of a multitemporal coregistration proc-
ess in the GeoCover workflow.

2.2.2 Atmospheric correction

Given that radiant flux is attenuated by Earth’s atmosphere, the question of whether to apply
atmospheric correction to satellite imagery is an important consideration in change detection
applications. Some change detection approaches, such as postclassification detection, do not
require atmospheric correction because the classification technique is applied in a date-specific
manner. However, the atmospheric attenuation influences reflectance of biophysical measure-
ments, and can change the values of vegetation index transformations (such as NDWI) more than
50% over thin canopy conditions.22,27 A change detection histogram value of zero, where the
histogram is based on subtraction of vegetation index images over two dates, signifies “no
change” in the index (from atmospheric effects) depending on the success of the atmospheric
correction.22

Prior to calculation of vegetation indices, atmospheric correction was applied to each Landsat
image using the PCI Geomatics ATCOR-2 (atmospheric correction) module.28 This process
converts the brightness values of the raw images to percent reflectance values that are compa-
rable over space and time. In our specific workflow, care was taken to account for changes in
Landsat 5 TM radiometric calibration procedures between 1990 and 2006.29

2.2.3 Normalized difference water index

Two atmospherically corrected Landsat bands were utilized to calculate NDWI, including the
NIR (band 4) and the MIR (band 5) percent reflectance. Pine-dominated stands and nonforested
areas (urban regions, major roads, bodies of water) were excluded from the study using an inter-
nal Center for Advanced Spatial Technologies map derived from two Landsat 5 images collected
in 2006 for both deciduous leaf-on and leaf-off conditions. This allowed further calculations to
only include deciduous oak-hickory dominated forest. Atmospherically-corrected percent reflec-
tance data for the deciduous forest canopies were then used to calculate NDWI:

NDWI ¼ NIR −MIR

NIRþMIR
;

where the NDWI is the normalized difference water index described by Gao,21 the NIR is the
near-infrared band 4 (0.76 to 0.90 μm), and the MIR is the middle-infrared band 5 (1.55
to 1.75 μm).

Pixels in the 1990 NDWI image were subtracted from corresponding pixels of the 2001
NDWI image (resulting in ΔNDWI2001−1990), and the pixels from the 2001 NDWI image
were subtracted from corresponding pixels in the 2006 image (resulting in ΔNDWI2006–2001).
These two ΔNDWI images, each representing forest canopy change between collection dates,
were transformed into “peak minus low” ROB and “postoutbreak minus peak” ROB class layers
(Fig. 2). These two layers are accessible online through University of Arkansas Forest
Entomology’s Applied Silvicultural Assessment Hazard Map.30 A related ΔNDWI2006–1990
image and associated class layer were also generated in order to address overall change
from low ROB to aftermath recovery conditions.

Normal histograms were observed for all three ΔNDWI images, and the standard deviations
of the change images were all similar as follows: 0.09 (2001 to 1990), 0.07 (2006 to 2001),
and 0.08 (2006 to 1990). This can be explained by the fact that most of the forest remained
intact during increased ROB activity (only certain species were affected by ROB), and multiple
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comparable dynamics were present in all three epochs (e.g., selective timber harvests, clear cut-
ting, ROB activity, forest regrowth, etc.). In contrast, histogram means varied as follows: −0.19
(2001 to 1990), 0.21 (2006 to 2001), and 0.02 (2006 to 1990). If exactly comparable source
imagery were available, it would make sense for zero ΔNDWI values (in normal histograms)
to represent zero change. However, no claim is made that the ATCOR-2 workflow perfectly
removes the effects of atmospheric attenuation. Furthermore, variation in instantaneous leaf
moisture content and exact phenological conditions were not accounted for (although all images
were selected based on near anniversary dates). Given the question of exact comparability of the
Landsat images, zero ΔNDWI values were assumed to possibly represent some change.
However, if the peak of a normal ΔNDWI histogram represents little or no change overall
(when most of the forest remains intact), then the histogram average is a better approximation
of “no change.” Based on this logic and the fact that all three histograms had similar standard
deviations, we utilized statistical (standard deviations from the mean) thresholds to rapidly iden-
tify five categorical changes (Fig. 2).

Fig. 2 (a) Landsat 7 ETM+ reflectance imagery (RGB ¼ 4, 3, 2) collected 25 Sep 2001 during
peak red oak borer (ROB) conditions; (b) and (c) Landsat 7 ETM+ normalized difference vegeta-
tion index-derived canopy change (ΔNDWI) maps for two epochs including “peak minus low” ROB
and “postoutbreak minus peak” ROB.

Jones et al.: Monitoring oak-hickory forest change during an unprecedented red oak borer outbreak. . .

Journal of Applied Remote Sensing 083687-5 Vol. 8, 2014

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 05/07/2014 Terms of Use: http://spiedl.org/terms



Each ΔNDWI image was first subtracted by its mean (μ) and then divided by its standard
deviation (ΔNDWIσμ). This approach is very similar to that used for the Mark Twain National
Forest by Wang et al.23 who, instead of subtracting the mean, applied a histogram match process
for a similar purpose. In our resulting ΔNDWIσμ image, the mean value represents the average
change that occurred and is a good approximation of no change given the aforementioned histo-
gram properties. The ΔNDWIσμ values < − 1 (in σ units) were labeled decline, and values >1

were labeled growth. These categories were used to address in situ characteristics identified in
Landsat-derived change categories from a low population to peak ROB activity (1990 to 2001).
Growth and decline categories were further subdivided into slight decline (−2 < ΔNDWIσμ <
−1), strong decline (ΔNDWIσμ < −2), slight growth (1 < ΔNDWIσμ < 2), and strong growth
(ΔNDWIσμ > 2). These subcategories were used to address whether in situ data reflect variations
in multiple levels of positive and negative changes detected using Landsat NDWI derivatives.
The five categories were also used to address new information provided by in situ combined with
Landsat NDWI derivatives regarding forest change during the postoutbreak aftermath (2001
to 2006).

2.3 In Situ Data Collection

Forty-eight variable radius point plots were established and vegetation surveys were conducted
at each plot. Using ArcGIS, plots were selected randomly on public land within a 400-m buffer
from forest roads. The buffer allowed reasonable access over a broad area in rugged terrain.
Within each plot, trees with a diameter at breast height (DBH) ≥5 cm were sampled using
a wedge prism with a basal area factor of 1 m2 ha−1. The prism allows the surveyor to take
a sample of a stand’s population by tallying all trees that are greater in size than the prism’s
projected angle. Plot basal area and stem densities were calculated in the standard manner.31

Species diversity was calculated using the Shannon–Wiener index (H 0), which shows the rela-
tionship between species richness or the number of species in a community, and species evenness
or the relative abundance of the species.32

Five Q. rubra trees were chosen from each of 42 of the plots for increment core extraction to
determine stand age and growth patterns. For everyQ. rubra in each of these same plots, a crown
class index (CCI) was recorded. Four classes were identified based on the percentage of crown
dieback: CCI 1 (1% to 33%), CCI 2 (34% to 66%), CCI 3 (66% to 99%), CCI 4 (100% or
dead crown).

2.4 Increment Core Processing

Tree cores were crossdated using standard techniques.33,34 A Velmex “TA” system35 and
MeasureJ2X software36 were used to measure tree-ring widths to the nearest 0.001 mm.

For both growth and decline plots, raw ring-width measurements from 1991 to 2008 were
standardized by dividing them by the arithmetic mean ring-width (e.g., average growth) over
each tree’s lifetime. Mean standardized annual growth rate was then calculated for each tree
core (66 cores from decline plots and 40 cores from growth plots) during two time periods
(1991 to 2000 and 2001 to 2008). The effects of time period and plot type, and their interactions
on standardized growth rate were analyzed with two-way analysis of variance.37

2.5 Machine Learning Decision Tree Classification

In situ plot data were analyzed using the C5.0 machine learning decision tree algorithm,22,38

recently made available by Rulequest Research39 under a GNU General Public License.
C5.0 was configured to produce classification rule sets, where each rule may contain one or
more if-then statements that in combination predict a specific class (e.g., strong growth) at a
given probability (e.g., 87%). A secondary configuration caused C5.0 to winnow attributes deter-
mined by the algorithm to contain low information content relative to prediction of the five target
classes (strong decline, slight decline, average, slight growth, and strong growth). Three distinct
C5.0 rule sets were constructed (Table 1), all based on five variables from in situ data: mean age
of Q. rubra, mean DBH, density, basal area, and species diversity. The first rule set was devel-
oped to predict the five categories associated with Landsat NDWI-derived change from 1990 to
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2001 (low to peak ROB). The second rule set was structured similarly except that it was applied
to the years 2001 to 2006 (peak ROB to postoutbreak).

The third rule set predicts three broad ΔNDWI-related change categories pertaining to the
years 1990 to 2001: decline (ΔNDWIσμ < −1), average (ΔNDWIσμ > 2, and growth
(positive changes > σ). This rule set was devised to compare the effectiveness of broader change
categories with those having more variation including change categories in rule sets 1 and 2
(Table 1). Interpretation of the detailed rules developed in these two classifiers, as well as their
effectiveness, addressed how well the in situ data reflects the Landsat NDWI-derived change
detection.

3 Results

Certain differences and similarities between general growth and decline categories were noted
during initial observations. Trees found in areas of growth were generally smaller and younger,
while trees in areas of decline were larger and older (Fig. 3). Growth stands were denser than
decline stands, and decline stands had a higher basal area. Growth plots were populated with
occasional large trees, but were mostly composed of root sprouts from numerous cut stumps,
while decline plots consisted of mature and over-mature trees, often with a dense understory and
canopy gaps (Fig. 3). Within decline plots, 40% of trees measured were Q. rubra, and nearly a
quarter of these were dead. Crown conditions of Q. rubra varied, with CCI 2 and CCI 3 sharing
the highest frequency (Table 2). In contrast, species diversity did not differ much between plot
types (Table 3). Also, there were no significant differences in standardized annual growth rate by
plot type or by time period (P > 0.05; Fig. 4).

The rule sets and supporting documentation generated by C5.0 provide a variety of infor-
mation related to the in situ data that is useful for predicting Landsat-derived change categories
(Table 4). Rules with if-then statements were only generated in the first and third rule sets which
both pertained to the years 1990 to 2001 ROB infestation period. From 2001 to 2006, most of the
in situ plots (31 out of 48) were associated with the middle (average) category approximating
little or no change. In this instance, C5.0 generated a rule to simply predict that average change
category. However, this approach is only 64.6% accurate in predicting the data used in the clas-
sification training process (see C5.0 rule set 2 in Table 4).

Aggregation of the Landsat NDWI-derived change categories is associated with some
improvement in accuracy (from 81.2% to 85.4%). For the low to peak ROB (infestation) period
from 1990 to 2001, mean DBH was estimated to be the most important in situ variable (64% in
the first rule set and 100% in the third rule set). Other variables were found to be relatively less
important (<1%) including during the peak to postoutbreak (recovery) period from 2001 to 2006.
In the development of each rule set, at least 40% (2 out of 5) attributes were winnowed by C5.0 or
judged to not contain relevant predictive ability. Basal area was not included in any of the
rule sets.

Table 1 Three distinct C5.0 rule sets were constructed. Available source attributes [e.g., mean
diameter at breast height (DBH)] were the same for all rule sets but level of detail in change cat-
egories, time period, and red oak borer (ROB) status were varied. The specific research question
(as identified in 1.4) addressed by each rule set is also given.

C5.0
rule set Source attributes

Change categories
predicted Time period ROB activity

Research question
addressed

1 Mean age
Density
Basal area
Species diversity
Mean DBH

Strong decline
Slight decline
Average
Slight growth
Strong growth

1990 to 2001 Low to outbreak 2

2 2001 to 2006 Peak to low 2, 3

3 Decline
Average
Growth

1990 to 2001 Low to outbreak 2
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4 Discussion

Although the in situ data collection was time and resource intensive, it proved useful for address-
ing (∼8 years after peak ROB activity) a number of characteristics associated with Landsat
NDWI-derived growth and decline areas. This includes, for example, the frequency of stressed
or dead Q. rubra in decline plots. Of course, it would be difficult to exactly compare crown
conditions recorded in the year 2009 field study with those at the time the 2001 satellite
image was acquired. However, oaks tend to grow slowly when stressed, and can take a long

Fig. 3 (a) Decline plot with dense understory, canopy gaps, and larger trees with varying levels of
crown dieback, and (b) growth plot with clear understory, smaller trees, and no evidence of crown
dieback.

Table 2 Mean proportions ofQuercus rubrawithin each crown class index within general Landsat
normalized difference water index (NDWI)-derived categories.

Landsat NDWI-derived
category

CCI 1 (1% to
33% dieback)

CCI 2 (34% to
66% dieback)

CCI 3 (67% to
99% dieback)

CCI 4
(100% dead)

Growth 0.72 0.09 0.09 0.14

Decline 0.18 0.36 0.36 0.09

Table 3 Mean values of variables calculated from in situ data for growth and decline within
general Landsat NDWI-derived categories.

Landsat NDWI-derived category DBH (cm) Age (y ) Density (trees∕ha) Basal area (m2∕ha) H 0

Growth 16.6 26.2 1516.21 18.52 1.32

Decline 31.4 87.2 524.13 14.07 1.35
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while to die,4,40,41 so in situ decline observed in 2009 was likely indicative of decline that was
occurring in 2001.

The bark of deadQ. rubrawas often partially or completely decomposed, and the presence of
the ROB heartwood galleries was common [Fig. 1(b)]. Such qualitative observations support the
hypothesis that ROB outbreak played a key role in the decline ofQ. rubra in decline plots. A few
decline plots contained no evidence of the ROB or oak decline and mortality. There were
instances of tree thinning in which a few trees were harvested and many were left. These
were likely identified because of biomass decreases due to the recent partial removal of the
canopy. The Landsat NDWI-derived change maps (Fig. 2) would not distinguish between
this type of thinning and ROB-related dieback on a pixel by pixel basis. Published expert
rules involving slope, aspect, elevation, insolation, etc. have been reported for various levels
of the ROB hazard.30,42 However, this study offers a simple and cost effective Landsat-based
linkage that can identify probable areas of either (a) thinning or (b) crown dieback; this infor-
mation can therefore be used to augment the landscape analysis work and can lead to more
effective ROB hazard prediction.

Tree-ring data were useful for showing the stand age differences between decline and growth
plots, but were not as useful for relating growth patterns to plot types. Radial growth during both
time periods was essentially average for those trees when they had lost/gained leaf area. There
were, however, clear differences between the growth and decline plots in nonstandardized raw
ring-widths. These differences were likely due to the earlier developmental stage of trees in
growth plots; they grew much faster than those in decline plots during both time periods.

The NDWI-derived change detection was successful in identifying forest regeneration, and
showed that it was not in conjunction ROB-induced oak decline. The regeneration detected was

Fig. 4 Mean standardized annual growth rate for Q. rubra in decline and growth plots, grouped by
time periods coinciding with ΔNDWI2001–1990 and ΔNDWI2006−2001.

Table 4 Number of rules with if-then statements, default class (for use in cases where no if-then
statements apply), estimated importance of individual attributes, and training data prediction accu-
racy associated with the three C5.0 rule sets.

C5.0 rule
set Time period

Number of
production

rules Default class
Estimated importance

of attributes

Training data
prediction

accuracy (%)

1 1990 to 2001 6 Strong growth 64% Mean DBH <1% Density 81.2

2 2001 to 2006 0 Average <1% Species diversity 64.6

3 1990 to 2001 3 Growth 100% Mean DBH <1%
Mean age <1% Density

85.4
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the result of anthropogenic influences in these forest stands, as they were found in areas in which
most treeshadbeenharvested.ThegrowthareasdelineatedbyΔNDWI2001–1990most likely resulted
from sprout and seedling regeneration that occurred in these stands after large scale cuts.43,44

The careful application of remote sensing to detect regeneration in stands is important within
the context of oak decline that older forest stands have experienced. Species composition and
evenness (H 0) of growth plots were similar to decline plots, and plot types were for the most part
even-aged. This suggests that in 60 or 70 years from now, when the young growth plot trees
reach maturity, they will be stands that resemble the current declining ones. These stands could
be considered potential ROB hazard areas in the future.

The C5.0 analysis support provided insight into the questions of change variation and forest
recover (Table 4). Regarding how well the Landsat-derived record reflects in situ variations, it is
clear from the three rule sets produced that the in situ-Landsat relationship is markedly stronger
during the 1990 to 2001 ROB infestation period (81.2% to 85.4%) than during the 2001 to 2006
postoutbreak, low level period (64.6%). This suggests that growth conditions observed in situ are
less recognizable using 30 × 30 m satellite imagery than are decline conditions. This may be
related to the complexity of discriminating forest structure using multispectral information.45

The range of 81.2% to 85.4% predictive ability between five and three NDWI-derived change
categories suggests that historical Landsat data is suitable for a five-category assessment. This
4% decrease is not a major loss in accuracy when additional categorical detail may provide
useful information to forest managers.

Addressing the final research question regarding in situ and Landsat data with respect to the
2001 to 2006 period of low ROB density, the data show a marked increase in the number of
average change categories, with strong decline and slight decline plots also falling into slight
growth categories (Fig. 5). Q. rubra was still in decline after the ROB outbreak subsided, and
2006 was a drought year, suggesting that the migration of decline categories to growth categories
was due to detection of flourishing undergrowth as canopy gaps were created from the continued
tree mortality.46

The process of monitoring ROB-related canopy changes using a satellite platform with a
nominal spatial resolution of 30 × 30 m can be improved through incorporation of additional
ancillary and in situ data as well as additional satellite imagery, both past and future. Although
historical Landsat data has been shown to be cost-effective and efficient when used to detect
forest canopy change, there may be a need for additional categorical detail (e.g., an increase
from five to seven categories of change/no change) in order to better characterize ROB hazard.
Rather than using standard deviations, future research could maximize the number of useful
categories based on the inherent spatial and radiometric information content in the data
(e.g., through object-based image analysis and clustering techniques). Given its dramatically
improved radiometric resolution as well as additional and refined spectral bands, Landsat 8

Fig. 5 Plot category migration (as identified using Landsat NDWI-derived change detection) from
the 1990 to 2001 ROB infestation period to the 2001 to 2006 postoutbreak period.
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promises to offer an increase in the ability to detect future subtle canopy changes. If developed as
a monitoring resource, the application of Landsat 8 will already be reined as in situ and other
observations identify possible future ROB infestations.

5 Conclusions

A forest canopy change application of a Landsat TM/ETM+ NDWI, compared with in situ forest
observations, revealed previously unknown locations of disturbed forest stands that consistently
showed signs of past ROB infestation. Regenerating forest stands were also found with stump
sprouts close to the same age as the first satellite image used for change detection. This indicates
that these areas were heavily cut, and the detected regeneration is a response to anthropogenic
influences rather than ROB-related oak decline. Decadal application of change detection
revealed forest stands that experienced disturbance, and young stands that may experience forest
decline in the future when their trees become senescent. The DBH was found to be an important
predictor of the ROB hazard and the easiest measurement to make in situ. Incorporation of his-
torical and future Landsat data using different time periods and thresholds can refine the process
of ROB-related oak-hickory forest monitoring and further improve landscape prediction of the
ROB hazard.
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