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Abstract Mercury contamination in wildlife has rarely

been studied in the Southern Appalachians despite high

deposition rates in the region. From 2006 to 2008 we sam-

pled feathers from 458 birds representing 32 species in the

Southern Appalachians for total mercury and stable isotope

d15N. Mercury concentrations (mean ± SE) averaged

0.46 ± 0.02 lg g-1 (range 0.01–3.74 lg g-1). Twelve of

32 species had individuals (7 % of all birds sampled) with

mercury concentrations higher than 1 lg g-1. Mercury

concentrations were 17 % higher in juveniles compared to

adults (n = 454). In adults, invertivores has higher mercury

levels compared to omnivores. Mercury was highest at low-

elevation sites near water, however mercury was detected

in all birds, including those in the high elevations

(1,000–2,000 m). Relative trophic position, calculated from

d15N, ranged from 2.13 to 4.87 across all birds. We fitted

linear mixed-effects models to the data separately for

juveniles and year-round resident adults. In adults, mercury

concentrations were 2.4 times higher in invertivores com-

pared to omnivores. Trophic position was the main effect

explaining mercury levels in juveniles, with an estimated

0.18 ± 0.08 lg g-1 increase in feather mercury for each

one unit rise in trophic position. Our research demonstrates

that mercury is biomagnifying in birds within this terrestrial

mountainous system, and further research is warranted for

animals foraging at higher trophic levels, particularly those

associated with aquatic environments downslope from

montane areas receiving high mercury deposition.
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Introduction

Mercury is a widespread, persistent contaminant of human

and wildlife populations around the world (Eisler 2006).

Inorganic mercury released from natural and industrial

sources disperses globally and enters aquatic systems via

atmospheric deposition, where its methylated form

becomes biologically active and highly toxic (Scheuham-

mer et al. 2009). Mercury biomagnifies with increasing

trophic position through the aquatic food web (Chen et al.

2005), including into fish-eating birds (Evers et al. 2005;

Cristol et al. 2008; Eagles-Smith and Ackerman 2009),

amphibians (Bergeron et al. 2010), and mammals (Yates

et al. 2005; Dietz et al. 2006) associated with water.

Despite recent advances in understanding the mechanisms

of mercury methylation, transfer and accumulation in
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freshwater aquatic systems (Evers and Clair 2005; Driscoll

et al. 2007; Jardine et al. 2012), little is known about the

uptake and transfer of mercury by organisms in terrestrial

systems (Seewagen 2010).

Upland forest soils are natural sinks for atmospherically

deposited mercury because the majority of mercury binds

to organic and mineral soil particles (Hall and St. Louis

2004). Mercury is concentrated primarily in the upper soil

horizons (Kim et al. 1997), and up to 60 % of mercury that

reaches lakes originates from the terrestrial watershed

(Krabbenhoft and Babiarz 1992; Griegal 2002). Mercury

loading is significantly higher in coniferous compared to

deciduous habitats, and two to five times higher in moun-

tainous areas in the northeastern United States compared to

nearby low-elevation areas (Lawson 1999; Miller et al.

2005). Consumption of contaminated food is the primary

risk of mercury exposure to terrestrial vertebrates (Scheu-

hammer et al. 2012).

Birds are at a particularly high risk of mercury toxicity

because many species occupy high trophic levels, are long-

lived, and are vulnerable to neurological and reproductive

impacts from elevated mercury levels (Burger 1993; Evers

et al. 2005). The effects of mercury contamination in birds

have been studied primarily in large piscivorous species

such as common loons (Gavia immer, Evers et al. 2008),

wading birds (Frederick et al. 2004, Frederick et al. 2011),

bald eagles (Haliaeetus leucocephalus) and belted king-

fishers (Megaceryle alcyon, Evers et al. 2005). Recently,

there has been increased concern for mercury bioaccumu-

lation in passerines (Morrissey et al. 2005; Shriver et al.

2006; Brasso and Cristol 2008; Cristol et al. 2008; Condon

and Cristol 2009; Hawley et al. 2009; Wada et al. 2009;

Jackson et al. 2011; Seewagen 2013; Warner et al. 2012),

although studies of songbirds in strictly terrestrial systems

remain limited (Rimmer et al. 2005, 2010; Seewagen 2010;

Townsend et al. 2013).

Predicting a species’ susceptibility to mercury toxicity

based on its foraging guild (e.g., frugivore, invertivore) is a

simple first step to identifying species at greatest risk of

mercury contamination in the terrestrial environment

(Rimmer et al. 2005; Osborne et al. 2011). Further, ana-

lyzing stable isotopes can precisely calculate a species’

relative dietary trophic position, as higher stable 15N iso-

tope [3–4 % (per mil)] is found in predators compared to

their prey (Vander Zanden and Rasmussen 1999; Hobson

and Bairlein 2003; Pearson et al. 2003; Vitz and Rodewald

2012). Trophic position based on isotopic signatures has

been successfully used to predict mercury concentrations in

seabirds (Atwell et al. 1998) loons (Burgess and Hobson

2006), and dippers (Morrissey et al. 2004, 2010).

Birds primarily reduce body burdens of mercury during

feather molt as mercury has a high affinity for keratin,

although adult females can also depurate mercury during

egg production (Crewther et al. 1965). Feather mercury

levels of juveniles reflect short-term, site-specific blood

mercury concentrations (Bearhop et al. 2000; Condon and

Cristol 2009). However, feather mercury levels of adults

can reflect a combination of site-specific dietary uptake of

mercury as well as chronic body burdens of mercury that

have been remobilized from contaminated muscle tissue

(Evers et al. 2005).

Mercury is a serious concern in the Southern Appala-

chians due to high rates of deposition on the landscape

(National Atmospheric Deposition Program 2007), yet

there has been no targeted mercury research on birds in this

region. The primary objectives of this research were (1) to

determine if mercury is bioaccumulating in high-elevation

terrestrial birds in the Southern Appalachians; (2) to

determine which species and individuals (e.g., juvenile vs.

adult) are most at risk for elevated levels; (3) to test for a

relationship between mercury bioaccumulation and trophic

position using stable isotopes; and (4) to determine if

environmental factors (e.g., vegetation, moisture, distance

to water) are driving observed patterns of mercury loading.

We predicted that feather mercury would be higher in (1)

adults compared to juveniles due to chronic exposure, (2)

birds that feed at higher trophic levels (i.e., those with

higher stable nitrogen isotope ratios (d15N), and (3) in-

vertivores compared to omnivores. Also, in the high ele-

vations, we predicted higher mercury levels in (4) birds

along coniferous ridge tops associated with increased

atmospheric deposition compared to deciduous or mixed-

deciduous, protected slopes (Weathers et al. 2000, 2006).

Methods

Study area

In 2002, year-round mercury deposition network collectors

were installed in two locations in Great Smoky Mountains

National Park (Fig. 1). Wet mercury deposition was esti-

mated by the National Atmospheric Deposition Program as

15.5, 9.9 and 11.4 lg m-2 in 2006, 2007 and 2008,

respectively. Elevated mercury levels in the park are

attributed to both nearby coal-fired plants as well as more

distant sources (Keeler et al. 2006), although Valente et al.

(2007) did not find atmospheric mercury levels significantly

higher than global trends in a nearby mid-elevation (813 m)

site just west of Great Smoky Mountains National Park.

We sampled birds from multiple elevations and habitats,

but focused primarily on birds breeding in the high-eleva-

tion ([1,500 m) Southern Appalachian red spruce (Picea

rubens)-Fraser fir (Abies fraseri) forests within Great

Smoky Mountains National Park (35�360N, 83�250W,

520,000 acres) and three additional high-elevation sites
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along the southern portion of the Blue Ridge Parkway: the

Richland Balsam summit (35�220N, 82�990W), Waterrock

Knob (35�280N 82�080W) and the Black Rock Trailhead

near Mt. Mitchell State Park (35�430N, 82�160W, Fig. 1).

The red spruce–Fraser fir forest ecosystem is in jeopardy due

to the synergistic effects of heavy fir loss by invasive balsam

wooly adelgid beetles (Adelges piceae), foliar damage by

high levels of ozone, and the direct and indirect effects of

high levels of acid precipitation (Shortle and Smith 1988;

Nodvin et al. 1995; McLaughlin and Wimmer 1999). Within

the ecotone, red spruce dominates at lower elevations

(\1,400 m), Fraser fir dominates at the highest elevations

([1,600 m) and the two codominate at mid-elevations

(1,400–1,600 m). Approximately 74 % of the endangered

red spruce-Fraser fir habitat of the eastern United States is

located within Great Smoky Mountains National Park

(National Park Service Air Resources Division 2002).

We collected feathers from 5 low-elevation (420–616 m)

and 26 high-elevation (1,449–1,986 m) sites (Table 1).

Study sites were established at least 200 m apart to reduce

spatial autocorrelation, and within 100 m of roads or trails

for accessibility. Birds were opportunistically captured using

passive mist netting. The number of nets and effort at each

site varied depending on the primary purpose of the site. For

example, sampling at MAPS Stations (U.S. North American

Bird Conservation Initiative Monitoring Subcommittee

2007) involved up to 20 nets and 8 personnel over 6 h, while

at other sites as few as 5 nets were tended by a single person

for 4 h. Due to these differences in capture methodology,

capture data does not reliably indicate the impact of Hg on

species composition or abundance across sites.

Feather mercury analysis

We banded each captured bird with an individually num-

bered USGS aluminum band, and recorded its species, age,

and sex (Pyle 1997). We collected both S1 secondary flight

feathers (n = 458 birds) from a total of 36 species across

Fig. 1 Mist-netting sites (n = 32) for birds whose feathers were collected for mercury and d15N analysis in the Southern Appalachians within

Great Smoky Mountains National Park and the Blue Ridge Parkway
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31 sites in Great Smoky Mountains National Park and

along the Blue Ridge Parkway from 2006 to 2008. Flight

feathers for juvenile birds are grown during the nestling

and fledging periods (Pyle 1997) and thus represent the

mercury levels near the nest. Mercury levels in songbird

feathers vary depending on the order in which they are

grown (Condon and Cristol 2009). Although molting

sequence can vary across species, we sampled S1 second-

aries as they are one of the first flight feathers grown/

molted in most passerines; secondaries are typically grown

on the breeding grounds prior to migrating for most species

(Pyle 1997). However, to be conservative, we sampled

feathers only from juveniles or year-round resident adults

(Alsop 1991), not adults of migratory species. It should be

noted that year-round residents may become altitudinal

migrants during the coldest months. Feather samples were

stored in clean, dry paper envelopes prior to mercury

analysis at the North Carolina State University Department

of Environmental and Molecular Toxicology using cold

vapor atomic fluorescence spectroscopy (USEPA method

1631 revision E with a modified digestion procedure).

Feathers were not freeze-dried or altered prior to mercury

analysis (Lasorsa et al. 2012).

An S1 feather from both (2006) or one (2007, 2008) wing

from each bird were fully homogenized and digested in

1.5 mL of 18 M H2SO4 (Leeman Labs Inc., West Chester,

Pennsylvania, USA) and 4.5 mL of ultrapure 16 M HNO3

(OmniTrace Ultra, Merck, Darmstadt, Germany) in 50 mL

Teflon digestion vessels using a microwave heating system

(MarsXress, CEM Inc, Mathews, North Carolina, USA).

Samples were then subjected to BrCl oxidation (overnight)

and SnCl2 reduction. Samples were diluted with 0.2 % HCl

for THg analysis by flow-injection cold-vapor atomic fluo-

rescence spectrophotometry (CVAFS) with a Leeman

Laboratories Hydro AF Gold plus analyzer (Leeman Labs

Inc, USA).

The accuracy of THg determination was evaluated by

analysis of certified standard reference material from the

National Institute of Standards and Technology (NIST

Mussel 2976), method blanks (acid), spiked and replicate

samples and calibration standards. Our measured concen-

tration (mean ± SD) of THg in NIST Mussel 2976 was

61.0 ± 4.0 ng g-1 dry weight (n = 20, certified value:

61 ± 3.6 ng g-1, total recovery 100.1 ± 6.6 %). The

average THg in method blanks was 0.14 ng L-1. Mercury

concentrations in all samples exceeded our method detec-

tion limit of 1.3 ng g-1 dry weight, calculated as three

times the standard deviation of the method blank and

divided by the average sample mass.

Stable isotope analysis

We analyzed nitrogen-15 stable isotopes (d15N) in feather

and caterpillar samples to evaluate each bird’s relative

trophic position in the food web, as the nitrogen isotopic

signature of prey items influences the isotopic signature of

a consumer’s tissues at the time they were grown (Vander

Zanden and Rasmussen 1999; Pearson et al. 2003). In 2007

and 2008, we analyzed d15N (Post et al. 2000) in the

remaining S1 secondary feather that was not tested for THg

from 236 birds for at the Alaska Stable Isotope Facility at

the University of Alaska Fairbank’s Water & Environ-

mental Research Center. As birds tend to grow secondary

feathers on both wings simultaneously and in sequence, we

were able to match an individual bird’s THg levels in a S1

feather from one wing with d15N levels in the feather from

the opposite wing. We cleaned each feather using a dilute

detergent solution, followed by a 2:1 chloroform:methanol

Table 1 Summary of adult year-round resident birds captured in

Great Smoky Mountains National Park and along the southern Blue

Ridge Parkway from 2006 to 2008, including species common name,

scientific name, year-round foraging guild, and mean and range of

feather total mercury values

Species Latin name Foraging guild N Feather THg (lg g-1, fw)

Mean ± SE Range

American crow Corvus brachyrhynchos Omnivore 1 0.09

Belted kingfisher Megaceryle alcyon Piscivore 1 0.99

Black-capped chickadee Poecile atricapillus Insectivore 6 0.44 ± 0.10 0.26–0.99

Brown creeper Certhia americana Insectivore 4 0.68 ± 0.11 0.12–1.11

Carolina wren Thryothorus ludovicianus Insectivore 5 0.97 ± 0.25 0.27–3.74

Golden-crowned kinglet Regulus satrapa Insectivore 27 0.62 ± 0.06 0.09–2.05

Slate-colored juncoa Junco hyemalis carolinensis Omnivore 143 0.40 ± 0.02 0.02–1.74

Song sparrow Melospiza melodia Omnivore 4 0.42 ± 0.06 0.07–1.16

Winter wrena Ttoglodytes hiemalis Insectivore 6 0.84 ± 0.10 0.38–1.55

a Indicates that this species is known to be a partial altitudinal migrant during harsh winter conditions in the Southern Appalachians, although

information is lacking for most species
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solvent, and three deionized water rinses (Paritte and Kelly

2009). After feathers were dried, we removed the terminus

of each feather (0.200–0.500 mg) and placed the samples

in tin capsules. These tin capsules were then closed and

placed in a Carlo Erba NC2500 elemental analyzer auto-

sampler, where they were combusted. Stable isotope ratios

were obtained using continuous-flow isotope ratio mass

spectrometry using a Delta V mass spectrometer interfaced

with a Costech ESC 4010 elemental analyzer. The com-

bustion reactor consisted of a reaction tube packed with

chromium oxide and silver/cobalt oxide, and the reduction

tube was packed with reduced copper wire. Stable isotope

ratios were reported in d notation as parts per thousand (%)

deviation from the international standard atmospheric N2

(d15NAIR). Quality control involved analyzing tin capsule

blanks every 20 samples and laboratory working standards

(Peptone No. P-7750, meat based protein, Sigma Chemical

Company Lot #76f-0300) every 10 samples (n = 44, d
15N = 7.0 ± 0.2 %, N = 7.0 %).

We determined the trophic position (isotopic discrimi-

nation factor, D15N) of each bird by analyzing the isotopic

differences in d values between species, using the follow-

ing formula from Post (2002):

Trophic position ¼ 2þ d15Nsecondaryconsumer

�

�d15Nherbivore

�
=3:4 &

with birds as the secondary consumer and caterpillars as the

herbivores. The 3.4 % represents the average d15N enrich-

ment expected for each trophic level in vertebrates (Post

2002); this value is consistent with feeding trials in yellow-

rumped warblers (Dendroica coronata), a North American

songbird (Pearson et al. 2003). We chose caterpillars as the

primary consumer to provide the baseline N isotope signa-

tures for each because caterpillars are primary consumers

that are commonly fed to nestling birds. The caterpillars

collected from banding sites in 2008 to serve as baseline d15N

values (Vander Zanden and Rasmussen 1996) were inad-

vertently destroyed in fall 2009; therefore we recollected

another set in late summer of 2010. We assumed that relative

differences in isotopes between sites would remain consistent

across years. We collected 8–9 caterpillars at each of the 33

sites by beating tree branches and other vegetation over a

1 9 1 m white sheet for 3 min. Caterpillar samples from a

given site were pooled, frozen, dried at 75 �C for 48 h in a

drying oven, and homogeneously ground into a fine powder

using a mortar and pestle. The resulting material was ana-

lyzed to produce a single herbivore d15N value for each site.

Environmental variables

We classified each site’s vegetation as conifer, deciduous,

or mixed based on its dominant overstory composition

using the Nature Serve vegetation model for Great Smoky

Mountains National Park (White et al. 2003). We included

Topographic Relative Moisture Index (TRMI, Parker 1982)

as a covariate in our models (see below), which describes

the relative moisture at a site, and is a summed scalar index

of four landscape elements derived from a Digital Eleva-

tion Model: relative slope position, gradient, shape, and

aspect. We chose TRMI as a covariate in our models

because this parameter represents moisture patterns and is

highly correlated with predicted lead deposition (Weathers

et al. 2006). Patterns of lead deposition are likely similar to

the deposition patterns of other atmospheric particulate

matter, including mercury, and lead deposition in the soil

indicates long-term deposition patterns, including wet, dry,

and cloud deposition (Weathers et al. 1995, 2000). Land-

forms for the high-elevation sites were classified as steep

slope (including ridge tops, upper slopes, slope crests, and

steep slopes), flat summit, or side slope (including side

slopes and coves) as calculated by USGS Southeast GAP

Analysis Project (www.basic.ncsu.edu/segap).

Statistical analysis

We fitted separate linear mixed-effects models to adult and

juvenile feather mercury data (Zuur et al. 2013). Adults and

juveniles were analyzed separately due to the large differ-

ence in species composition (adults: n = 7; juveniles:

n = 23) between the groups. The independent variables of

interest were foraging guild (adults only; De Graaf et al.

1985), sex, TRMI, trophic position, vegetation, and two

interaction terms: TRMI * trophic position and vegetation *

trophic position. Foraging guild was not included in the

juvenile models as invertebrates are the primary food for all

nestling bird species in this study (Poole 2005). Three ran-

dom variables (species, site, and distance to water) were

considered for all models, however both species and dis-

tance to water held no explanatory power for mercury levels

in adult birds, and were omitted in the final models. We also

fitted a linear mixed-effects model to high-elevation birds

only (adults and juveniles combined) to examine environ-

mental factors associated with increased mercury bioaccu-

mulation. The independent variables included in this model

were elevation, landform, TRMI, vegetation, and distance to

water (i.e., stream), with species and site as random effects.

We used the lmer function in package lme4 (Bates et al.

2013) in R (version 3.0.2, R Core Team 2013) to find the

best-fitting models. Starting from a full (maximum) model,

we selected and compared models using Akaike informa-

tion criteria (AIC; Akaike 1973). We considered models

with DAICc \ 2 to be competing (Burnham and Anderson

2002). Variable importance was assessed by summing

Akaike weights across all models incorporating the same

variable. We report the weighted mean of the coefficients
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and associated standard error for the top models for both

adults and juveniles. The use of p-values for significance

testing is not recommended with these models (Bates et al.

2013). Adult feather Hg concentrations were log-trans-

formed prior to analysis, and the residuals of each final

model were visually inspected for normality (Zuur et al.

2009). For direct comparisons we used linear regression to

examine the influence of species, age, sex, trophic position,

and foraging guild, on feather mercury levels. All predictor

variables were tested for collinearity and were found to be

independent (correlation coefficients \0.20).

Results

We sampled feathers for mercury analysis from 197 adults

of 9 species that were year-round residents (Table 1) and

259 juveniles of 32 species (both resident and migratory;

Table 2) in the Southern Appalachians. Slate-colored juncos

(Junco hyemalis carolinensis) accounted for 56 % of all

captures. Mercury was detected in all individuals sampled.

All feathers combined had an average mercury load

(mean ± SE) of 0.46 ± 0.02 lg g-1 (range 0.01–3.74

lg g-1, n = 458, Table 3). In a direct comparison, feather

mercury concentrations were 17 % higher in juveniles

compared to adults when all species were combined

(t = 2.45, n = 454, p = 0.01). In adults, on average

females showed 20 % higher mercury levels compared to

males, however this difference was not significant given the

high variability among individuals ((t = 1.87, n = 191,

p = 0.06).

Twelve of 32 species had individuals (7 % of all birds

sampled) with mercury levels[1 lg g-1 (Fig. 2): Carolina

wren (31 % of individuals), winter wren (Troglodytes

troglodytes, 33 %), veery (Catharus fuscescens, 50 %),

slate-colored junco (4 %), Canada warbler (Wilsonia

canadensis, 8 %), indigo bunting (Passerina cyanea,

25 %), eastern towhee (Pipilo erythrophthlamus, 33 %),

golden-crowned kinglet (Regulus satrapa, 10 %), song

sparrow (Melospiza melodia, 4 %), black-throated blue

warbler (Dendroica caerulescens, 6 %), and brown creeper

(Certhia americana, 12 %). Two species in separate genera

had feather mercury [2 lg g-1: a Carolina wren (15 %)

and a golden-crowned kinglet (3 %). Only one individual

exceeded 3 lg g-1 mercury: a Carolina wren (3.74 lg g-1,

8 %) captured at the mouth of Eagle Creek where it spills

into Lake Fontana, a reservoir that forms part of the

southern border of Great Smoky Mountains National Park

and the northern border of Nantahala National Forest. Of

these 11 species, 7 are invertivores, while 4 are omnivores

(Table 1).

Mercury levels varied widely among sites, with the

highest levels recorded at Eagle Creek and Great Smoky

Mountains Institute at Tremont, both low-elevation sites

near water (Table 3). In addition to the Carolina wren, only

one other bird, a juvenile hooded warbler (Setophaga ci-

trina) with a mercury concentration of 0.91 lg g-1 was

captured at Eagle Creek, resulting in a mean of

2.33 lg g-1 mercury for the site. Birds at all other sites

averaged less than 1 lg g-1 mercury. The next highest

average mercury levels were located at Great Smoky

Mountains Institute at Tremont, which hosts a MAPS

Station along the Middle Prong, Little River. Here, Caro-

lina wrens and Louisiana waterthrushes had the highest

mercury concentrations and are both invertivores that for-

age along this river.

The raw stable isotope d15N values for birds in our study

ranged from ?1.82 to 11.5 %, with a mean of

?4.50 ± 0.29 %, while the d15N values for caterpillars

ranged from -2.55 to ?2.78 %, with a mean of

?0.18 ± 0.01 %. Relative trophic position of the birds

ranged from 2.13 to 4.87, with a mean of 3.27 ± 0.21.

There was no difference in trophic position between males

and females for adult birds (t = 0.40, n = 124, p = 0.69).

Trophic position was not significantly different between

juveniles and adults (t = 1.853, n = 235, p = 0.07).

In adults, invertivores (0.76 ± 0.03 lg g-1, n = 48)

had significantly higher mercury concentrations compared

to omnivores (0.32 ± 0.02 lg g-1, n = 127; t = 7.80,

p \ 0.0001, R2 = 0.23). We have only one data point for a

piscivore (belted kingfisher) whose feather mercury con-

centration was 0.99 lg g-1, which is intermediate among

the species reported. However, as the only representative of

this foraging guild it was not included in the modeling

analysis.

For adults, we compared a total of 16 models. Trophic

position (100 % of the variable weight), foraging guild

(94 %), vegetation (52 %), the interaction between trophic

position and vegetation (32 %), and sex (10 %) were the

main effects in the top three models explaining adult

mercury levels, with these models carrying 70 % of the

model weights (Table 4). Using weighted averages for the

fixed effects estimates whose 95 % confidence intervals

(CI) did not cross zero, on average omnivores saw a 93 %

(CI -118 to -67 %) decrease in mercury compared to

invertivores and a 104 % (CI 1–207 %) increase in mer-

cury in deciduous forest compared to coniferous forest.

Site, the only random effect retained in the adult model,

explained only 3 % of the total random effect variance of

the model.

For juveniles, we compared a total of 10 models. There

was only one competing model for juveniles, which

included trophic position as a main effect, and site, distance

to water, and species as random effects (Table 4). This

model carried 57 % of the model weights, and estimated a

0.18 ± 0.08 lg g-1 increase in feather mercury for each
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one unit rise in trophic position. Of the random effects,

species, distance to water, and site accounted for 39, 5, and

9 % of the total random effect variance of the model,

respectively.

We compared a total of 16 models of environmental

variables for high elevations birds only (Table 4). Eleva-

tion (100 % of the variable weight), TRMI (23 %), and

distance to water (24 %) were the main effects in the top

three models explaining mercury levels, with these models

carrying 76 % of the model weights. Using weighted

averages none of the environmental fixed effects estimates

had 95 % CI which did not cross zero. Site and species, the

only random effects retained in the environmental model,

explained 4 and 32 % of the total random effect variance of

the model, respectively.

Discussion

This study has provided the first direct evidence of mercury

contamination to wildlife in Great Smoky Mountains

National Park and the southern portion of the Blue Ridge

Parkway. Our results indicate that high-elevation terrestrial

songbirds in the Southern Appalachians are accumulating

Table 2 Summary of juvenile birds captured in Great Smoky Mountains National Park and along the southern Blue Ridge Parkway from 2006

to 2008, including species common name, scientific name, and mean and range of feather total mercury values

Species Latin name N Feather THg (lg g-1, fw)

Mean ± SE Range

American robin Turdus migratorius 1 0.19

Barn swallow Hirundo rustica 1 0.59

Black-and-white warbler Miniotilta varia 2 0.35 ± 0.14 0.21–0.49

Blackburnian warbler Setophaga fusca 1 0.58

Black-throated blue warbler Setophaga caerulescens 16 0.43 ± 0.05 0.24–1.04

Black-throated green warbler Setophaga virens 1 0.12

Blue-gray gnatcatcher Polioptila caerulea 2 0.74 ± 0.02 0.72–0.76

Brown creeper Certhia americana 4 0.68 ± 0.11 0.12–1.11

Canada warbler Cardellina canadensis 12 0.61 ± 0.08 0.22–1.27

Carolina chickadee Poecile carolinensis 4 0.12 ± 0.07 0.05–0.38

Carolina wren Thryothorus ludovicianus 8 0.97 ± 0.25 0.27–3.74

Chestnut-sided warbler Setophaga pensylvanica 10 0.21 ± 0.04 0.06–0.05

Common yellowthroat Geothlypis trichas 1 0.24

Downy woodpecker Picoides pubescens 2 0.21 ± 0.02 0.19–0.22

Eastern meadowlark Sturnella magna 1 0.12

Eastern phoebe Sayornis phoebe 9 0.40 ± 0.07 0.19–0.87

Eastern towhee Pipilo erythrophthalmus 3 0.88 ± 0.27 0.55–1.41

Field sparrow Spizella pusilla 1 0.17

Golden-crowned kinglet Regulus satrapa 10 0.62 ± 0.06 0.09–2.05

Gray catbird Dumetella carolinensis 5 0.31 ± 0.06 0.12–0.45

Hooded warbler Setophaga citrina 3 0.72 ± 0.13 0.46–0.91

House finch Carpodacus mexicanus 1 0.01

Indigo bunting Passerina cyanea 4 0.51 ± 0.31 0.05–1.42

Least flycatcher Empidonax minimus 1 0.60

Louisiana waterthrush Parkesia motacilla 3 0.76 ± 0.11 0.55–0.93

Ovenbird Seiurus aurocapilla 9 0.33 ± 0.03 0.22–0.46

Rose-breasted grosbeak Pheucticus ludovicianus 2 0.25 ± 0.09 0.16–0.34

Slate-colored junco Junco hyemalis carolinensis 114 0.40 ± 0.02 0.02–1.74

Song sparrow Melospiza melodia 21 0.42 ± 0.06 0.07–1.16

Veery Catharus fuscescens 2 0.95 ± 0.51 0.44–1.46

Winter wren Troglodytes hiemalis 6 0.84 ± 0.10 0.39–1.54

Yellow warbler Setophaga petechia 1 0.12

Yellow-breasted chat Icteria virens 1 0.78
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mercury at concentrations similar to those documented in

the northeastern U.S. (Rimmer et al. 2005). We found

detectible mercury levels in every bird (n = 458) that we

sampled (420–2,000 m elevation), with feather mercury

concentrations higher than 1 lg g-1 in 7 % of individuals.

Mercury concentrations varied across species, and much of

this variation is likely related to foraging behavior. In

adults, mercury concentrations were 2.4 times higher in

invertivores compared to omnivores. These results are

consistent with results from Rimmer et al. (2005, 2010) and

Osborne et al. (2012).

We predicted that adults would have higher mercury

levels compared to juveniles due to chronic body burdens,

however mercury concentrations were 17 % higher in

juveniles compared to adults. Mercury tends to increase

with age (5–10 X higher in adults) in piscivorous birds

(Evers et al. 2005), however this pattern has been poorly

studied in terrestrial birds. Our results were consistent with

those of Warner et al. (2012), who found that mercury

concentrations in juvenile seaside (Ammadramous mariti-

mus) and coastal plain swamp sparrow (Melospiza geogiana

nigrescens) were higher than in adults. Warner et al. (2012)

suggested that selective provisioning of high-protein food to

nestlings or higher growth rates of nestlings, and subsequent

higher food intake per body size, might explain these dif-

ferences. Once the high growth period of the nestling phase

is over, birds might able to reduce body burdens through

feather depuration. Additionally, many of the species in our

study switch to a more omnivorous diet during the non-

breeding season (Poole 2005), which would yield lower

mercury levels due to feeding at lower trophic levels.

We did not detect differences in mercury concentrations

between adult males and females, suggesting that females

did not depurate large amounts of mercury during egg-

laying as seen in other species (Robinson et al. 2012). Our

results are consistent with other studies which have found

no effect of sex on blood mercury levels in belted king-

fishers (Evers et al. 2005), tree swallows (Hallinger et al.

2011), and saltmarsh and Nelson’s sharp-tailed sparrows

(Shriver et al. 2006, Lane and Evers 2007).

Foraging guild was the strongest predictor of adult mer-

cury concentrations. The average mercury concentration of

Fig. 2 Box-and-whisker plots

of feather total mercury (THg)

levels across all species (sample

sizes). Box outlines indicate the

1st and 3rd quartiles, the thicker

central line indicates the

median, whiskers represent

95 % confidence intervals, and

outliers are plotted as black

dots. Small sample sizes for

many species preclude these

data from being representative

of the species. Species are

ordered by maximum mercury

concentrations
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adult invertivores was approximately 0.8 lg g-1 higher

than that of adult omnivores, and maximum levels detected

were approximately three times higher in adult invertivores

compared to omnivores. This pattern suggests that mercury

is biomagnifying in terrestrial songbirds as trophic level

increases, which is supported by research in montane forests

in the northeastern U.S. (Rimmer et al. 2010). Direct com-

parisons of our findings with those of Rimmer et al. (2010)

are not possible, as they measured blood mercury, which

tends to be much lower than feather mercury (Evers et al.

2005).

Stable isotope analysis has become increasingly com-

mon in avian ecology (Inger and Bearhop 2008; Morrissey

et al. 2005, 2010). However, to our knowledge, this was the

first study to link trophic position, based on d15N stable

isotope values, to mercury concentrations in terrestrial

birds. Relative trophic position of the birds ranged from

2.13 to 4.87, with a mean of 3.27. For comparison, a tro-

phic position value of 1.00 would indicate an herbivore,

and a value of 5.00 would indicate an individual that for-

ages five steps up the food chain on average. Trophic

position was the strongest predictor of mercury

concentrations in juvenile birds. Trophic position also

accounted for 100 % of the variable weight in the top adult

models. We did not include foraging guild as a factor in the

juvenile models as all nestlings in this study are likely fed a

primarily invertivorous diet. Surprisingly, foraging guild

was not highly correlated with trophic position in adults.

This may reflect the differences between year-round diet

and a largely invertivorous diet during the breeding season

when insects are abundant. The inclusion of foraging guild

in the top models for adults may better represent chronic

mercury burdens compared to the short-term information

on diet found in feathers grown during the breeding season.

Among aquatic birds, Burgess and Hobson (2006) suc-

cessfully used d15N stable isotopes to demonstrate that

adult common loons had higher mercury levels and occu-

pied a higher trophic level than juvenile loons in Canadian

lakes, however there have been mixed results in seabird

studies (Atwell et al. 1998; Bearhop et al. 2000; Bond and

Diamond 2009).

Studying mercury accumulation in birds in the high ele-

vations (1,000–2,000 m) was the primary focus of this

research, however we also report mercury values for birds

(n = 43, 9 %) captured at the lower elevations (420–620 m)

of the Southern Appalachians. Birds captured at low-ele-

vation sites associated with water bodies (i.e., rivers and

lakes) showed the highest mercury levels, as might be

expected (Evers et al. 2005). Of these, a Carolina wren

captured by Lake Fontana had the highest mercury level

recorded in this study. The propensity of Carolina wrens to

consume spiders, which feed at higher trophic levels, likely

explain the higher mercury concentrations observed com-

pared to other species (Jackson et al. 2011). The lakeside

capture location also suggests that mercury could be further

magnifying through the aquatic food web, such as by eating

prey items which spend their larval stage in the aquatic

system before emerging as adults. We recommend further

sampling of mercury in birds and other wildlife that feed at

higher trophic levels in the Lake Fontana area, as lakes can

act as reservoirs for mercury and support sulfate-reducing

bacteria which converts inorganic mercury to the biologi-

cally toxic methylated form (Gilmour et al. 1992, Evers

et al. 2005).

Although there are limited data for effects levels in

terrestrial songbirds, Jackson et al. (2011) found that Car-

olina wrens showed 10, 20 and 30 % reductions in nesting

success when mercury concentrations in body feathers

were 2.4, 3.4, and 4.5 lg g-1, respectively. Similarly, 10

and 20 % reductions in nesting success were seen at the

respective effects concentrations of 3.0 and 4.7 lg g-1 in

Carolina wren tail feathers. We examined mercury con-

centrations in a different feather type, secondary flight

feathers, making direct comparisons difficult. However, if

we extrapolate effects levels from the Jackson et al. (2011)

Table 4 Top and competing mixed linear-effects models used to

explain feather mercury levels in adult and juvenile birds in the

Southern Appalachians

Model DAIC AIC

weight

Adults

Guild ? trophic position ? (Site) 0.00 0.29

Guild ? vegetation ? trophic position ? trophic

position

vegetation ? (site)

0.45 0.23

Guild ? vegetation ? trophic

position ? (site)

0.87 0.19

Juveniles

Trophic position ? (site) ? (distance to

water) ? (species)

0.00 0.57

High-elevation environmental factors model

Elevation ? (site) ? (species) 0.00 0.29

Elevation ? distance to

water ? (site) ? (species)

0.31 0.24

Elevation ? TRMI ? (site) ? (species) 0.47 0.23

Elevation ? TRMI ? distance to

water ? (site) ? (species)

1.68 0.12

Fixed effects are listed first in the models, followed by random

variables in parentheses. We present the difference in Akaike Infor-

mation Criteria (AIC) values between the ith model and the lowest

AIC value (DAIC) and Akaike weights for the set of models con-

sidered in the model selection process. A model with a lower DAIC

and a higher AIC weight relative to the other models means that the

given model is better at explaining the observed variability in our

data. The number of parameters (typically denoted K) in the mixed

effects models is difficult to calculate, and is therefore not reported

here
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study, only one individual, an adult female Carolina wren,

in our study had feather mercury concentrations

(3.74 lg g-1) that are likely associated with an estimated

10–25 % reduction in nesting success. Reductions in

nesting success have also been associated with high mer-

cury exposure in other avian species, including tree swal-

lows (Tachycineta bicolor) (Brasso and Cristol 2008,

Hallinger et al. 2011) and white ibises (Eudocimus albus,

Frederick and Jayasena 2012).

Mean mercury concentrations were twice as high at

some high elevation sites compared to other nearby high

elevation sites. For this reason, we attempted to explain

variation in mercury concentrations at high elevation sites

using environmental variables such as vegetation, distance

to water, moisture (TRMI), and land form (ridges versus

protected slopes). Elevation, distance to water, and TRMI

were in the top models, however none of these variables

were significant at the 95 % confidence interval level. Our

prediction that vegetation would be an important factor,

with birds in coniferous habitats exhibiting higher mercury

levels, was not supported. However, in the models looking

at only adult birds, mercury levels were, on average, 104 %

higher in deciduous forests compared to coniferous forests,

although there was large variation in this estimate. The

association of mercury levels increasing with increasing

TRMI may be related to a combination of increased

deposition rates, as well as increasingly wet soil and foli-

age surface conditions which would support the conversion

of THg into bioavailable methylmercury (Miller et al.

2005). Similarly, Guigueno et al. (2012) found that THg

levels in osprey (Pandion haliaetus) chicks in Canadian

alpine lakes strongly increased with increasing local Hg

deposition rates.

Summary and conclusions

In summary, our research demonstrated that mercury is

biomagnifying in terrestrial birds across all elevations in

the Southern Appalachians, and that stable isotopes are a

useful tool for linking mercury to trophic position in

songbirds. We suggest future studies use a combination of

diet information (foraging guild plus trophic position, or

evaluating trophic position at multiple times throughout the

year) to better understand the influence of diet on mercury

concentrations in adult songbirds. While we were able to

document mercury concentrations in all birds captured, the

lack of adverse effects levels research across multiple

songbird species precludes evaluation of the effect of

mercury on bird populations in the Southern Appalachians.

Further mercury research is warranted for organisms which

feed at higher trophic levels in this region, particularly

those associated with low-elevation aquatic environments.

In particular, low-lying water bodies of the Southern

Appalachians that receive heavy drainage from nearby high

elevations, such as Lake Fontana, NC, deserve closer

scrutiny to determine levels of mercury contamination and

potential hazards to wildlife populations. Understanding

which watersheds and/or habitats are most likely to expe-

rience bioaccumulation of mercury will strengthen our

knowledge of mechanisms involved in mercury contami-

nation in the Southern Appalachians and other montane

systems. The Southern Appalachians also experience high

acidic deposition rates, and this acidic environment likely

enhances methylation rates (Xun et al. 1987; Harmon et al.

2005), making the adverse effects of air pollution on

wildlife populations synergistic and complex.
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