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Big assumptions for small
samples in crop insurance

Ashley Elaine Hungerford
Economic Research Services, Washington, District of Columbia,

USA, and

Barry Goodwin
Department of Agricultural and Resource Economics,

North Carolina State University, Raleigh, North Carolina, USA

Abstract

Purpose – The purpose of this paper is to investigate the effects of crop insurance premiums being
determined by small samples of yields that are spatially correlated. If spatial autocorrelation and small
sample size are not properly accounted for in premium ratings, the premium rates may inaccurately
reflect the risk of a loss.
Design/methodology/approach – The paper first examines the spatial autocorrelation among
county-level yields of corn and soybeans in the Corn Belt by calculating Moran’s I and the effective
spatial degrees of freedom. After establishing the existence of spatial autocorrelation, copula models
are used to estimate the joint distribution of corn yields and the joint distribution of soybean yields for
a group of nine counties in Illinois. Bootstrap samples of the corn and soybean yields are generated to
estimate copula models with the purpose of creating sampling distributions.
Findings – The estimated bootstrap confidence intervals demonstrate that the copula parameter
estimates and the premium rates derived from the parameter estimates can vary greatly. There is also
evidence of bias in the parameter estimates.
Originality/value – Although small samples will always be an issue in crop insurance ratings and
assumptions must be made for the federal crop insurance program to operate at its current scale, this
analysis sheds light on some of the issues caused by using small samples and will hopefully lead to
the mitigation of these small sample issues.

Keywords Crop insurance, Bootstrap, Copula, Spatial autocorrelation, Systemic risk,
Yield distribution

Paper type Research paper

Introduction
Recent passage of the much – delayed Farm Bill serves to further strengthen the critical
role that federally – subsidized crop insurance plays in US agricultural policy. The new
legislation includes options to select “Agricultural Risk Coverage”, which functions as an
aggregate county – level or whole – farm level revenue insurance program with payments
based on historical base acreage. The new Farm Bill also introduces a “Supplemental
Coverage Option,” (SCO) that provides farmers with an optional county – level insurance
program that covers a portion of the existing deductible. Cotton has its own version of
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SCO in the “Stacked Income Protection Plan”. The crop insurance title also mandates
development of a revenue – minus – cost insurance plan. All of these new insurance plans
provide revenue coverage, meaning that payments may be triggered by low prices, low
yields, or a combination of both that results in a revenue shortfall.

All of these plans address coverage of multiple, dependent sources of risk. Further,
the largest share of liability written in the current crop insurance program is in the
form of revenue coverage, which now accounts for almost 90 percent of total liability
in the federal program. In terms of individual farm – level insurance coverage,
the “Revenue-Protection” plan with harvest – price replacement accounts for over
80 percent of total liability. A critical parameter in the design and rating of these revenue
insurance plans is the measure of dependence or correlation among the various
sources of risk. In the case of revenue insurance, one is typically concerned with the
inverse correlation that exists between crop yields and prices. In the case of more
complex insurance instruments, such as the newly proposed revenue minus cost
plan, one must be concerned with multiple dependencies. These dependencies may be
complex to model and measure. In most cases, billions of dollars of liability is rated
using very small numbers of observations or even by assumed values of correlation
relationships that may be only weakly related to empirical measurement of actual
dependencies. These dependencies are often assumed to be constant across the
individual marginal distributions for individual sources of risk. For example,
fixed correlations are estimated using as few as 15 annual observations and are
assumed to hold at an aggregate state level in the rating of the individual coverage
revenue plans that make up the vast bulk of the insurance book of business[1].

The current collection of insurance plans that provide individual (farm-level)
coverage are often termed as the “COMBO” plan. This plan consists of traditional
yield insurance and revenue insurance that bases coverage either on projected or
realized harvest – time prices. As we have noted, the bulk of coverage applies to
revenue with losses paid at the higher of predicted or realized harvest-time prices.
When setting COMBO premium rates, strong assumptions are made on the
distributions of yields and prices. Assuming away complex dependencies among
yields in neighboring counties and imposing practical distributions may ease
computation, but these assumptions have the potential to create bias and inefficiency
during estimation. In this paper we examine the effects of these assumptions when
they are applied in practice to the small samples of yields and prices typically used for
crop insurance rating. In particular, we explore characteristics of yield data including
tail dependence and spatial autocorrelation. Tail dependence is a measure of
comovement in the tails of marginals in joint distributions. Spatial autocorrelation,
the dependency among regions in a defined space, and tail dependence typically
lead to heteroskedasticity in estimates. White (1981) discusses misspecification in the
error term (i.e. heteroskadasticity) in nonlinear models causes inefficient estimates.
Yatchew and Griliches (1985) demonstrate that under certain conditions,
heteroskedasticity can cause estimation bias. An example of this estimation bias
can arise in maximum likelihood estimates of discrete choice models. The complication
of heteroskedasticity is compounded with the issue of small sample size, which may
cause large (but often understated) standard errors and decreased statistical power.

The analysis focusses on soybean and corn yields from the group of counties
surrounding McLean County in Illinois. We refer to this grouping as the McLean
County group[2]. The region contains several counties that are among the top
producers of corn and soybeans for the USA. Although we start with a preliminary
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analysis that gives an overview of spatial autocorrelation for several states in the
Corn Belt, our focus is on assessing the standard errors of estimates that are important in
evaluating yield distributions and COMBO insurance plan rating. Bootstrapping provides
a nonparametric method for calculating robust standard errors as well as confidence
intervals. Bootstrap estimates are constructed for the parameter estimates of the joint
distribution of yields for the McLean County group as well as the joint distribution for log
price deviates and yields for McLean County. The joint distribution of the yields for the
county group is constructed using copula modeling, which allows for tail dependence,
while the joint distribution for the log price deviates and yields for McLean County is
constructed using the Iman-Conover procedure. One of the motivations for studying
spatial autocorrelation and tail dependence among yields is to derive a better
understanding of the relationship between these dependencies and systemic risk.

In the early 1990s the perils of systemic risk in crop insurance were first considered
by Miranda (1991). Systemic risk pertains to the likelihood of losses occurring
simultaneously and dependently. As mentioned above, one of the main causes of
systemic risk in crop yields is spatial autocorrelation and tail dependence. Ignoring
systemic risk can cause underestimation of the variance, which will lead to
underestimating the probability of a loss. Miranda and Glauber (1997) demonstrated
that, compared to other insurance markets such as automobile and homeowners’
insurance, crop insurance payouts are more correlated with each other. Within crop
insurance, catastrophes such as the droughts of 2011 and 2012 led to $10.8 billion
and $17.4 billion in indemnity payments (RMA, 2013). With nearly $117 billion in total
liability in 2013 (excluding livestock coverage), proponents of subsidized crop
insurance often argue that private firms are not able to fully bear the risk of one of
these major catastrophes. As a result, a complex set of subsidies and favorable
reinsurance terms are provided through the Standard Reinsurance Agreement (SRA)
between the FCIC and private insurers. The SRA allows private insurers to share risk
with the FCIC (Goodwin, 2012). The SRA does not diminish the importance of correctly
estimating systemic risk. An important dimension of the SRA involves the ceding
of policies to different reinsurance pools. Further, private reinsurance plays a critical role in
covering the risks that are not fully addressed by the SRA. The structure of the National
Flood Insurance Program (NFIP) mirrors the structure of the FCIC. Currently, the NFIP is
on the brink of collapse due to the astronomic volume of indemnity payments paid after
Hurricane Katrina and Hurricane Sandy (Government Accountability Office, 2013).

Current rating methods for COMBO insurance
The current methodology for rating COMBO policies is outlined by Coble et al. (2010).
COMBO insurance rating begins with the calculation of an unloaded target rate, which
is a function of loss cost ratios (LCRs, defined by the ratio of indemnity payments to
total liability) for the county of interest. This rate is the anchor rate for insurance
policies within the county. The rate is referred to as “unloaded” because it is calculated
without the highest 20 percent of losses for the counties[3]. These large losses are
accounted for in the catastrophic loading. The unloaded target rate is a weighted
average of the historical LCRs of the county and its neighbors, weights are calculated
with the Bühlmann method, which is defined as:

R ¼ ZX þ ð1� ZÞm; ð1Þ
where Z¼ P/( PþK) and R is the county unloaded target rate; Z, the Bühlmann
credibility factor; X, the sample mean of the county of interest; m, the mean of the
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adjusted LCR of the county group; P, the exposure units; and K¼ n/a where n is the
sample variance of the adjusted LCR for the county of interest; and a is the sample
variance of the adjusted LCR for the county group.

Once the unloaded target rate has been established, revenue policies are rated using
correlated draws from the marginal distributions of yields and prices. In the case
of yields, the rates are calibrated to a truncated normal density. The distribution of
prices is determined using the relevant implied options volatilities and futures prices.
This approach, based on the standard Black-Scholes option pricing model, imposes
a log-normal distribution on prices. Revenue rates are the calculated by means of
simulation of the revenue distribution. Correlated price and yield draws are taken
using the Iman and Conover (1982) procedure. The Iman-Conover procedure essentially
reorders simulated yields and prices in order to obtain a predetermined rank
correlation. The correlation is Spearman’s r rank correlation coefficient of the average
state yields and prices. These correlated random draws of yield and price deviates
are then used to establish then premium rate for 65 percent coverage.

The steps applied in estimating revenue insurance rates involve a number of
obvious assumptions. These have been evaluated in some detail by Coble et al. (2010).
In most cases, a substantial degree of uncertainty, both in terms of the specifications
imposed and the parameters used to represent these specifications, is ignored. For
example, calibration of yields and prices to assumed parametric distributions does not
explicitly recognize the estimation error associated with shape and location parameters
as well as the uncertainty associated with any specific parametric distribution.
Likewise, detrended data are typically treated as though they were observed directly
rather than being subject to an estimation process. To the extent that uncertainty and
sampling error is relevant, considerable uncertainty may be associated with revenue
premium rates. Of course, rating revenue insurance is a problem that demands a practical
solution and such assumptions are certainly necessary to some degree in order to
facilitate an operational insurance program. However, this does not mean that the
implications of such assumptions are not relevant to the overall operation of the program.

Although a number of assumptions are embedded in the COMBO rating process, we
focus here on a single aspect of rating – the measure of dependence between yields
and prices. As we have noted, this critical parameter is estimated using yield and
price data from 1990 to 2005. The yield data are detrended using a linear trend and
deviations from the trend are put into percentage terms (as a percentage of the trend
yield). The data are then used to estimate production – weighted state – level
correlation coefficients, which are then adjusted downward in an ad hoc fashion to
reflect the greater variability of individual yields. Revenue “loads” are calculated by
simulating yield and revenue coverage rates, with the load being given by the
differences. This load is then added to the underlying yield protection rate to determine
the revenue rate actually used in the program. Throughout these various steps,
a large degree of specification uncertainty and sampling variability is likely to be
relevant to the precision of the final rates.

The correlation between prices and yields is itself an embodiment of the correlation
of yields across space. The greater is the correlation of yields across space, the stronger
will be the relationship between prices and disaggregated (state, county, or farm)
yields, since prices are determined on a well-integrated national market. Thus,
systemic risk, spatial correlation, and the correlation of prices and yields are all aspects
of the same fundamental phenomenon. We examine various aspects of this dependence
relationship by evaluating the robustness of the rates to alternative specifications.

480

AFR
74,4

D
ow

nl
oa

de
d 

by
 N

or
th

 C
ar

ol
in

a 
St

at
e 

U
ni

ve
rs

ity
 A

t 1
1:

33
 0

2 
Fe

br
ua

ry
 2

01
5 

(P
T

)



Methodology
As noted, correlation/dependence is represented using a reordering of data to achieve
a desired degree of rank correlation. This Iman-Conover procedure uses a score
function to determine the rankings. If, as is common and as is the case with the
COMBO rating, one applies a normal score function, the Iman-Conover procedure is
fully analogous to modeling correlation through the application of a Gaussian copula.
This choice of a specification has implications for the joint relationships being
modeled. In particular, application of a Gaussian copula (or, likewise, application
of the Iman-Conover methodology) necessarily imposes a condition of zero tail
dependence. This could have important implications for the accuracy of rates since one
would expect stronger correlation to occur during events such as droughts or major
floods that would lower yields on a wide scale. By exploring other copula models,
our analysis will have the flexibility of the Iman-Conover procedure, but also allow
correlation to change within the distribution.

To get a broader understanding of the relationship among neighboring regions,
measures such as Moran’s I are appropriate (Cressie, 1993). Moran’s I is very similar
to Pearson’s correlation coefficient and can be used to evaluate correlation for
cross-sectional spatial data. This measure is defined as:

Moran’s I ¼ N

SiSjwij

SiSjwijðXi � �XÞðXj � �XÞ
SiðX � �XÞ2

; ð2Þ

where N is the number of regions and wij is an element of the spatial weighting matrix.
The spatial weighting matrix places higher weight on regions close to each other
and less weight on regions that are far apart. For Moran’s I, the value þ 1 indicates
perfect positive spatial autocorrelation; 0 indicates no spatial autocorrelation; and �1
indicates perfect negative spatial autocorrelation.

The effective number of spatial degrees of freedom for time-varying data, denoted
N *

ef, describes the number of regions in a spatio-temporal data set that are spatially
independent. This measure is commonly used in climatology to determine the optimal
placement of weather stations. There are various definition for the effective number of
spatial degrees of freedom, we use:

N �ef ¼
ðtr GÞ2

ðtr G2Þ
¼

PN
i¼1 Gii

� �2

PN
i;j¼1 G2

ij

ð3Þ

where N is the number of regions, G is the N � N covariance matrix of the N regions,
and tr is the trace of the matrix (Bretherton et al., 1999).

The literature exploring copula modeling has increased dramatically in the last 15
years. The backbone of copula modeling stems from Sklar (1959), which states that
any joint distribution can be represented as a function (a copula) of its marginal
distributions. The representation is unique if the marginal distributions are
continuous. From Sklar’s Theorem, one is able build a variety of joint distributions.
The joint density of the d-dimensional distribution can be written as:

f ðuÞ ¼ cðF1ðu1Þ; . . . ;FdðudÞÞ
Yd

i¼1
fiðuiÞ ð4Þ
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The density of a copula is written as:

cðuÞ ¼ f ðF�1
1 ðu1Þ; . . . ;F�1

d ðudÞÞQd
i¼1 fiðF�1

i ðuiÞÞ
ð5Þ

Nelson (2006) provides an excellent overview on copula modeling. The most popular
copulas include the elliptical and Archimedean families. Elliptical copulas consist of
symmetric, elliptical distributions, such as the Gaussian and Student’s t distributions.
The Gaussian copula of dimension d has the form:

CrðuÞ ¼ FrðF�1ðu1Þ; . . . ;F�1ðudÞÞ; ð6Þ
where F�1 is the inverse cumulative distribution of the standard normal distribution
and uiA[0, 1] for i¼ 1,y, d. The Gaussian copula has zero tail dependence; however, the
Student’s t copula exhibits symmetric tail dependence. Being from the elliptical family,
the Student’s t copula of dimension d has a similar form to the Gaussian copula, which is:

Cn;rðuÞ ¼ tn;rðt�1
n ðu1Þ; . . . ; t�1

n ðudÞÞ; ð7Þ
where n is the degrees of freedom.

Archimedean copulas are characterized by a single parameter and are of the form:

CðuÞ ¼ cðc�1ðu1Þ þ . . .þ c�1ðudÞÞ; ð8Þ
where u( � ) is the copula data and c( � ) is the generator function. Table I shows the
functional form and characteristics of several popular Archimedean copulas.

There are several measures of comovement often used when evaluating copula
models. Asides from the traditional measure of linear correlation (Pearson’s correlation
coefficient), Kendall’s t and Spearman’s r are rank correlation coefficient, are
commonly considered. As discussed by Genest et al. (2011), the inverse of Kendall’s t is
sometimes used to determine the parameter estimates (or starting values) in
Archimedean copulas. Tail dependence measures the comovement of two variables at
the extreme regions of the distribution (Fischer and Klein, 2007). The measure of tail
dependence is defined by the copula function itself and not by the marginal
distributions within the copula. There are separate definition for the lower and upper
tail dependence coefficients and the specific copula function determines the nature of
such tail dependencies with parameter estimates determining the exact nature of the
tail dependency relationships. If we define a copula as FX,Y(x, y)¼C(FX(x), FY(y)), then
the lower tail dependence coefficient is defined as:

lL � lim
u!0þ

PðYpF�1
y ðuÞjXpF�1

X ðuÞÞ ¼ lim
u!0þ

Cðu; uÞ
u

; ð9Þ

Name Generator Inverse generator Parameter Tail dependence

Clayton (1þ yx)�1/y 1
y(x
�y�1) y41 Lower

Gumbel e�x1/y
(�log(x))y yX1 Upper

Frank 1
ylog(1�(1�e�y)e�x) � log e�yx�1

e�y�1

� �
y41 None

Table I.
Popular Archimedean
Copulas
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while the upper tail dependence coefficient is defined as:

lU � lim
u!1�

PðY4F�1
y ðuÞjX4F�1

X ðuÞÞ ¼ lim
u!1�

1� 2uþ Cðu; uÞ
1� u

: ð10Þ

Bootstrapping is a parametric or nonparametric technique for calculating standard
errors and confidence intervals. It is typically applied in a nonparametric context by
drawing random samples with replacement from the observed sample and estimating
the parameters of interest for each of the replicates to approximate the distribution of
the parameter estimate (Efron, 1993). The approximated distribution of the parameter
estimate is not guaranteed to be centered at the parameter estimate calculated from
the observed sample. Therefore, we correct this bias by adjusting the center of the
confidence interval with:

zadj ¼ F�1

PM
i¼1 Ið~biob̂Þ

M

 !
ð11Þ

where F�1 is the inverse of the normal cumulative density function, M is the number of
random samples drawn from the observed sample, ~bi is the parameter estimate from
random sample i, and b̂ is the parameter estimate from the observed sample. The table
statistic for a (1�a) percent bias-corrected confidence interval is adjusted from
(7F�1(a/2)) to (z_adj7F�1(a/2)).

If the approximated distribution of the parameter estimate is skewed, then a basic
percentile confidence interval is inappropriate. This issue can be addressed through
acceleration, which adjusts the bounds of the confidence interval to account for the
skewness. The adjustment begins by calculating the value:

â ¼
Pn

i¼1 ð�bi � bjÞ3

6
Pn

i¼1 ð�bi � b2
j Þ

3=2
; ð12Þ

where n is the number of observations, �bi is the parameter estimate calculated without
the ith observation, and bj ¼ 1

n

Pn
i¼1

�bi . Then the (1�a) percent bias-corrected and
accelerate confidence interval, referred to as a (1�a) percent BCa confidence interval,
has percentiles that are adjusted from a/2 and (1�a/2) to:

~a ¼ F zadj þ
zadj � F�1 a

2

� �
1� z}|{

a�ðzadj � F�1 a
2

� �
 !

: ð13Þ

Empirical application
Annual county yields of soybeans and corn were obtained from the National
Agricultural Statistical Services. After 2007 several counties were aggregated in to
“Other Counties” in the available data. Therefore, the calculations for Moran’s I and the
effective number of spatial degrees of freedom, which encompass all the counties of
Iowa, Illinois, and Indiana, have a sample period of 1960-2007. However, the analysis
for the McLean County group has yields from 1960 to 2012. Since many technological
and policy changes have occurred during the sample period, a nonparametric (LOESS)
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regression model is used to detrend the yields. The detrended yields are used in both
copula estimation and in the Iman-Conover procedure. These detrended yields have
the form:

ŷy;2012 ¼ y2012 1þ et

ŷt

� �
; ð14Þ

where et is the residual from the LOESS regression for year t¼ 1960,y, 2012 and ŷt is
the predicted yield for year t.

Prices for futures contracts are obtained from the Chicago Board of Trade. We
examine the log differences in price for the future contracts from February to
November for soybeans and from February to December for corn. These are referred
to as log price deviates.

To derive an overview of the spatial correlation in the Corn Belt, we calculate
Moran’s I and the Nef for the county yields of corn and soybeans of Iowa, Illinois, and
Indiana. Table II shows Moran’s I for 2007 as well as Nef for Iowa, Illinois, and Indiana.
The results for Moran’s I are statistically significant at the 1 percent level for all three
states and both crops. Moran’s I for every year from 1960 to 2007 is statistically
significant at the 1 percent level. Interestingly, corn consistently displays stronger
spatial autocorrelation than soybeans. Although Iowa, Illinois, and Indiana have 99,
102, and 92 counties, respectively, each of the states has approximately eight spatially
independent areas according to the measure Nef. Moran’s I and the effective number
of spatial degrees of freedom demonstrate the strong spatial autocorrelation present
among the yield observations for these counties. Therefore, if the spatial
autocorrelation is not accounted for in the modeling, standard errors will be
inaccurate and, depending on the analytical approach, parameter estimates may also
be subject to bias.

The analysis with Moran’s I and Nef covers very large regions. The examination
of the McLean County group focusses on a much smaller region of nine counties. As
noted, one of the main advantages of copula modeling is the ability to measure the
coefficient of tail dependence. Figures 1 and 2 show the McLean County’s detrended
yields for corn and soybeans, respectively, plotted against the detrended yields of
neighboring counties. These plots show long tails for low yields. We expect if one
county experiences low yields so will the neighboring counties. This leads us to believe
there may be lower tail dependence. Therefore, we estimate the Gaussian, Student’s t,
and Clayton copulas using the detrended yields from the McLean County group for the
sample period 1960-2012. The graphical analysis leads one to conclude that a Gumbel
copula, which has only upper tail dependence, is not appropriate. For the marginal
distributions of each county, rank-based empirical distributions are estimated.

Corn Soybeans
State n Moran’s I Nef Moran’s I Nef

Iowa 99 0.7309 7.1397 0.4100 7.5009
Illinois 102 0.8288 7.7515 0.8811 7.8375
Indiana 92 0.3541 7.8688 0.5995 7.6149

Notes: n is the number of counties for each states. Moran’ I is a measure of spatial correlation.
Nef represents the effective number of spatial degrees of freedom

Table II.
Moran’s I and Nef for Iowa,
Illinois, and Indiana
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Table III shows the copula parameter estimates for the McLean County group.
In accordance with the results from Moran’s I, corn yields have stronger dependence
among the counties than soybeans. Note that the parameter estimates for the Gaussian
and Student’s t copulas are bounded to lie between [�1, 1]. The estimate for the Clayton
copula is bounded from below by negative one, and higher values indicate stronger
dependence. All three copulas models for both corn and soybeans have strong
statistically significant parameter estimates. According to the Akaike Information
Criterion (AIC), the Student’s t copula provides the best fit for both corn and soybean
yields. Therefore, out of the three types of copulas, the copula allowing for both
upper and lower tail dependence provides the best fit. Table IV presents measures of
dependence commonly associated with copulas. These measures of dependence show
the relationship between two variables given the parameter estimates of the copulas in
Table III. Kendall’s t and Spearman’s r both show high correlation. Under the column
“Tail Dependence”, the value for the Student’s t copula applies to both the lower and
upper tail, while the value for the Clayton copula only applies to the lower tail[4]. The
tail dependence coefficient for the Student’s t copula shows that as one of the counties’
yield approaches the lower (higher) extreme for corn, the probability of another
counties’ yield approaching the lower (higher) extreme is equal to 0.4676. For soybeans,
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Figure 2.
The detrended yields of
soybeans for McLean
County plotted against
the detrended yields of
soybeans for its
neighboring counties

Corn Soybeans
Copula Estimate SE AIC Estimate SE AIC

Gauss 0.8829 0.0224 �745.6007 0.7586 0.0500 �448.2945
T 0.8921 0.0388 �781.4819 0.7814 0.0929 �484.8116
Clayton 3.1515 0.3979 �730.6254 1.8711 0.4401 �461.896

Table III.
Copula estimates for the
yields of the McLean
county group during the
sample period 1960-2012

Copula Kendall’s t Spearman’s r Tail dependence

Corn
Gauss 0.6888 0.8732 0
T 0.70154 0.8830 0.4676
Clayton 0.6118 0.7975 0.8026
Soybean
Gauss 0.5482 0.7430 0
T 0.5710 0.7666 0.2939
Clayton 0.4834 0.6441 0.6904

Table IV.
Measures of dependence
for the copula estimates of
the yields for the McLean
county group during the
sample period 1960-2012
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this probability is 0.2939. In both cases, a high degree of tail dependence relative to
a Gaussian model is implied. This suggests that rates pertaining to losses deep in the
tails may be significantly understated.

For the bootstrapped confidence intervals, there is no observable bias. However,
there is skewness in the estimates, so the use of an accelerated confidence interval is
appropriate. Results for the bootstrapped estimates are shown in Tables V and VI for
corn and soybeans, respectively. The table also presents the lower and upper bounds
for the 95 percent BCa confidence intervals of the parameter estimates. The standard
errors for the bootstrapped estimates are much higher than are the standard errors
calculated from the observed sample.

Figure 3 illustrates the log price deviates plotted against the detrended yields
for McLean County from 1960 to 2011. The correlation between the log price deviates
and detrended yields for corn is�0.3503, while the correlation for soybeans is�0.3342.
RMA uses the correlation of the average state yield and price deviates for the
correlation in the Iman-Conover method.

The correlation of the average yields for Illinois and log price deviates is �0.3466
and �0.3270 for corn and soybeans, respectively. Therefore, the difference between the
correlation using McLean County or Illinois is negligible.

Following a rating methodology similar to that used by RMA, we estimate the corn
and soybean premium rates in McLean County for revenue insurance with 65 percent
coverage and the Harvest Price Replacement Option. Tables VII and VIII contain the
results from the Iman-Conover procedure performed on log price deviates and
detrended yields of McLean County to determine the premium rates and related
quantities for corn and soybeans, respectively. Skewness is present in both the
bootstrapped estimates for corn and soybeans. Therefore, again the bias-corrected and

Bound Gauss T Clayton

Estimate Lower 0.6484 0.6504 1.1614
Upper 0.8464 0.8724 2.7594

Tail dependence Lower 0 0.1762 0.5505
Upper 0 0.6749 0.5797

Kendall’s t Lower 0.4491 0.4508 0.3674
Upper 0.6425 0.6749 0.5798

Spearman’s r Lower 0.8346 0.6326 0.5227
Upper 0.8621 0.8620 0.7779

Table VI.
95% BCa confidence

intervals for the parameter
estimates and measures of

dependence for the
estimated copulas of the

soybeans yields in
McLean county group

Bound Gaussian T Clayton

Estimate Lower 0.8447 0.8530 2.4815
Upper 0.9215 0.9342 4.4145

Tail dependence Lower 0 0.394 0.7563
Upper 0 0.5726 0.8547

Kendall’s t Lower 0.6405 0.6404 0.5537
Upper 0.7461 0.7678 0.6882

Spearman’s r Lower 0.8328 0.8414 0.7404
Upper 0.9145 0.9282 0.8644

Table V.
95% BCa confidence

intervals for the parameter
estimates and measures of

dependence for the
estimated copulas of the

corn yields in McLean
county group
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accelerated 95 percent confidence intervals are used. The probability of a loss for corn
in McLean County is 2.07 percent annually with the 95 percent BCa confidence interval
between 0.13 and 5.11 percent, whereas the probability of a loss for soybeans is 0.14
percent annually with the 95 percent BCa confidence interval between 0.009 and 0.05
percent. The corn premium rates have a bias of 0.0002, while the soybean premiums
rates have a bias of 0.00003. Overall we see a larger range for the confidence interval of
corn with a lower bound premium rate of 0.00009 and upper bound of 0.000589,
while the soybean premium rates have a 95 percent confidence interval from 9 � 10�7

to 0.00032. Note these results do not include any loadings or other adjustments
to the rates.

The results demonstrate a simple result-revenue insurance premium rates are
sensitive to assumptions regarding the correlation structure between prices and yields.
Small sample sizes and specific parametric assumptions about the form of the joint

Log Returns Log Returns

B
u/

A
cr

e

B
u/

A
cr

e

65

60

55

50

45

40

–0.2–0.4 –0.4 –0.2 0.0 0.2 0.40.0 0.2 0.4 0.6

180

200

160

140

120

100

(a) (b)Corn Soybeans

Figure 3.
The log price deviates
plotted against the
detrended yields for
McLean County

Lower bound Sample estimate Upper bound SE Bias

Probability 0.0013 0.0207 0.0511 0.0143 0.0006197
Expected loss 0.0250 0.6992 2.3388 0.7136 0.1114
Cond. Exp. loss 16.33 33.78 46.80 7.697 �0.5552
Premium rate 0.0000921 0.0014905 0.0058924 0.0015214 0.0002375

Notes: 95% BCa confidence intervals, observed sample estimates, standard errors, and bias for the
probability of a loss, expected loss, expected loss conditioned on a loss occurring, and premium rate

Table VII.
Estimates related to
corn COMBO rating
in McLean county

Lower bound Sample estimate Upper bound SE Bias

Probability 0.0000921 0.0014905 0.0058924 0.0015214 0.0002375
Expected loss 0.000118 0.0245 0.1449 0.0389 0.0138
Cond. Exp. loss 1.1789 14.4212 29.7387 6.5948 3.6951
Premium rate 0.0000009 0.0000528 0.0003287 0.0000839 0.0000298

Notes: 95% BCa confidence intervals, observed sample estimates, standard errors, and bias for the
probability of a loss, expected loss, expected loss conditioned on a loss occurring, and premium rate

Table VIII.
Estimates related to
soybean COMBO rating
in McLean county
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distribution have important implications for the accuracy of results. In particular,
estimates of the correlation structure obtained using such small samples tend to be
relatively imprecise, leading to fairly wide confidence bands for revenue rates.
The nature of the relationships, in particular the degree of tail dependence, also has
important implications for the accuracy of rates. In light of the billions of dollars
currently insured under revenue insurance plans, even small differences in rate
translate into significant cost implications for the Treasury and for farmers, who pay
a portion of the rate.

Summary and concluding remarks
Current rating methods used in the federal crop insurance program are necessarily
dependent upon a number of assumptions and are subject to numerous limitations.
While highlighting the various aspects of rating that may be subject to these
shortcomings, we focus on the critical role of dependence in the rating of revenue
insurance contracts. Participation in the federal program is heavily skewed toward
revenue coverage and the recent Farm Bill will provide numerous revenue – based
enhancements to the current system of safety nets. We demonstrate that revenue rates
may be subject to considerable variation that results from specification choices
and estimation error. The small samples that one is forced to work with are also an
important limitation that has implications for the accuracy of revenue rates.

Yields among neighboring counties will naturally have spatial autocorrelation,
which can lead to inefficient estimates. This compounds with the issue of small sample
size because spatial autocorrelation lessens the spatial degrees of freedom. The small
sample size is an unavoidable issue when modeling yields. However, assuming
away these issues may be hazardous because of the uncertainty in estimates. The
current methodology only accounts for spatial weighting in the target rate, which is
itself a point estimate. The issue of spatial dependence mainly concerns the second
moments although in certain cases it can also cause biased estimates.

Our analysis demonstrates the fact that small sample sizes and spatial
autocorrelation greatly affect standard errors. From Moran’s I and the effective
number of spatial degrees of freedom, we observe significant spatial autocorrelation
among yields. This leads into the analysis using copula models, which shows us that
not only is there correlation among yields for a county group but there is also
nonzero tail dependence that is not recognized in current rating methods. Although
there is insufficient evidence for tail dependence between the detrended yields and
log price deviates, we do see large confidence intervals for the probabilities of a loss,
expected losses, and premiums rates. In further analysis, we would like to incorporate
the dependence seen among the county yields into the crop ratings. This could be
accomplished with a nested model, which contains a copula for the county group.
Then the Iman-Conover procedure would be used to determine the correlated
draws of not only one county and the price deviates, but for the group of counties
This method would better incorporate the uncertainty caused by the spatial
dependencies.

Our analysis is not meant to imply that deficiencies exist in current rating methods.
Rating insurance contracts is a problem that demands practical solutions and
assumptions and limited samples will always be an issue. Our intent is rather to
highlight some of the less obvious shortcomings that may be associated with existing
rating practices. We have only addressed one aspect of the specification and estimation
uncertainty associated with rating methods. A wide variety of rating issues presents
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a number of interesting modeling and research challenges that merit the attention
of applied crop insurance researchers.

Notes

1. See the comprehensive review of the COMBO rating methodology presented by Coble et al.
(2010) for a detailed description of current rating practices.

2. The eight counties surrounding McLean County include Livingston, Ford, Champaign, Piatt,
DeWitt, Logan, Tazewell, and Woodford.

3. Recent changes to the catastrophic loading procedures have reduced this to 10 percent.

4. Archimedean copulas represent dependence using a single parameter and thus must
necessarily have zero tail dependence in one of the tails.
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