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Abstract

Aim: Non-destructive methods for quantifying above-ground plant biomass are

important tools in many ecological studies and management endeavours, but

estimationmethods can be labour intensive and particularly difficult in structur-

ally diverse vegetation types. We aimed to develop a low-cost, but reasonably

accurate, estimation technique within early-successional Bahamian broadleaf

shrub vegetation.

Location: Eleuthera, The Bahamas.

Methods: Our biomass estimation technique was based on a visual obstruction

method originally developed for use in grassland vegetation, but modified to suit

our mixed vegetation structure. Visual obstructionmeasures were recorded for a

total of 90 0.25-m2 quadrats from which all standing vegetation was subse-

quently collected, dried and weighed. Regression models were then developed

to predict vegetation dry weight (biomass) from visual obstruction.

Results: The field time and equipment costs required to obtain our visual

obstruction measures were low, and the accuracy of our above-ground plant

biomass predictions was on par with that reported for other estimation tech-

niques. Should increased accuracy or additional structural information be

desired, our basic technique can be enhanced by adding other easily obtained

measures (e.g. woody stem circumference).

Conclusions: Our low-cost technique yields reasonably accurate estimates of

above-ground plant biomass and should be transferable to any shrubland vege-

tation type where themaximumheight of vegetation is typically below 2 m.

Introduction

Non-destructive methods for quantifying above-ground

plant biomass are important tools in many ecological stud-

ies and in land management. Biomass estimates may be

utilized for a wide variety of purposes, including fire mod-

elling (e.g. Sah et al. 2004), estimating carbon sequestra-

tion potential (e.g. Litton & Kauffman 2008) or estimating

availability or abundance of various natural resources (e.g.

Harmoney et al. 1997; Schmer et al. 2010). Over the past

few decades, several methods to estimate plant biomass

have been developed including: (1) estimating biomass of

individual species through allometric relationships, (2)

estimating collective biomass of multiple species using one

or more measures highly correlated with biomass, or (3)

using photo keys with accompanying biomass data to infer

biomass in similar stands (reviewed in Catchpole &

Wheeler 1992). Regardless of the method used or its preci-

sion, calibration (or prior development of photo keys)

within the vegetation type of interest is an important initial

step. To our knowledge, no methods have yet been devel-

oped or calibrated within the subtropical broadleaf shrub

vegetation (‘coppice’) characteristic of many Bahamian

and Caribbean islands.

Early-successional Bahamian coppice serves as habitat

for many resident and migratory bird species including the
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US federally endangered Kirtland’s warbler (Setophaga kirt-

landii) (Mayfield 1992; Currie et al. 2005; Wunderle et al.

2010). As part of a larger study investigating potential Kirt-

land’s warbler winter habitat management techniques, we

developed and calibrated a non-destructive biomass esti-

mation procedure in recently disturbed (3–4 yrs) coppice

on the island of Eleuthera in the central Bahamas.

Accurate estimation of above-ground plant biomass

through indirect means is often difficult in stands of

diverse vegetation, and the precision of estimates varies

with the intensity of labour required to obtain them

(Catchpole & Wheeler 1992; Radloff & Mucina 2007).

Older stands of Bahamian coppice are largely dominated

by tall shrubs and trees, but young stands are more struc-

turally diverse. Along with low or regenerating shrubs and

trees, recently disturbed coppice stands may include large

bunch grasses, dense herbaceous or woody vines andmod-

erate to high cover of suffrutescent herbs or subshrubs.

Although the various growth forms (or common species)

may occur in small and distinct patches, they are very fre-

quently inter-mixed within a relatively small area (e.g.

1 m2 or less with small to large grasses underneath regen-

erating shrubs which are covered by vines; see Appendix

S1).

We were investigating the use of controlled goat grazing

on utility corridors (e.g. power and telephone line rights-

of-way) as an economical means of managing vegetation

around utility lines while maintaining coppice in a state

suitable for the warblers. We considered measures of plant

biomass as potentially useful for a variety of purposes,

including estimating relative amounts of forage available

to or consumed by goats, estimating vegetation recovery

following grazing or monitoring fuels for fire management

efforts on utility corridors. However, our financial and time

constraints necessitated a low-cost/low-labour means of

estimating total biomass (rather than species-specific)

within the structurally complex habitat. Therefore, we

employed a visual obstruction technique similar to that

developed by Robel et al. (1970) in grassland vegetation,

but modified to suit our habitat and potentially allow parti-

tioning of plant biomass within vertically-oriented strata

(or height classes).

Here we present the details of our visual obstruction

procedure along with results from regression analyses used

to estimate above-ground plant biomass (standing vegeta-

tion dry weight per unit area). Although our method was

developed in the context of a goat grazing study, it is gen-

eral enough to be applied to a variety of purposes. Simi-

larly, while our calibration model results are specific for

recently disturbed coppice vegetation, the technique

should be transferrable to any shrubland vegetation type

where the maximum height of plants is typically 2 m or

less.

Methods

Study area

Eleuthera, The Bahamas (25°15′N, 76°20′W) is a low-ele-

vation (51 m max) subtropical island (518 km2). The pre-

dominant vegetation (locally known as coppice) is

typically dense and characterized by evergreen and semi-

deciduous broadleaf trees and shrubs growing on poorly

developed soils on limestone substrate (Mooney 1905;

Correll 1979; Sealey 2006). The vegetation has been exten-

sively disturbed by humans, principally for agriculture

(Young 1966; Byrne 1980), resulting in a broad-scale

mosaic of habitats of different ages (Helmer et al. 2010;

Larkin et al. 2012).

Our fieldwork was conducted on Cape Eleuthera Resort

in southwestern Eleuthera. All sampling for our biomass

estimation technique was conducted within the immediate

vicinity of study plots established for Kirtland’s warbler

(KW) winter habitat management experiments. Study

plots were located within the pipeline system of a freshwa-

ter well field, where vegetation had been heavily thinned

ca. 3–4 yrs prior to the onset of our study, producing early-

successional coppice consistent with KW habitat. Plots

were largely dominated by shrub or tree species including

Acacia choriophylla Benth. (cinnecord), Bourreria ovata

Miers (strong-back), and Trema lamarckianum (Roem. &

Schult.) Blume (pain-in-the-back), but also had high cover

of the vines Jacquemontia havanensis (Jacq.) Urb. and Passifl-

ora suberosa L. (juniper-berry), along with an understorey

of grasses and herbaceous perennials. The maximum

height of shrub or tree species within the well field was

typically around 2 m.

Visual obstructionmeasures and calibration sampling

We placed a 1.5-cm diameter by 2-m tall PVC pole in the

centre of a 0.25-m2 (0.5 m 9 0.5 m) quadrat. The pole

was divided into eight vertical height classes of 25 cm

each, but was marked in 5-cm bandwidths of alternating

colours, along with markings at 1-cm increments, to ease

estimation (Fig. 1). Within each height class, we estimated

the number of centimeters obscured by any vegetation

(foliage or stems) when viewed from a horizontal distance

of 0.6 m (i.e. average arm length of the crew) and a verti-

cal eye-level of 1 m. For example, if only 50% of the pole

between 50 and 75 cm above ground level were visible,

the visual obstruction for that height class was recorded as

12.5 cm.

Four sets of visual obstruction (VO) estimates were

made for each quadrat – one from the centre of each quad-

rat edge. During early testing of the method we found high

similarity among observer estimates if the viewing position
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was nearly identical, but slight variations in position could

lead to large differences among estimates, especially for

mid-range obstruction values. To capture this variability,

three observers generated independent VO estimates in

each of the eight height classes at each observation posi-

tion. The grand mean of all VO estimates was then gener-

ated for each height class in a quadrat (i.e. averaged across

positions and observers). Those means were then summed

to yield a total average VO value for the quadrat.

To calibrate the relationship between visual obstruction

and plant biomass, we obtained VO estimates and har-

vested all standing vegetation from a total of 90 quadrats

over two consecutive winters. During December 2010–

January 2011, we placed three quadrats in the areas sur-

rounding each of 20 habitat management plots (or ‘sites’),

yielding 60 quadrats in total. From December 2011–Janu-

ary 2012 we placed an additional three quadrats within

ten larger sites, each encompassing two of the original 20

sites, yielding 30 quadrats in total. In both winters, the

three quadrat locations at each sampling site were selected

to represent low, moderate and high levels of biomass

determined subjectively relative to the range of standing

biomass present across the site (one quadrat per category

at each site, yielding 30 quadrats in total per category). This

ensured that a wide range of variation was captured in the

full, multi-site sample. Additionally, attempts were made

to include all growth forms present on a site in a manner

reflecting the typical local-scale structure and heterogene-

ity of vegetation within the site. For example: grasses and

herbaceous perennials were usually most abundant in

low-biomass locations, often as the only growth forms or

sometimes with small shrubs and low amounts of vine

cover, but they could also occur in higher biomass quad-

rats. Woody vines were typically most abundant in moder-

ate-biomass locations with medium-sized shrubs. Large

shrubs typically dominated high-biomass locations,

although a varying density of vines might still be present

amid the canopy and herbs might still be present in the

ground layer (Appendix S1).

After VO estimates for a quadrat were completed by the

three observers, all standing vegetation (live or dead, but

excluding ground surface litter) was clipped and bagged

separately for each height class, by beginning at the top of

each vegetation column and working downward to

ground level. Vegetation in bags was then dried at ca.

60 °C to a constant weight (48 hr minimum drying time).

Vegetation dry weight in g 0.25 m�2 (hereafter ‘biomass’)

was then recorded separately for each height class within a

quadrat and summed over height classes for the quadrat in

total.

Statistical analyses

Linear regression analyses were used to generate models

predicting total plant biomass from the total average VO

value for a 0.25-m2 quadrat. Prior to analysis, both

observed weight and VO distributions were normalized via

started-log transformation of values to produce a better lin-

ear relation and homoscedastic residuals (Baskerville

1972; Fig. 2). Although some authors have advocated

using non-linear models for allometric relationships such

as these (Tausch 1989; Packard & Boardman 2008), in pre-

liminary analyses we found a linear model with trans-

formed variables, on average, yielded biomass predictions

for individual quadrats much closer to the observed values

than a non-linear model (Appendix S2).

Fig. 1. Apparatus and procedure used for visual obstruction estimation,

demonstrated in a low-biomass quadrat, with the inset showing details of

the PVC pole. Each coloured band on the pole is 5-cm wide. Grey bands

designate the upper limit of each 25-cm vertical height class.

Fig. 2. Observed and predicted values of above-ground biomass within

0.25-m2 quadrats as a function of total average visual obstruction. Scaling

of both the x- and -axes reflects the log transformation used in linear

regression analysis. Predicted values were generated from the regression

model utilizing all 90 quadrats sampled.
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We used a series of regression analyses to check the

robustness of biomass predictions, i.e. to ensure the pre-

diction equation developed from the full set of data was

not dependent on the inclusion of a particular combina-

tion of data points, and that the models developed from

our sample would perform well on other similar samples.

Specifically, fit and predictions from a model estimated

using data from all 90 quadrats were compared to six

‘validation’ models. In the validation models, 60 quadrats

were used to estimate regression coefficients that were

then used to generate biomass predictions for all 90 quad-

rats (i.e. the 60 used to estimate coefficients and the 30

reserved for validation). For the first validation model,

we estimated coefficients using the 60 quadrats from win-

ter 2010–2011 to evaluate the quality of model predic-

tions for the 30 quadrats from an entirely different year.

For the remaining five validation models, coefficients

were estimated using 60 randomly selected quadrats – 20

from each subjective biomass category (low, moderate,

high) – and used to predict biomass for the 30 unselected

quadrats.

For all regression models, we back-transformed bio-

mass predictions from the log scale into the original arith-

metic weight scale (grams) for comparison to their

corresponding observed values. We then evaluated pre-

diction error, relative to observed biomass, for individual

quadrats. In practice, researchers are likely to utilize the

mean of predictions for several quadrats sampled within a

vegetation stand. However, examining whether and how

prediction error for individual quadrats varied across the

range of observed biomass and VO values allowed us to

identify conditions under which the model did not per-

form well.

We calculated ‘relative prediction error’ for individual

quadrats as a percentage of the observed quadrat biomass

value: (observed – predicted)/observed 9 100. Negative

relative errors indicated overestimation and positive errors

were underestimates.We also calculated ‘absolute error’ as

the absolute value of relative error (i.e. ignoring over- vs

underestimation). Use of a correction factor in back-trans-

formation yielding the mean rather than the median of the

log-normally distributed response variable has been advo-

cated for logarithmic regression, particularly for the pur-

pose of estimating the total biomass of a larger area based

on smaller unit samples (Baskerville 1972; Miller 1984).

We found the correction factor substantially exaggerated

percentage errors associated with overestimation of bio-

mass in individual quadrats, but had less influence on

underestimation and resulted in larger average errors.

Consequently, for better clarity in evaluating the precision

of individual quadrat predictions across the distributions of

VO values and observed biomass, we used only a simple

back-transformation. However, for the purpose of scaling

up from the sample quadrats to the stand level it would still

be advisable to employ a correction factor (see Appendix

S3).

Observer bias

To examine whether total average VO values or biomass

predictions for a quadrat were substantially influenced by

the number or identity of observers, four separate sets of

total VO values for each quadrat were generated based on

(1) the VO estimates from all three observers, as described

earlier, and (2) each combination of only two observers.

We also generated biomass predictions for each quadrat

using the total average VO values from each two-observer

combination and coefficients from the full 90-quadrat

regression model. Similarity of the total average VO values

and the relative prediction errors among observer sets were

examined using: (1) bivariate correlations and (2) repeated

measures ANOVA followed by pair-wise contrasts compar-

ing the mean of each two-observer set to the mean of the

three-observer set, utilizing a Bonferroni correction to

maintain an overall alpha of 0.05 (per comparison

a = 0.017). In the latter case, a significant omnibus test for

the ANOVA indicated a likelihood that at least one obser-

ver, compared to the others, generally estimated signifi-

cantly higher or lower obstruction values across all

quadrats, otherwise observer differences would be

expected to average out across quadrats. The follow-up

comparisons aided identification of the observer and nat-

ure of his/her bias. Separate comparisons were made for

data collected in 2010–11 and 2011–12 since identity of

some observers differed between seasons.

Individual height class models

After generating predictive models for total quadrat bio-

mass, we generated similar regression models for each of

the eight height classes separately. For these height class-

specific models we generally considered data from all 90

quadrats for parameter estimation. However, this led to a

preponderance of zero values for both the VO and corre-

sponding observed biomass in upper height classes where

vegetation was sometimes entirely absent. So, to normalize

distributions while minimizing introduction of bias we

excluded instances where the VO and corresponding

observed biomass values were zero, both for a given height

class and all those above it within a quadrat. Consequently,

sample size varied among models for each height class and

was lowest for the uppermost height classes. For non-

excluded cases where the observed biomass was zero (i.e.

associated VO value was non-zero, or upper height classes

had non-zero biomass or VOs), the zero value was substi-

tuted with 0.05 g (half of the lowest measured weight for
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any height class) to avoid division by zero in the calcula-

tion of prediction error as a percentage of the observed bio-

mass.

Results

Total average visual obstruction values for quadrats ranged

from 0.96 to 140.1 cm in 2010 (median = 34.1 cm) and 4

to 122.1 cm in 2011 (median = 52.4 cm). Total dry weight

of vegetation (biomass) in each quadrat ranged from 7.2–

1877.2 g (median = 202.4 g) in 2010 and 24.9–1477.3 g

(median = 397.3 g) in 2011.

Among all regression models (full and validation) for

predicting total quadrat biomass, log VO accounted for

more than 80% of the variance in observed log biomass

(P < 0.001; Table 1, Fig. 2a). Regression coefficients, high

correlations between observed and predicted values, and

the distribution of prediction errors all showed strong con-

sistency between the model using the full 90 quadrat data

set and all validation models, indicating robustness of pre-

diction (Table 1).

Based on coefficients from the full 90 quadrat regression

model, predicted biomass for individual quadrats had a

median absolute prediction error of 29%, but a negative

mean relative error indicated more over- than underesti-

mations overall (Table 1). Relative errors did not show

obvious bias across the distribution of visual obstruction

values, but some bias was noted at the extremes of the

observed weight distribution (Fig. 3a,b). Overestimations

were more common and most severe (>50% absolute

error) at the lower end of the observed biomass distribu-

tion (Fig. 3b). In general, these overestimates were associ-

ated with either (1) quadrats with both very low VO and

low biomass (e.g. small-sized symbols at the lower left of

Fig. 3a,b), or (2) quadrats with moderate to high VO but

relatively low biomass (e.g. medium to large symbols at

the lower left of Fig. 3b). The first case illustrates the diffi-

culty of accurate prediction of values close to zero (or,

more generally, at the extremes of the variable distribu-

tion). The second case was probably characterized by

quadrats with large bunch grasses, dense herbaceous vine

thickets or high amounts of leafy shrub canopy without

larger woody branches. The most severe underestimations

were also primarily located at the extremes of the observed

weight distribution, but with a larger number at the upper

end, where errors >50% were associated with quadrats

with low to moderate VO estimates, but relatively high

biomass (e.g. medium-sized symbols toward the upper

right of Fig. 3b or largest symbols in the upper centre of

Fig. 3a). This was often due to the presence of slender, but

heavy, woody trunks that did not contribute as much to

obscurance of the pole as to vegetation weight within the

quadrat.

Observer bias

Bivariate correlations among the four sets of total VO val-

ues derived from different combinations of two or all three

observers were very high (Spearman’s rho ≥ 0.98), as were

correlations of relative biomass prediction error (Pearson’s

r ≥ 0.93), indicating a high correspondence among values

from different observer combinations. However, signifi-

cant repeated measures ANOVAs comparing differences in

mean log-scale total VO values among the four observer-

based sets suggested systematic observer differences were

present (2010–11: F3,57 = 10.42, P < 0.001; 2011–

12 F3,27 = 22.19, P < 0.001). Follow-up contrasts indi-

cated significant differences in mean total VO between the

three-observer estimate and some two-observer estimates

generally arose due to one observer typically estimating

lower obstruction values (2010–11: two significant pair-

wise contrasts, P ≤ 0.006) or higher obstruction values

(2011–12, two significant pair-wise contrasts, P < 0.001)

compared to the other two observers. Nonetheless, the

magnitudes of the differences were small. The maximum

differences in median total average VO between the three-

observer estimate and a two-observer estimate were 2.5

and 4.6 cm in winter 2010–11 and winter 2011–12,

respectively, or ca. 7% and 9% of the median values for

each sample.

We detected a similar pattern of results for differences in

relative error among two- and three-observer subsets

(repeated measures ANOVAs with significant [P < 0.001]

omnibus F-tests and at least one significant [P ≤ 0.007]

pair-wise contrast in each sample year). As with the total

VO estimates, magnitudes of differences in relative error

were small. In 2010–11 the most disparate two-observer

subset had a mean relative error of �9.3% compared to a

three-observer mean of �13.5%; in 2011–12 the most dis-

parate subset had a mean relative error of �11.9% com-

pared to�5.9% for the three-observer set.

Individual height class models

Where vegetation was present (i.e. excluding those cases

where a given height class within a quadrat and all those

above it had zero values for both VO and biomass), median

VO values (averaged across observers) mostly decreased

from the ground up, ranging from 10.0 cm in the lowest to

4.6 cm in the uppermost height class (Fig. 4). Median

observed biomass ranged from 86.4 g in the lowest to

3.2 g in the uppermost height class. Prediction of biomass

from visual obstruction within the eight vertical height

classes was less accurate than the total quadrat prediction.

Compared to the total quadrat model, log VO values

accounted for 16–35% less variance in observed log bio-

mass within height classes, and prediction errors were
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much larger (Table 2). Absolute error averaged 50.8%

across all height classes, and was highest in the three

uppermost height classes with the lowest average biomass

(Table 2). The most extreme absolute errors (>100%)

were, in some cases, more than an order of magnitude lar-

ger than those seen in the total quadrat model, but were

almost exclusively overestimations of low observed

weights (Figs 4 and 5). Errors in excess of 1000% were all

associated with observed biomass under 1 g.

As in the total quadrat model, the most extreme overes-

timates of biomass within height classes were associated

with either (1) both very low VO and low biomass, or (2)

relatively high VO compared to the relative amount of bio-

mass. The latter co-occurrence was particularly evident in

the upper height classes (e.g. classes 7 and 8 in Fig. 5), and

likely a consequence of canopy within lower height classes

obscuring the observer’s view of top portions of the pole,

even though little to no vegetation was present at those

heights. A parallel phenomenon occurred when viewing

lower height classes, but those height classes were less

likely devoid of vegetation so relative errors would likely

beminimized.

Discussion

Though originally developed and widely used for biomass

estimation in grassland vegetation, we found the Robel

et al. (1970) visual obstruction method could be success-

fully modified for use in more structurally complex vegeta-

tion. Although extra time was required initially for

calibration sampling and regression analyses, the time

required for three observers to generate visual obstruction

estimates in the field was low, averaging about 8 min per

0.25-m2 quadrat. This is roughly equivalent to the time

required for the mini-diskmethod used by Radloff &Muci-

na (2007) in structurally diverse South African renoster-

veld. We initially considered using the mini-disk method,

but the materials needed to construct their sampling appa-

ratus (e.g. custom-sized plexiglass, aluminium framing)

were not readily or inexpensively obtainable on Eleuthera.

More importantly, we suspected use of the apparatus

would become cumbersome in our taller vegetation (up to

ca. 2 m in height vs <1.5 m in the renosterveld).

Our modified visual obstruction method yielded total

quadrat regression results on par with the mini-disk

method, other modified visual obstruction methods and

with many other allometric models for estimating biomass.

For example, utilizing different variations of the Robel

method in grassland and heathland vegetation, respec-

tively, Benkobi et al. (2000) and Davies et al. (2008) gen-

erated regression models with coefficients of

determination (R2) ranging from 0.64–0.88. In their 1992

review, Catchpole & Wheeler cite R2 values of 0.61–0.99

for a variety of other double-sampling techniques with

moderate to high prediction accuracy.

The average prediction accuracy and range of relative

errors for our total quadrat model were also on par with

those reported by others (e.g. Benkobi et al. 2000;Mascaro

et al. 2011), and the predictions should at least be suffi-

cient for comparing relative differences in biomass across

space or time. Performance of prediction models within

vertical height classes was far less ideal, but predictions

from these models might still be useful as a coarse relative

index of biomass within individual height classes in studies

where the relative amount of vegetation within vertical

strata is of interest. However, because the average predic-

tion error varies among height classes, use of this method

as an index of comparison between different height classes

would be less appropriate than use to compare similar

height classes between sites or time periods.

The biases and larger relative errors noted among the

predictions of individual quadrat biomass in cases with

dense herbaceous cover or heavy wood with low foliage

should be less important when averaging across quadrats

sampled within vegetation stands (see Appendix S3),

unless a stand is dominated by such anomalous structure
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Fig. 3. Relative error (y-axis) in above-ground biomass predictions

(vegetation dry weight) for individual 0.25-m2 quadrats vs (a) total average

visual obstruction and (b) observed biomass. The zero value on the y-axis

separates overestimates (negative errors) from underestimates (positive

errors). Dashed lines emphasize errors exceeding �50%. To illustrate the

interactive influence of biomass and visual obstruction on relative error,

symbol size increases with observed biomass in (a) and with visual

obstruction in (b).
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(Mascaro et al. 2011). If a number of anomalous stands are

to be sampled, separate calibration and estimation equa-

tions may be warranted. There might also be some concern

about estimation accuracy when applying the method

before and after some disturbance that substantially alters

plant composition. For example, in our application, goats,

as selective consumers, could potentially alter vegetation

composition so that the calibration vegetation community

poorly reflects the post-grazing community to which the

calibration equation is subsequently applied. In cases

where the post-disturbance community is profoundly

altered, especially long-term, separate calibration equa-

tions may again be warranted, since the focus may effec-

tively be on two different vegetation types. In our study

system, however, we expect any grazing-induced composi-

tional changes will not have a substantial influence on

post-grazing biomass estimation accuracy. First, the locally

heterogeneous nature of our coppice vegetation ensured

that a wide range of species and compositional mixtures

were captured by our set of calibration quadrats. In some

cases, one or two species dominated a quadrat, in others

quadrats included a mixture of several species. Thus, the

calibration procedure and subsequent estimation equation

included reference points for post-browsing quadrats that

Fig. 4. Observed and predicted values of above-ground biomass in eight vertical height classes spanning 25-cm increments from ground level within 0.25-

m2 quadrats. Scaling of both the x- and y-axes reflects the log transformation used in linear regression analysis. Note the changing range of the y-axis due

to generally decreasing biomass with increasing distance from ground level.
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might be dominated by one or two unpalatable species.

Furthermore, it is unlikely that all post-browsing quadrats

in our heterogeneous vegetation would be dominated in

the same fashion, so that estimation error for the site

would be minimized by averaging over quadrats. Second,

the term ‘coppice’ refers to the resprouting tendency of

most of the plants within the community. So, while there

could be pronounced compositional changes and increased

estimation error immediately following a single goat graz-

ing treatment, the effect is likely to be reduced over time as

browsed species recover from underground rootstocks or

remaining branches.

More generally, greater accuracy might be achievable

by adding other easily obtained measures to our basic

model. For example, we also measured the basal circum-

ference of the largest woody stem within calibration

quadrats sampled in 2011. Comparison of a regression

model including only visual obstruction from those 30

quadrats with a second model including both visual

obstruction and stem circumference showed a modest

improvement in R2 (0.08 increase) and average prediction

error (median absolute prediction error decreased ca. 1%;

see Appendix S4 for more detail). The magnitude of the

most extreme relative errors was also reduced in the sec-

ond model (�97.3 to 79.7% vs �72.2 to 65.3%), indicat-

ing the biases noted in our basic model could be

minimized through including additional variables rele-

vant to plant structure. Including such variables might

also improve suitability of model predictions for certain

applications, such as use in fire behaviour models requir-

ing fuel size class information.

While we did find evidence for systematic individual

observer bias in visual obstruction estimates, the influence

of this bias on the overall quality of predictions was not

substantial. Predictions are likely to be more reliable when

based on estimates from three observers, rather than two.

Yet, it is also possible that additional training could mini-

mize individual observer bias and produce reliable predic-

tions with a minimal number of observers.

Conclusions

We believe Robel’s visual obstruction method is a flexible

procedure that can be adapted for use in estimating collec-

tive (vs species-specific) plant biomass within a variety of

Fig. 5. Predicted and observed standardized weights (observed/median

within height class) vs standardized visual obstruction (VO) for height class

data with absolute prediction errors exceeding 100%. Numerical symbols

represent 25-cm height classes with values increasing upward from

ground level.

Table 2. Results from linear regression models predicting log vegetation dry weight from log visual obstruction estimates within eight vertically-oriented

height classes in a 0.25-m2 quadrat.

Height class (cm from ground)

0–25 25–50 50–75 75–100 100–125 125–150 150–175 175–200

N 90 89 84 71 63 61 53 48

R2adj 0.54 0.69 0.61 0.61 0.63 0.60 0.54 0.50

Bo 2.04 1.20 0.92 1.01 1.01 0.21 �0.39 �0.64

BlnVO 1.03 1.31 1.42 1.47 1.40 1.54 1.47 1.46

R a 0.74 0.83 0.79 0.78 0.80 0.78 0.74 0.71

SEE b 0.59 0.76 1.01 0.96 0.83 1.10 1.23 1.31

Median% Absolute error c 41.0 48.5 49.4 46.0 49.6 53.8 64.7 53.2

Mean% Relative error �9.6 3.6 7.6 1.2 �1.6 �6.1 5.8 7.3

Min% Relative error �216.0 �5375.6 �3494.8 �2514.8 �396.6 �6781.0 �32521.5 �7624.6

Max% Relative error 80.4 79.8 91.3 97.4 96.8 97.8 100.6 94.9

aPearson correlation between observed and predicted log weight values.
bStandard error of the estimate (population SD of the residuals).
cPercentage error is the difference between the observed weight in grams and back-transformed predictions from regression models, expressed as a per-

centage of the observed weight; ‘absolute’ error ignores over- vs underestimation, while negative values for ‘relative’ error indicate an overestimation of

weight.
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vegetation types, including relatively tall (ca. 2 m) and

structurally diverse associations. It has the distinct advan-

tages of relatively low sampling time, once the initial cali-

bration has been completed, and of requiring very little

specialized equipment. The latter advantage may prove

particularly important in field settings where availability of

construction materials is limited or their cost high.

Whether the prediction accuracy is sufficient will depend

on the intended application, but increased accuracy will

almost certainly involve increased cost.
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Supporting Information

Additional supporting information may be found in the

online version of this article:

Appendix S1. Photographs of early-successional coppice

on Eleuthera and examples of calibration sampling quad-

rats.

Appendix S2. Results from exploratory analyses compar-

ing prediction of biomass from visual obstruction (VO)

measures based on three different regression techniques.

Appendix S3. Prediction errors for sites based on quadrat

averages.

Appendix S4. Results from exploratory regression analy-

ses comparing prediction of biomass from (a) only total

visual obstruction for a 0.25-m2 quadrat, vs (b) total visual

obstruction plus basal circumference (mm) of the largest

woody stemwithin the quadrat.
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