
United States 
Department of  
Agriculture

Forest 
Service

Percent Impervious Landcover Modeling: 

Analyzing the Impacts of Model Types, 

Calibration Methods, and Ecoregions

October 2013  RSAC-10025-RPT1



Abstract
Percent impervious landcover maps serve as valuable tools for understanding urban growth patterns and monitoring 
environmental and social impacts. Presently, these maps are updated about every 5 years as part of the National Land Cover 
Database (NLCD).  More frequent updates would improve the temporal precision of our understanding of growth patterns 
and their impacts.  Creating a consistent percent impervious landcover map on an annual basis warrants a review of the 
impacts of different calibration, prediction, and modeling techniques across different ecoregions.  This study tests various 
model calibration techniques, using different model predictor variables and model types across different ecoregions, to provide 
a better understanding of how these methods affect model outputs.  Results indicate that:

 � Modeling should be performed on individual ecoregions in order to ensure maximum model performance.  

 � Lower bootstrapped errors were achieved when modeling percent impervious surface using a large number of calibration 
samples derived from an existing percent impervious landcover layer than using photo-interpreted calibration data. Deriving 
calibration samples from an existing map product is faster than acquiring calibration samples with photo interpretation and 
may be an acceptable approach when time and budget are limiting factors. However, there are many assumptions and 
concerns associated with this approach that need careful consideration and further investigation.    

 � While both Landsat and ASTER thermal data were effective for modeling percent impervious landcover within the moist-
climate study areas, Landsat spectral data proved to be the best across all ecoregion types. 

Results from this study suggest that creating a nationwide percent impervious landcover map on an annual basis is practical 
based on the wide availability of data and sufficient computing power. The next step is to gain a better understanding of the 
optimal automated model calibration method, model parameters, and hybridized predictor dataset. 
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Introduction
Urban growth is an integral part of 
population and economic growth 
(Wrigley 1985). Its social, economic, 
and environmental impacts are 
pronounced. Worldwide, urbanization 
is on an upward trend (Cohen 2004). 
Developing nations have seen an 
increase in urban population as people 
move from rural areas to urban centers 
(Cohen 2006), while developed nations 
have experienced a pronounced outward 
expansion from urban areas as 
suburbanization has become more 
prevalent (Mieszkowski and Mills 
1993). It is important to be able to 
monitor urban growth in a consistent 
manner in order to better understand 
the social, economic, and environmental 
impact of urban expansion. 

Currently, there are two data products 
that monitor urban extent within the 
continental US. The National Oceanic 
and Atmospheric Administration’s 
(NOAA) Defense Meteorological 
Satellite Program (DMSP) provides a 
coarse scale product with 1-km spatial 
resolution that depicts anthropogenic 
nighttime light intensity. Due to its 
coarse spatial resolution and worldwide 
coverage, this product is often used to 
provide large-area summaries of urban 
development (Ghosh and others 2010). 
In order to provide a more detailed 
depiction of urban extent, the Multi-
Resolution Land Characterization 
(MRLC) consortium has produced a 
percent artificial impervious landcover 
map for the US using a 30- by 30-meter 
grid. This is part of the larger National 
Land Cover Database (NLCD) effort 
(Fry and others 2011). This product has 
proven effective for monitoring urban 
growth by using NLCD percent 
impervious landcover from two dates 
(Xian and others 2011). Unfortunately, 
the NLCD percent impervious 
landcover layer is created only every 5 
years, producing a 5-year time gap in 
the data record of urban growth. 
Additionally, slight changes in NLCD 
percent impervious landcover mapping 
methods between versions introduce 

some inconsistency in the products, 
thus making direct comparisons 
inappropriate. Having a consistent 
product that is updated on an annual 
basis would allow for enhanced change 
detection capabilities, while providing 
greater temporal detail. Such a product 
would facilitate a better understanding 
of the spatiotemporal dynamics of 
urbanization.

The NLCD percent impervious 
landcover product is modeled using a 
set of Landsat-based raster predictors 
and photo-interpreted calibration data 
in a Cubist™ model. All calibration data 
are confined to an urban extent stratum 
defined by a threshold on the DMSP 
stable anthropogenic light product (Fry 
and others 2011). Few studies currently 
seek to generalize a modeling 
framework, training data, and predictor 
information across multiple large 
regions. The current literature largely 
concentrates on comparing different 
predictor types or modeling methods 
within one region, but do not extend 
these concepts across different regions 
(Chabaeva and others 2009; Ma and 
others 2010; Walton 2008; Xu 2010). 
The key difficulty with modeling 
percent impervious landcover is the 
inconsistency in how impervious and 
pervious surfaces across different regions 
relate both spectrally and thermally. A 

given model may work well within a 
moist ecoregion but fail in an arid 
ecoregion. In order to create a 
nationwide percent impervious 
landcover map, an enhanced 
understanding of effective methods for 
modeling percent impervious landcover 
across a variety of regions is required. 

This study is designed to address the 
current knowledge gap and provide an 
enhanced understanding of the effects 
of using different model types, predictor 
types, and calibration methods across 
different ecoregion types. The study 
could serve as a first step toward 
designing an efficient, robust workflow 
for modeling percent impervious 
landcover throughout the continental 
US on an annual basis. 

Study Areas
Three primary study areas were chosen 
for this study—two moist and one arid. 
They are Baltimore, MD, Atlanta, GA, 
and Bend, OR (figure 1). The extent of 
each study area corresponds to the 
intersection of a set of ASTER thermal 
imagery footprints centered on the 
urban area of interest. (Since ASTER is 
a tasked sensor with an inconsistent 
image extent, the largest available 
overlap area was used.) An additional 
study area corresponding to the 

Atlanta, GA

Baltimore, MD

Figure 1—Map of general study area locations.

Pacific Northwest 
Region

Bend, OR
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MODIS swath that intersects the Pacific 
Northwest was also identified for a 
direct ecoregion comparison. The 
Baltimore and Atlanta study areas fall 
within the Eastern deciduous biome, 
which is dominated by deciduous 
forests. Additional common landcover 
types include agriculture, wetlands, and 
developed areas. Urban areas are 
generally distinct both spectrally and 
thermally from the surrounding, 
relatively cool and dark forested areas. 
Agricultural and other bare soil 
landcover categories have similar 
spectral and thermal properties, but vary 
in different ways across a single growing 
year. Baltimore and Atlanta were chosen 
due to their differing thermal and 
spectral characteristics, which are due to 
their differing latitudes and coastal 
proximity. Baltimore has cold winters 
and hot summers, while Atlanta 
experiences relatively mild winters with 
hot summers. Bend lies within an arid 
area in the rain shadow of the Cascades. 
This area is dominated by herbaceous 
and scrub/shrub landcover in the 
upland areas, while the valleys are 
dominated by agricultural and riparian 
landcover types. 

Methods
To address the project objectives, a 
matrix of different analysis components 
and potential methods was developed. 
Combinations of the predictor layers, 
calibration methods, model types, and 
ecoregions shown in table 1 were tested. 
In addition, a unique test was 
conducted in the Pacific Northwestern 
region of the United States. Due to the 
adjacency of moist and arid ecoregions 
in the Pacific Northwest, it was possible 
to use a single MODIS swath to visually 
and quantitatively analyze the impacts 
of dividing model calibration by 
ecoregion.

Model Type

Three types of models were tested in 
this study—random forests, support 
vector machines and Cubist. The model 
types were selected due to their 
documented efficacy with modeling 
percent impervious surfaces (Walton 
2008). Random forests is an ensemble 
regression tree classifier that has the 
advantage of providing error estimates 
and predictor variable importance level. 
It generally works well with weak 

predictors (Brieman 2001; Ghimire and 
others 2012). Support vector machines 
work by transforming a multi-
dimensional feature space to a single 
dimension to identify a single 
hyperplane that separates the data. They 
are effective in separating non-linearly 
separable data using limited training 
data (Cortes and Vapnik 1995; Ghimire 
and others 2012). Support vector 
machines have proven effective at 
modeling percent impervious landcover 
in past studies (Walton, 2008). Cubist 
is a single regression tree classifier that is 
effective at identifying patterns in 
complex data, but is generally less 
robust than random forests and support 
vector machines with limited calibration 
data (Ghimire and others 2012). Cubist 
serves as the modeling method for the 
NLCD percent impervious landcover 
layer (Fry and others 2011), and was 
therefore included to serve as a baseline 
for the current state of the methods for 
large-area percent impervious mapping. 
Model source details can be found in 
table 2. All modeling procedures were 
conducted using R (R Development 
Core Team 2010). 

Table 1—Models, predictor layers and calibration methods tested to map percent impervious landcover for each ecoregion in the 
study

Predictor Types Calibration Methods Model Types Ecoregions

Aster Thermal Photo interpreted (Moist 
only) Cubist Cool Moist (Baltimore)

Landsat Spectral National Land Cover 
Database Random Forest Warm Moist (Atlanta)

Landsat Thermal Support Vector Machine Arid (Bend)

Table 2—Model name, R package name, and source URL for each tested model

Model R Package 
Name URL

Cubist Cubist http://cran.r-project.org/web/packages/Cubist/index.html
Random Forests randomForest http://cran.r-project.org/web/packages/randomForest/index.html
Support Vector 
Machine kernlab http://cran.r-project.org/web/packages/kernlab/index.html
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Each of the chosen modeling methods 
has strengths and weaknesses. Model 
efficacy was estimated using model error 
metrics. Run times were also noted. 
Understanding the relationship between 
run time and model error helps provide 
a better understanding of which 
modeling method may be optimal over 
a large area.

Calibration Method Selection

The goal of model calibration is to fit a 
model to a set of calibration data that 
represent the variability of the attribute 
of interest on the landscape. Currently, 
there is no publicly available nationwide 
percent impervious landcover inventory 
dataset to use for model calibration. 
The best proxy is the NLCD percent 
impervious dataset itself. While this is a 
modeled data product, it is the only 
existing nationwide product. Typically, 
training data have been created using a 
sample of the landscape that was then 
photo-interpreted and/or ground 
truthed to derive a percent impervious 
landcover metric. This method is largely 
effective, but very costly and highly 
dependent on a consistent definition 
and interpretation of an impervious 
surface (Nowak and Greenfield 2010). 
If an existing modelled impervious 
surface product has similar definitions 
of percent impervious, it is possible that 
such data could be sampled and used as 
model calibration data. Huang and 
others (2008) demonstrated that using 
existing modeled landcover products to 
refine forest classification model 
calibration can increase the efficacy of 
the modeled output. Since their study 
created a thematic output using 
classification instead of a continuous 
output using regression, they were 
afforded the ability to pre-stratify the 
landscape into core forest areas. This 
permitted the model to only be partially 
reliant on the efficacy of the existing 
modeled output. This is not possible 
when modeling a continuous output, 
such as percent impervious surface, thus 
necessitating a greater reliance on the 
dataset that is being sampled. This key 
difference leaves the capabilities of 
regression model calibration automation 

largely unknown. In order to address 
this knowledge gap, both model 
calibration methods were tested within 
the moist region. A single ecoregion was 
chosen due to the cost of deriving 
photo-interpreted training data, and 
based on the assumption that the 
efficacy of different training methods is 
likely to not be ecoregion-dependent. 

The photo-interpreted calibration 
dataset was generated using 2006 
National Agriculture Imagery Program 
(NAIP) imagery interpreted at a 
stratified random sample of locations 
within each moist study area. The 
sample strata were created using a 
binned NLCD percent impervious 
landcover layer, with each bin 
corresponding to a 10 percent range in 
percent impervious. Each 90- by 
90-meter sample location was then 
overlaid with a 105-point, equilateral-
triangle (hex) dot grid. Each point 
within the dot grid was then labeled as 
impervious or pervious based on the 
NAIP imagery. The percentage of dots 
identified as impervious served as the 
percent impervious value for that 
calibration sample. This was completed 
for approximately 300 samples within 
each moist study area. 

The NLCD random sample calibration 
dataset was a simple random sample of 
pixels from the 2006 NLCD percent 
impervious product within each study 
area. The value from the NLCD percent 
impervious layer served as the training 
value for each point. A sample of 
10,000 pixels was drawn for each study 
area. 

Predictor Types

In order to better understand the ability 
of different predictor data types to 
properly predict percent impervious 
landcover, several sets of predictor data 
were tested. The predictor data types 
were chosen largely due to their success 
at predicting percent impervious 
landcover in previous studies (Chabaeva 
and others 2009; Ma and others 2010; 
Xu 2010). All predictors used in this 
study can be found in table 3. The 

predictor data were of two primary 
types—spectral and thermal. All spectral 
data were Landsat 5 Thematic Mapper 
(TM) data, while two different types of 
thermal data were tested. The Advanced 
Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) sensor 
aboard the Terra satellite has five 
thermal infrared bands ranging from 
8.125 to 11.65 microns with a 90-meter 
spatial resolution. These five bands 
enable accurate surface emissivity 
estimates that result in enhanced 
temperature estimation (ASTER 2001). 
The ASTER-08 product depicts the 
modeled surface kinetic temperature on 
the kelvin scale (ASTER 2001). While 
the ASTER-08 product is the most 
accurate satellite-based depiction of land 
surface temperature, the pointable, 
tasked sensor provides inconsistent 
image extent and frequency, making 
ASTER impractical for use across a 
large area. In order to address this 
shortcoming of ASTER data, the 
Landsat 5 TM thermal infrared band 
was also tested and calibrated to the 
ASTER-08 data as outlined in Huang 
and others (2010b). The Landsat 
spectral data used in this study were 
reflectance corrected using the 
calibration and correction algorithms 
outlined in Huang and others (2010a). 
All Landsat TM data were resampled to 
a 90-meter spatial resolution and 
snapped to the ASTER-08 grid. 

Once processed, the ASTER-08 
thermal, Landsat thermal, and Landsat 
spectral data were tested as separate 
predictor data sets for each of the three 
study areas. Each set for each area 
contained multiple images from 
throughout a single growing season 
(table 3). This provided a more 
complete depiction of the variation in 
temperature and spectral reflectance 
across a growing season with respect to 
percent impervious landcover. This 
allows the modeling techniques to 
better identify patterns in the predictors 
across a growing season. The most 
complete set of spectral imagery across a 
single growing season was assembled 
over the Bend study area due to the 
quantity of cloud-free imagery. 
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Baltimore and Atlanta had greatly 
reduced image sets due to frequent 
cloud cover. The actual thermal 
temperature data were used as 
predictors within the thermal predictor 
sets, while spectral indices, as well as 
individual bands, were used as 

predictors for the spectral sets. In 
addition to Landsat TM bands 1, 2, 3, 
4, 5, and 7, the Normalized Difference 
Vegetation Index (NDVI), Normalized 
Burn Ratio (NBR), Normalized 
Difference Moisture Index (NDMI), 
and the Vegetation Index Green (VIG) 

were used. (See table 4 for Landsat TM 
vegetation index algorithm details.) 
While highly correlated, each of these 
indices is sensitive to slightly different 
landcover types, and therefore could 
provide valuable information. 

Table 3—Predictor rasters used in the analyses

City Sensor Image ID Image Date Season Day/Night

Baltimore Landsat L5015033_03320060128 01/28/2006 Winter Day
Baltimore Landsat L5015033_03320060418 04/18/2006 Spring Day
Baltimore Landsat L5015033_03320060504 05/04/2006 Spring Day
Baltimore Landsat L5015033_03320060824 08/24/2006 Summer Day
Baltimore Aster 08 AST_08_00303032004 03/03/2004 Winter Day
Baltimore Aster 08 AST_08_00304292001 04/29/2001 Winter Night
Baltimore Aster 08 AST_08_00308242003 08/24/2003 Summer Day
Baltimore Aster 08 AST_08_00310012005 10/01/2005 Summer Night
Atlanta Landsat L5019037_03720060124 01/24/2006 Winter Day
Atlanta Landsat L5019037_03720060414 04/14/2006 Spring Day
Atlanta Landsat L5019037_03720060703 07/03/2006 Summer Day
Atlanta Landsat L5019037_03720060804 08/04/2006 Summer Day
Atlanta Landsat L5019037_03720060921 09/21/2006 Summer Day
Atlanta Aster 08 AST_08_00304052006 04/05/2006 Winter Night
Atlanta Aster 08 AST_08_00308232010 08/23/2010 Summer Day
Bend Landsat L5045029_02920060420 04/20/2006 Spring Day
Bend Landsat L5045029_02920060506 05/06/2006 Spring Day
Bend Landsat L5045029_02920060607 06/07/2006 Spring Day
Bend Landsat L5045029_02920060623 06/23/2006 Summer Day
Bend Landsat L5045029_02920060725 07/25/2006 Summer Day
Bend Landsat L5045029_02920060810 08/10/2006 Summer Day
Bend Landsat L5045029_02920060826 08/26/2006 Summer Day
Bend Landsat L5045029_02920060927 09/27/2006 Fall Day
Bend Landsat L5045029_02920061013 10/13/2006 Fall Day
Bend Landsat L5045029_02920061114 11/14/2006 Fall Day

Table 4—Vegetation index algorithms for Landsat TM

Index Name Index Abbreviation Landsat TM Algorithm

Normalized Difference Vegetation Index NDVI (4-3)/(4+3)
Normalized Burn Ratio NBR (4-7)/(4+7)
Normalized Difference Moisture Index NDMI (4-5)/(4+5)
Vegetation Index Green VIG (2-3)/(2+3)
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Direct Ecoregion Comparison 
Methods

Due to the adjacency of a moist and an 
arid ecoregion within the Pacific 
Northwest, a direct comparison was 
performed to better understand the 
impact of modeling distinct ecoregions 
with a single model as opposed to using 
different models for each ecoregion. 
This analysis was particularly beneficial 
since there is little knowledge of the 
impact of varying ecoregions on percent 
impervious models. The study area was 
the intersection of the level 1 
Environmental Protection Agency 
(EPA) ecoregions (Bibeau 1997) and 
MODIS Aqua swath H9, V4. The same 
set of model types used in Baltimore, 
Altanta, and Bend were used in this 
analysis. The models were tested on 
MODIS 8-day composite spectral 
(MYD09Q1) and thermal (MOD11A2) 
data from the Aqua platform, using 
NLCD percent impervious values to 
calibrate all models. A stratified random 
sample was necessary in order to 
adequately sample the rare urban areas 
within the arid ecoregion. The urban 
stratification was created by 
thresholding the NLCD percent 
impervious landcover product at 75% 
impervious. The first modeling step 
trained the model using all calibration 
data, which spanned both ecoregions. 
The model was then applied to the 
entire study region. The next step 
calibrated the model using only 
calibration data from the arid ecoregion 
and then applied the calibrated model 
to the entire study region. The final step 
calibrated the model using only 
calibration data from the moist 
ecoregion and then applied the model 
to the entire study region. 

Validation Methods

Due to budget constraints, an 
independent validation was not 
conducted. A 10-fold cross validation 
and bootstrap resampling validation was 
implemented to serve as a surrogate for 
an independent validation. The primary 
metrics used from the 10-fold cross 

validation and bootstrap resampling 
validation are the root mean squared 
error (RMSE) :

and the mean absolute error (MAE):

While RMSE is a standard metric of 
model efficacy, it is highly leveraged by 
outliers. MAE is not influenced in the 
same way as RMSE by outliers. While 
often very similar, RMSE and MAE do 
provide insight into how the model may 
deal with outliers versus the larger 
proportion of the population. 

Results 
Due to the combinatorial nature of the 
research design, the results from each 
stage of the study will be summarized 
in the context of the best result from 
the remaining phases. The overall 
results indicate that the best 
combination of methods for modeling 
percent impervious landcover is to 
apply individual models across 
individual ecoregion types, using a 
Cubist model within moist ecoregions, 
and either a random forests or Cubist 
model within arid regions depending 
on the priority placed on model run 
time. The best method for training a 
model is to use a sample of existing 
modeled data, while the best predictors 
are Landsat spectral data. Examples of 
results from each study area using 
different modeling methods can be 
seen in figures 2, 3, and 4.

Model Methods 

Testing three different model types 
provided a more complete picture of the 
strengths and weaknesses of different 
model types. Models were compared 
both by the error within the results and 
the run times. Each of these metrics of 
model proficiency provides useful 
information for choosing the proper 
model. In general, Cubist had the fastest 
run times (figure 5). This is due to its 
relative computational simplicity. All 
models had similar error rates within a 
given ecoregion (figure 6). If the model 
run time is a high priority, Cubist 
proved to provide the best product. The 
support vector machine did provide a 
visually superior product within the 
moist ecoregions, but had significantly 
longer run times. The output from 
random forests within the moist 
ecoregions was quantitatively on par 
with the support vector machine output 
(figure 6, appendix A), but was visually 
noisy. All three modeling methods 
excelled in the Bend study area. Much 
of the noise that was present in the 
moist ecoregion random forests product 
was absent in the arid ecoregion 
product. While the number of study 
areas tested was limited, these results 
suggest that the Cubist modeling 
technique is sufficient in both moist 
and arid ecoregions. 

Calibration Method 

Each of the tested calibration methods 
has apparent advantages for an 
operational percent impervious 
landcover project. Creating the photo-
interpreted calibration dataset was time 
consuming and manually intensive. 
Sampling an existing product takes 
seconds to complete. The results 
indicate that overall, a larger sample of 
the existing NLCD percent impervious 
landcover product results in a more 
effective model than a relatively small 
photo-interpreted calibration dataset 
(figure 7). This is likely because the 
photo-interpreted calibration dataset 
did not sufficiently sample the 
landscape. The sample was a stratified 

= number of samples

= modeled value 

= observed value
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Figure 2—Comparison of the outputs of the three modeling methods to the NLCD 
percent impervious product. Visually, the differences are largely minimal within the 
Atlanta study area.

Figure 3—Comparison of the outputs of the three modeling methods to the NLCD 
percent impervious product. Visually, the differences are largely minimal within the 
Baltimore study area.

random sample, with sample sizes 
carefully chosen as a function of 
optimizing the variance sampled of the 
distribution of the individual pixel 
values within the stratum for the study 

area. Despite these careful measures, a 
simple random sample of many NLCD 
percent impervious landcover pixels 
proved to be the most effective method. 
This is indicated in both moist study 

areas, with all modeling methods (figure 
7, appendix 1). While these results do 
indicate that using the existing NLCD 
percent impervious landcover product is 
effective, it should not be inferred that 
all existing related products would 
outperform photo-interpreted 
calibration datasets. 

Predictor Data Type 

Identifying optimal predictor data is 
one of the primary considerations when 
creating a model. The results from this 
study indicate that the efficacy of 
different predictor data types varies 
between ecoregions (figure 8, appendix 
1). This study tested two thermal and 
one spectral predictor data types. Both 
ASTER and Landsat TM thermal data 
products produced qualitatively 
proficient models. Landsat spectral data 
outperformed Landsat thermal data at 
predicting percent impervious landcover 
within moist and arid areas. The 
robustness of the spectral data at 
predicting percent impervious landcover 
across different ecoregions suggests that 
spectral data would be favorable to 
thermal data. 

Direct Ecoregion Comparison 

The results from the ecoregion 
comparison illustrate the effects of 
separating analysis areas by ecoregions 
(figure 9). The results are presented 
both visually and quantitatively in 
figures 9 and 10, respectively. Visually, 
the unseparated output indicates that 
the model works well in the moist 
ecoregion (western half), while the 
urban areas within the arid ecoregion 
(eastern half) are often under-predicted 
(figure 9). When only arid ecoregion 
calibration data are used, this error is 
reduced, but still present. When only 
moist ecoregion calibration data are 
used, there is minimal difference to the 
output within the moist ecoregion, 
while the visual error within the arid 
ecoregion is significantly increased. 
Many of these differences are not 
apparent in the RMSE and MAE 
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Figure 4—Comparison of the outputs of the three modeling methods to the NLCD 
percent impervious product. Visually, the differences largely occur within the 
rural upland areas in the center left section of the images. All models over-predict 
in these areas. All modeled products lack the roads that appear within the NLCD 
product. Many of these roads are no longer in existence, or are unpaved. They do 
not appear in the modeled product because they are largely pervious and no road 
layer was used in the modeling process. 

(figure 10). The relatively low error rate 
within the arid ecoregion is likely due 
to the large portion of the landscape 
that has a low percent impervious. 
These areas are generally easier to model 
than the areas with moderate percent 
impervious landcover found in greater 
abundance within the moist ecoregion. 
One potential difficulty was observed in 
the transition zone in north central 
Washington State (figure 9). There the 
transition zone between ecoregions was 
inaccurately modeled. By their very 
nature, transition zones will always 
cause difficulty for models. It is clear 
from these results that separating 
calibration data by ecoregion has a 
profound impact on model output. It 
remains unclear how much the results 
are being leveraged by the relative 
proportions of human-influenced and 
natural landcover within the given 
ecoregion. 

Discussion
This study begins to answer many 
necessary questions to effectively model 
percent impervious landcover on a 
continental scale on an annual basis. 
While the existing literature does 
provide extensive insight regarding 
model efficacy, and predictor data 
selection, the knowledge gap in 
understanding the variability of percent 
impervious landcover modeling is one 
that merits continued investigation. 
The results of this study indicate that all 
modeling methods used have their place 
on an operational percent impervious 
landcover modeling process. While 
support vector machines did prove to be 
a robust modeling method across both 
ecoregions, it is far more 
computationally intensive than random 
forests or Cubist. Random forests is 
very effective at finding patterns in 

complex data, and does provide a quick, 
unbiased idea of model efficacy. 
Considering proficiency for the given 
model runtime, Cubist is the model of 
choice in both ecoregions. 

While different modeling methods were 
tested in this study, many of the 
parameters that may influence the 
efficacy of these models were not fully 
explored. Further insight into the 
impacts of various modeling parameters 
could potentially enhance the modeling 
process. 

Although the results indicate that 
existing percent impervious landcover 
data is the most effective model 
calibration method, using a modeled 
product to calibrate a model raises 
many additional questions. This cyclical 
approach permits the output to inherit 
bias and inaccuracies of the original 
model output (Nowak and Greenfield 
2010; Raciti and others 2012; Zheng 
and others 2012). If a model failed in a 
certain instance previously, any 
subsequent model is highly unlikely to 
correct such an error. Additionally, any 
modeled percent impervious landcover 
product represents the percent 
impervious landcover at a point in time. 
Since the NLCD percent impervious 
landcover product is updated every 5 
years, any subsequent change that 
occurs would be represented by a 
pre-change percent impervious 
landcover value. Omitting such changed 
locations from the sampled population 
of values is necessary, but requires a 
preliminary change analysis to ensure 
that only unchanged pixels are included 
in the sample population. This 
introduces bias in the sample 
population, since areas adjacent to areas 
that are already highly impermeable are 
more likely to undergo development. 
Nevertheless, the inclusion of changed 
pixels in the sampled population 
introduces far more model confusion. 
While it is understood that a 
nationwide rapid-return product (< 2 
year refresh) would require some 
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Figure 5—Model run time for each modeling method in the Baltimore study area using NLCD calibration data. The individual 
components of the modeling process are presented, along with the total modeling time. The total time includes the model fit 
time, model predict time, and time to write the raster. Cubist is the quickest, while support vector machines prove to be the most 
computationally intensive.

SVM RF Cubist SVM RF Cubist SVM RF Cubist
Baltimore Baltimore Baltimore Atlanta Atlanta Atlanta Bend Bend Bend

MAE 4.11 4.36 4.08 5.82 6.15 5.86 1.79 2.35 1.80
RMSE 8.58 8.69 8.75 10.80 10.91 11.17 5.72 5.41 5.72

0

2

4

6

8

10

12

%
 E

rr
or

Model Method Results

MAE

RMSE

Figure 6—MAE and RMSE values of the best predictor type and calibration method across the different modeling methods.
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Figure 7—MAE and RMSE values of the best modeling method and predictor type across the different calibration methods.
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Figure 9—Example outputs from the ecoregion comparison study. The unseparated image is the result of using training data from 
both the arid and moist ecoregions, while the arid and moist images are produced using calibration values from their respective 
ecoregions. The combined image is the mosaic of the moist and arid region outputs from the respective ecoregion. The impacts 
of using calibration data from each respective ecoregion are apparent. The unseparated output tends to under-predict percent 
impervious in the arid ecoregion, while the combined output tends to slightly over-predict percent impervious in the arid area. 

automation of model calibration data 
acquisition, due to these difficulties, it 
is recommended that a more 
comprehensive review of model 
calibration methods is performed.

While individual predictor data types 
were tested, an understanding of the 
utility of using multiple predictor data 
types in unison was not investigated due 
to the combinatorial nature of such an 
investigation. It is possible that model 
efficacy could be enhanced by using 
multiple predictor data types to model 
percent impervious landcover. 

Although separating models by 
ecoregion proved important, moisture 
levels are highly variable across time and 
space. Ecoregions may or may not be 
the best method for stratifying the 
landscape. Additionally, many 
individual areas in transition zones may 
prove difficult to model as one zone 
type or the other. A better 
understanding of the optimal method 
for stratifying the landscape would 
increase model efficacy.

Addressing these issues will help ensure 
that any annually modeled percent 
impervious landcover product is 
modeled in the most effective and 
efficient manner with the current state 
of the art. If these issues remain 
unaddressed, the quality of any product 
and change detection ability may be 
compromised.

References
ASTER. 2001. ASTER Higher-Level Product 
User Guide. Version 2.0. JPL D-20062. Jet 
Propulsion Laboratory 80 p. http://asterweb.jpl.
nasa.gov/content/03_data/04_Documents/
ASTERHigherLevelUserGuideVer2May01.pdf 
(May 2, 2013).

Bibeau, D. 1997. Ecological regions of North 
America—toward a common perspective. 
Montreal, Canada: Legal Deposit–Bibliothèque 
Nationale du Québec. 71 p.

Breiman, L. 2001. Random forests. Machine 
Learning. 45(1): 5-32.

Chabaeva, A.; Civco, D.L.; Hurd, J.D. 2009. 
Assessment of impervious surface estimation 
techniques. Journal of Hydrologic Engineering. 
14(4): 377-387.

Cohen, B. 2004. Urban growth in developing 
countries: a review of current trends and a 
caution regarding existing forecasts. World 
Development. 32(1): 23-51.

Cohen, B. 2006. Urbanization in developing 
countries: Current trends, future projections, 
and key challenges for sustainability. 
Technology in Society. 28: 63-80.

Cortes, C.; Vapnik, V.N. 1995. Support-
vector networks. Machine Learning. 20(3): 
273-297.

Fry, J.; Xian, G.; Jin, S.; Dewitz, J.; Homer, 
C.; Yang, L.; Barnes, C.; Herold, N.; 
Wickham, J. 2011. Completion of the 2006 
National Land Cover Database for the 
conterminous United States. Photogrammetric 
Engineering & Remote Sensing. 77(9): 858-864.

Ghimire, B.; Rogan, J.; Galiano, V.R.; 
Panday, P.; Neeti, N. 2012. An evaluation of 
bagging, boosting, and Random Forests for 
land-cover classification in Cape Cod, 
Massachusetts, USA. GIScience and Remote 
Sensing. 49(5): 623-643.

Ghosh, T.; Powell, R.L.; Elvidge, C.D.; 
Baugh, K.E.; Sutton, P.C.; Anderson, S. 
2010. Shedding light on a global distribution of 
economic activity. The Open Geography 
Journal. 3(1): 148-161.

http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/ASTERHigherLevelUserGuideVer2May01.pdf
http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/ASTERHigherLevelUserGuideVer2May01.pdf
http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/ASTERHigherLevelUserGuideVer2May01.pdf


11 | RSAC-10025-RPT1 

Unseparated Arid Moist
MAE 6.14 2.83 9.03
RMSE 14.63 9.82 16.08

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

Ecoregion Comparison

Figure 10—MAE and RMSE from a 10-fold cross validation of the ecoregion comparison 
results from the random forests model using MODIS spectral data.

Huang, C.; Goward, S.N.; Masek, J.G.; 
Thomas, N.; Zhu, Z.; Vogelmann, J.E. 
2010a. An automated approach for 
reconstructing recent forest disturbance history 
using dense Landsat time series stacks. Remote 
Sensing of Environment. 114(1): 183-198.

Huang, C; Song, K.; Kim, S.; Townshend, 
J.R.G.; Davis, P. ; Masek, J.G.; Goward, 
S.N. 2008. Use of dark object concept and 
support vector machine to automate forest 
cover change analysis. Remote Sens. Environ. 
112: 970–985

Huang, C.; Thomas, N.; Goward, S.N.; 
Masek, J.G.; Zhu, Z.; Townshend, J.R.G.; 
Vogelmann, J.E. 2010b. Automated masking 
of cloud and cloud shadow for forest change 
analysis using Landsat images. International 
Journal of Remote Sensing. 31(20): 5449-5464.

Ma, Y.; Kuang, Y.; Huang, N. 2010. 
Coupling urbanization analyses for studying 
urban thermal environment and its interplay 
with biophysical parameters based on TM/ETM+ 
imagery. International Journal of Applied Earth 
Observation and Geoinformation. 12(2): 
110-118.

Mieszkowski, P.; Mills, E.S. 1993. The 
causes of metropolitan suburbanization. Journal 
of Economic Perspectives. 7(3): 135-147.

Nowak, D.J.; Greenfield, E.J. 2012. Tree 
and impervious cover in the United States. 
Landscape and Urban Planning. 107: 21-30.

R Development Core Team. 2010. R: A 
language and environment for statistical 
computing. R Foundation for Statistical 
Computing, Vienna, Austria. http://
www.R-project.org (January 31, 2013).

Raciti, S.; Hutyra, L.; Rao, P.; Finzi, A. 
2012. Inconsistent definitions of “urban” result 
in different conclusions about the size of urban 
carbon and nitrogen stocks. Ecological 
Applications. 22(3): 1015-1035.

Walton, J.T. 2008. Subpixel urban land cover 
estimation: comparing Cubist, Random Forests, 
and support vector regression. 
Photogrammetric Engineering & Remote 
Sensing. 74(10): 1213-1222.

Wrigley, E.A. 1985. Urban growth and 
agricultural change: England and the continent 
in the early modern period. Journal of 
Interdisciplinary History. 15(4): 683-728.

Xian, G.; Homer, C.; Dewitz, J.; Fry, J.; 
Hossain, N.; Wickham, J. 2011. The change 
of impervious surface area between 2001 and 
2006 in the conterminous United States. 
Photogrammetric Engineering & Remote 
Sensing. 77(8): 758-762.

Xu, H. 2010. Analysis of impervious surface 
and its impact on urban heat environment using 
the Normalized Difference Impervious Surface 
Index (NDISI). Photogrammetric Engineering & 
Remote Sensing. 76(5): 557-565.

Zheng, D.; Heath, L.S.; Ducey, M.J. 2012. 
Potential overestimation of carbon 
sequestration in the forested wildland-urban 
interface in northern New England. Journal of 
Forestry. 110(2): 105-111.

For additional information, contact: 

Haans Fisk, RSEAT Program Leader 
Remote Sensing Evaluation,  
Applications & Training  
Remote Sensing Applications Center  
2222 West 2300 South  
Salt Lake City, UT 84119

phone: (801) 975-3750 
e-mail: mailroom_wo_rsac@fs.fed.us

This publication can be downloaded from the 
RSAC Web site: http://fsweb.rsac.fs.fed.us

Non-Discrimination Policy

The U.S. Department of Agriculture (USDA) 
prohibits discrimination against its customers, 
employees, and applicants for employment on 
the bases of race, color, national origin, age, 
disability, sex, gender identity, religion, 
reprisal, and where applicable, political 
beliefs, marital status, familial or parental 
status, sexual orientation, or all or part of an 
individual’s income is derived from any public 
assistance program, or protected genetic 
information in employment or in any program 
or activity conducted or funded by the 
Department. (Not all prohibited bases will 
apply to all programs and/or employment 
activities.)

To File an Employment Complaint

If you wish to file an employment complaint, 
you must contact your agency’s EEO 
Counselor (PDF) within 45 days of the date of 
the alleged discriminatory act, event, or in the 
case of a personnel action. Additional 
information can be found online at http://
www.ascr.usda.gov/complaint_filing_file.html.

To File a Program Complaint

If you wish to file a Civil Rights program 
complaint of discrimination, complete the 
USDA Program Discrimination Complaint 
Form (PDF), found online at http://www.ascr.
usda.gov/complaint_filing_cust.html, or at any 
USDA office, or call (866) 632-9992 to request 
the form. You may also write a letter containing 
all of the information requested in the form. 
Send your completed complaint form or letter 
to us by mail at U.S. Department of Agriculture, 
Director, Office of Adjudication, 1400 
Independence Avenue, S.W., Washington, D.C. 
20250-9410, by fax (202) 690-7442 or email at 
program.intake@usda.gov.

Persons with Disabilities

Individuals who are deaf, hard of hearing or 
have speech disabilities and you wish to file 
either an EEO or program complaint please 
contact USDA through the Federal Relay 
Service at (800) 877-8339 or (800) 845-6136 (in 
Spanish).

Persons with disabilities who wish to file a 
program complaint, please see information 
above on how to contact us by mail directly or 
by email. If you require alternative means of 
communication for program information (e.g., 
Braille, large print, audiotape, etc.) please 
contact USDA’s TARGET Center at (202) 
720-2600 (voice and TDD).



12 | RSAC-10025-RPT1 Appendix A

Appendix A: Comprehensive List of Analysis Results
MAE, RMSE, R-squared and run time values from all combinations of methods tested across the three study areas. MAE, 
RMSE, and R-squared values were calculated using a 10-fold cross validation. The best combination of calibration method, 
predictor type, and model type by minimum MAE is bolded. It should be noted that the MAE from the Cubist model in Bend 
and Atlanta is very close to the MAE of SVM.

Table A-1—Comprehensive list of analysis results

City Calibration 
Method Predictors Model 

Method MAE RMSE R2 Run Time 
(Minutes)

Baltimore PI ASTER 08 svm 14.73 21.36 0.515 1.92
Baltimore PI ASTER 08 rf 16.49 22.23 0.464 0.73
Baltimore PI ASTER 08 cubist 17.66 26.04 0.354 1.08
Baltimore NLCD ASTER 08 svm 5.87 12.21 0.723 39.58
Baltimore NLCD ASTER 08 rf 6.46 12.16 0.722 9.21
Baltimore NLCD ASTER 08 cubist 5.72 12.22 0.724 1.47

Baltimore PI Landsat TM 
Thermal svm 15.92 22.06 0.484 1.92

Baltimore PI Landsat TM 
Thermal rf 16.54 21.65 0.489 0.84

Baltimore PI Landsat TM 
Thermal cubist 19.20 26.57 0.335 1.52

Baltimore NLCD Landsat TM 
Thermal svm 6.64 13.50 0.663 41.62

Baltimore NLCD Landsat TM 
Thermal rf 7.40 13.36 0.664 11.15

Baltimore NLCD Landsat TM 
Thermal cubist 6.62 13.85 0.649 2.58

Baltimore PI Landsat TM 
Spectral svm 12.25 17.94 0.654 1.93

Baltimore PI Landsat TM 
Spectral rf 13.39 18.25 0.637 0.77

Baltimore PI Landsat TM 
Spectral cubist 12.35 18.22 0.641 1.30

Baltimore NLCD Landsat TM 
Spectral svm 4.11 8.58 0.862 36.59

Baltimore NLCD Landsat TM 
Spectral rf 4.36 8.69 0.858 10.91

Baltimore NLCD Landsat TM 
Spectral cubist 4.08 8.75 0.857 2.60

Atlanta PI ASTER 08 svm 22.04 30.36 0.200 1.52
Atlanta PI ASTER 08 rf 24.06 30.54 0.153 0.81
Atlanta PI ASTER 08 cubist 22.10 29.73 0.205 0.73
Atlanta NLCD ASTER 08 svm 10.61 18.64 0.386 38.04
Atlanta NLCD ASTER 08 rf 11.60 18.32 0.384 7.12
Atlanta NLCD ASTER 08 cubist 10.13 18.31 0.416 1.13

(Continued on next page)
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Table A-1—Comprehensive list of analysis results (Continued from previous page)

City Calibration 
Method Predictors Model 

Method MAE RMSE R2 Run Time 
(Minutes)

Atlanta PI Landsat TM 
Thermal svm 20.51 28.71 0.262 1.59

Atlanta PI Landsat TM 
Thermal rf 22.38 28.59 0.228 0.90

Atlanta PI Landsat TM 
Thermal cubist 21.05 29.03 0.234 1.38

Atlanta NLCD Landsat TM 
Thermal svm 8.24 14.68 0.611 38.92

Atlanta NLCD Landsat TM 
Thermal rf 9.12 14.60 0.605 14.43

Atlanta NLCD Landsat TM 
Thermal cubist 8.47 15.10 0.589 3.16

Atlanta PI Landsat TM 
Spectral svm 17.77 26.35 0.366 1.57

Atlanta PI Landsat TM 
Spectral rf 18.81 25.35 0.387 0.94

Atlanta PI Landsat TM 
Spectral cubist 17.85 25.20 0.406 1.29

Atlanta NLCD Landsat TM 
Spectral svm 5.82 10.80 0.787 37.28

Atlanta NLCD Landsat TM 
Spectral rf 6.15 10.91 0.779 13.18

Atlanta NLCD Landsat TM 
Spectral cubist 5.86 11.17 0.772 2.88

Bend NLCD ASTER 08 svm 2.26 7.81 0.003 13.47
Bend NLCD ASTER 08 rf 3.55 7.83 0.020 2.62
Bend NLCD ASTER 08 cubist 2.11 7.88 0.003 0.81

Bend NLCD Landsat TM 
Thermal svm 2.17 7.50 0.246 14.49

Bend NLCD Landsat TM 
Thermal rf 3.04 6.62 0.241 4.93

Bend NLCD Landsat TM 
Thermal cubist 2.21 7.01 0.180 3.04

Bend NLCD Landsat TM 
Spectral svm 1.79 5.72 0.476 14.96

Bend NLCD Landsat TM 
Spectral rf 2.35 5.41 0.493 4.37

Bend NLCD Landsat TM 
Spectral cubist 1.80 5.72 0.445 2.67

Note: The best combination of calibration method, predictor type, and model type by minimum MAE is bolded. It should be 
noted that the MAE from the Cubist model in Bend and Atlanta is very close to the MAE of SVM.




