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Abstract The concept of the integrated biorefinery is critical
to developing a robust biorefining industry in the USA. With-
in this model, the biorefinery will produce fuel as a high-
volume output addressing domestic energy needs and
biobased chemical products (high-value organics) as an output
providing necessary economic support for fuel production.
This paper will overview recent developments within two
aspects of the integrated biorefinery—the fractionation of
biomass into individual process streams and the subsequent
conversion of lignin into chemical products. Solvent-based
separation of switchgrass, poplar, and mixed feedstocks is
being developed as a biorefinery “front end” and will be
described as a function of fractionation conditions. Control
over the properties and structure of the individual biomass
components (carbohydrates and lignin) can be observed by
adjusting the fractionation process. Subsequent conversion of
the lignin isolated from this fractionation leads to low molec-
ular weight aromatics from selective chemical oxidation. To-
gether, processes such as these provide examples of founda-
tional technology that will contribute to a robust domestic
biorefining industry.

Keywords Fractionation . Catalysis . Co-Schiff base
complex . Lignin . Biorefinery . Organosolv

Introduction

The last decade has witnessed the advent of biomass (forest
resources, agricultural crops such as switchgrass, corn and
soybeans, residues, etc.) as a source of renewable carbon,
evidenced by a huge upsurge in research and commercial
interest. The lignocellulosic biorefinery is the construct
linking domestic sources of renewable carbon with the tech-
nology necessary for their conversion to biofuels and high-
value organics (HVOs—i.e., chemicals and materials).

An analogy between the emerging biorefinery and today’s
petrochemical refinery is appropriate and illustrative. The
petrochemical industry, as the nation’s primary consumer of
nonrenewable carbon, provides the standard for developing
and optimizing the biorefining industry. The petrochemical
industry is effective because it has achieved a highly integrat-
ed value chain based on nonrenewable carbon, from raw
material collection and processing to fuel and chemical pro-
duction. Underpinning this success is the industry’s funda-
mental understanding of broadly applicable conversion tech-
nologies capable of transforming hydrocarbons into HVOs
and fuels in high yield and efficiency [1]. An integrated,
multiproduct approach coupling HVO and fuel manufacture
is of particular importance. Even though chemicals account
for only 7–8 % of crude oil use in the USA, they provide the
key economic driver for overall profitability of the petrochem-
ical industry, which reports US sales of over US$435 billion.
Chemicals provide nearly 50 % of the value-added for the
industry (US$375 billion) despite their low comparative con-
sumption of crude oil [2, 3].

Integrating multiple HVOs with fuels will also be central to
biorefinery development. Although most current biorefinery
research is focused on fuel EtOH, analyses reveal that a next-
generation biorefinery adopting the petrochemical model of
simultaneous fuel andHVO production realizes a much higher
return on investment [4–6]. The improved profitability from
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integrating HVO and fuels will be critical for industrial adop-
tion of carbohydrates and lignin as raw materials. HVOs will
provide the financial incentive needed to justify the use of
building blocks unfamiliar to industry, development of pro-
cesses to convert them to final products, and the capital
investment necessary to take new technology to commercial
scale. Research into the utility of alternative and sustainable
sources of carbon is further justified by a 35 % increase in US
energy consumption over the last 30 years and more than half
of all new energy demand coming from India and China
through 2035 [7].

Turning the chemical industry model into a successful and
commercially viable biorefining industry requires processes
that provide easy access to individual process streams con-
taining the primary components of biomass as well as devel-
oping technology tailored for the unique structural features of
these materials. This paper reviews our efforts in both of these
areas, with a particular focus on solvent fractionation of bio-
mass and processes for the conversion of lignin into HVOs.

Organosolv Fractionation of Lignocellulosic Biomass
for Use in the Biorefinery

Biomass, as harvested, is difficult to use directly because it is a
complex mixture of several simpler components. Like crude
oil, it requires an initial separation and upgrading before it can
be converted into HVOs or biobased transportation fuels.
Second-generation lignocellulosic biorefineries remain over-
whelmingly linked to the production of fuel EtOH to the point
that the default operation of these processes has become
almost dogmatic: the raw material is first subjected to a
pretreatment designed to improve access to the polysaccha-
rides present in the biomass. Polysaccharides in the pretreated
material are hydrolyzed to monomeric sugars and fermented
to EtOH, and the unfermented, lignin-rich residue is typically
used as fuel to generate process heat and steam. Pretreatment
is arguably the most important step in this process. If the
pretreatment is ineffective, hydrolysis and fermentation
become much less efficient, driving the overall process
costs too high to be industrially viable. Well-known pre-
treatment methods that are under consideration commer-
cially include dilute acid, steam explosion, hot water, or
AFEX (Fig. 1) [8, 9].

But widely recognized pretreatments must be differentiated
from fractionation processes necessary for integrated fuel and
chemical operations. In EtOH-centric processes, access to
sugars is paramount—separation is not a goal as it can add
costs that cannot be accommodated within the severe econom-
ic restrictions of a fuel-only operation. Indeed, pretreated
material sent to hydrolysis and fermentation operations fre-
quently contains significant levels of lignin and hemicellulose
[10–12]. For optimal use of domestic renewable carbon, a
transition from simple pretreatment processes to fractionation
processes within a multiproduct context is needed. Fraction-
ation processes that provide selective access to individual
process streams of cellulose, hemicellulose, and lignin (or
other components present in biomass) will not only enable
and improve the ability to manufacture fuels, but will lead to a
profitable portfolio of chemical products able to provide fi-
nancial incentive for an entire biorefining industry by produc-
ing the high purity process streams demanded by the chemical
industry. Adoption of multiproduct fractionations as part of
biorefinery development may increase the complexity and
cost of operation. Nonetheless, a positive tradeoff results from
the inclusion of high-value products because the biorefinery
can use their higher profitability to offset more costly, but also
more selective and flexible fractionation technologies. Key
characteristics of fractionation technology designed for mul-
tiproduct operation include selective separation of each com-
ponent of a biomass feedstock, easy access to and isolation of
the components after separation, and recovery of each com-
ponent in high yield.

Organosolv processes have been identified as able to meet
many of these requirements [13–18]. Since 1993, we have
been developing a separation process for biomass using or-
ganic solvents that can convert this complex starting material
into three individual process streams—cellulose, hemicellu-
lose, and lignin—each of which can serve as a starting mate-
rial for the production of biobased chemicals and fuels [19].
Our process normally heats biomass with a 16/34/50 (by
weight) mixture of methyl isobutyl ketone, ethanol, water in
the presence of an acid catalyst. This solvent mixture selec-
tively dissolves lignin and hemicellulose, leaving the cellulose
as an undissolved material that can be washed, fiberized, and
further purified. The soluble component is separated into
individual lignin and hemicellulose fractions simply by
adding NaCl and removing excess solvent (Fig. 2).

Biomass Fractionation
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Fig. 1 The integrated biorefinery
will evolve from pretreatment to
fractionation
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The process is efficient. Greater than 95 % of the compo-
nents present in the starting feedstock is isolated after frac-
tionation, which is important for their eventual use as chem-
ical building blocks. Importantly, the process works well on
switchgrass and poplar, two renewable feedstocks important
to the southeast USA as candidates for large-scale bioenergy
crop production.

The purity of the fractions is also quite high (Table 1).
Analysis of the cellulose fractions from typical separation of
poplar or mixed hardwoods using a variety of conditions
showed high proportions of glucan (frequently >98 %). The
level of hemicellulose sugars was normally no greater than a
few percent and often less than 0.1 %. The amount of residual
lignin (measured as total Klason lignin) was also low, between

2 and 5 %. The lignin displays high purity, with the amount of
residual sugar present in the lignin at a level of 0.5 % or less.

Coupling this separation to eventual downstream HVO
manufacture requires knowledge about the discrete molecular
level structure of the process streams so that appropriate
conversion technology can be tailored. For the lignin fraction,
nuclear magnetic resonance (NMR) analysis has been proven
useful for the evaluation of the structural impact resulting
from organosolv separation and for understanding the mech-
anism of organosolv fractionation processes. Two-
dimensional heteronuclear multiple-quantum correlation
(HMQC) has demonstrated that key functional groups within
lignin undergo reaction, cleavage, or consumption as a func-
tion of the fractionation severity. This analysis also supports

Table 1 Analysis of typical cellulose and lignin from solvent fractionation

Cellulose analysis Saccharides (%) Klason lignin (%)

Separation conditions
[acid (M)/time (min)/
temp (°C)]

Glu Xyl Gal Ara + Man Total
saccharides

Acid
insoluble

Acid
soluble

Total

0.1/56/160 103.8 0.0 0.00 0.00 103.8 1.4 0.5 1.9

0.1/56/140 97.0 1.5 0.00 0.00 98.5 2.0 0.8 2.8

0.15/56/130 93.1 2.6 0.00 0.00 95.7 4.4 0.9 5.3

0.2/56/140 99.4 0.19 0.00 0.00 99.6 1.1 0.6 1.7

0.2/76/140 102.1 0.12 0.00 0.00 102.2 1.2 0.6 1.8

0.2/76/140 103.5 0.36 0.00 0.00 103.9 2.0 0.6 2.6

Lignin analysis Tulip poplar
sample 1

Tulip poplar
sample 2

Tulip poplar
sample 3

Mixed oak
sample 1

Mixed oak
sample 2

Alcell Kraft

Wood sugars 0.57 0.46 0 0.2 0.48 <0.5 Low

Glucose <0.1 <0.1 nd <0.1 <0.1

Mannose nd <0.1 nd nd nd

Xylose 0.47 0.26 nd <0.1 0.38

nd not detected

Fig. 2 Schematic of the solvent
fractionation process
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acid-catalyzed solvolysis as the primary mechanism for inter-
unit cleavage reactions. Figure 3 shows the approximate point
of appearance and disappearance of various functional groups
in a series of switchgrass lignins [20].

At low severities, crosslinking ferulates and extractives are
observed, and their removal is maintained across a wide range
of fractionation conditions. In contrast, we observe the disap-
pearance of β-O-4 linkages and the appearance of alkoxy
substitution at the α-position of the lignin C9 side chain only
at increasing fractionation severity. At highest severity, the
disappearance of typical aromatic ring signals suggests the
possible alkylation of lignin’s aromatic units via electrophilic
aromatic substitution processes. These observations are im-
portant for the development of subsequent lignin conversion
processes, as knowledge regarding the presence or absence of
various functional groups helps to determine the design of
optimal processes for the transformation of lignin to HVOs.

Our current effort in biomass fractionation incorporates
experimental design for optimization of the process using
mixtures of switchgrass and poplar as the raw material supply

[21]. Feedstock mixtures are of importance because a wide
variety of bioenergy crops within an economically feasible
transportation distance may be considered as part of the
biorefinery’s raw material supply. The use of herbaceous and
woody mixtures tolerates variations in weather conditions that
other annual agricultural crops such as corn cannot and offers
mixed feedstock solutions that are beneficial to the sustainable
supply required by a viable biorefinery. For example, a recent
study found that the delivered cost of raw material was lower
when wood and herbaceous biomass were combined rather
than delivered as single feedstocks [22]. Thus, knowledge
regarding the performance of mixed feedstock supplies in
typical biorefinery operations would provide useful informa-
tion regarding their viability as a raw material source.

We have employed Taguchi Robust Product Design [23] to
define conditions optimal for separation of mixed switchgrass/
poplar feedstocks and to obtain the highest yield of lignin
from our solvent fractionation process. The Taguchi experi-
mental design identifies a maximum signal to noise within a
matrix of dependent and independent variables. Identification

Fig. 3 Summary of structures observed in HMQC evaluation of lignin samples from switchgrass as a function of fractionation conditions
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of these high S/N realms defines operating parameters that
afford significantly lower variability in the process response,
i.e., greater assurance that a given set of conditions will lead to
reproducible results. A critical advantage of the Taguchi meth-
odology is that it can be successful with a dramatically lower
number of experimental runs when compared to a complete
factorial design. The full results of these studies will be
reported in due course, but we observe that a maximum
isolated lignin yield (defined as the percent of total lignin in
the starting feedstock) was found upon treatment of the mixed
feedstock with the solvent mixture for 90 min at 160 °C, using
0.1 M H2SO4 and a feedstock composition of 90%
switchgrass/10 % tulip poplar. Preliminary statistical simula-
tion of 5,000 additional runs predicted a mean lignin yield of
74.4 wt%, comparable to the mean lignin yield of 78.6 wt% at
the maximum found in our investigation.

Selective Cobalt-Catalyzed Oxidation of Lignin
and Lignin Models

Development of successful integrated biorefinery operations
will result in the inevitable availability of an enormous amount
of lignin both as fractionation processes are more widely
employed and as an outcome of federal legislation. The US
Renewable Fuels Standard mandates the production of 16
billion gallons of lignocellulosic biofuels by 2022. Using that
standard as a basis for production, and with the assumption
that a commercial biorefinery produces 80 gallons biofuel/t
from biomass that averages 20 wt% lignin, operation of inte-
grated fuel/chemical biorefineries at these levels will afford 40
million tons of lignin on an annual basis. Moreover, this lignin
will be inexpensive. Multiple evaluations project an internal
transfer cost for lignin of $0.03–0.06/lb [24–26]. From the
viewpoint of renewable carbon availability, these remarkable
features offer an attractive rawmaterial source for downstream
chemical processing and conversion to HVOs. In addition,
development of solvent fractionation processes leads to lignin
supplies of high purity. A specific focus of our research effort
is the production of HVOs by developing new catalytic pro-
cesses able to transform structural units common to all isolated

lignins. In particular, we are examining selective catalytic
oxidations, as the electron-rich arenes of lignin should be
excellent substrates for such conversions.

The heterogeneous structure of lignin has long frustrated
efforts to selectively convert this abundant biopolymer into
low molecular weight aromatics [27]. One source of hetero-
geneity is the biosynthetic path to lignin, which occurs via the
random polymerization of aromatic monolignols [28]. But in
the context of chemical production, a second source of het-
erogeneity is equally important. Both pretreatment and frac-
tionation processes as shown in Fig. 1 lead to different distri-
butions of substructural units within isolated lignin as a func-
tion of both the lignin source and the methodology employed
in its isolation [20, 29]. The recognition that biomass can serve
as a viable source of chemicals and fuels has brought signif-
icantly increased interest in lignin, but surprisingly, the dra-
matic change that can occur in lignin’s structure during its
isolation is frequently overlooked. For example, recent reports
describe systems that deconstruct lignin models, using a vari-
ety of metal-catalyzed processes with the goal of producing
new, lignin-derived HVOs [30–33]. These studies focus on
the cleavage of β-aryl ethers, representative of lignin’s β-O-4
linkage, which can account for 50–65 % of the interunit
bonding present in native lignin [34].

Native lignin, however, does not retain its original sub-
structural profile when it is isolated from a lignocellulosic
matrix. For example, quantitative 13C NMR was used to track
the amount of β-O-4 linkages in switchgrass samples during
solvent fractionation at a variety of severities (Table 2) [20].

The integrations were normalized to the oxygenated aro-
matic signals between 162 and 140 ppm, and the β-O-4
signals between 88 and 77 ppmwere then compared. Depend-
ing on the severity of the fractionation, the isolated lignin
might retain little or none of the β-O-4 units present in the
native material. Similar observations are made when acid
hydrolysis or steam explosion is used as a biomass pretreat-
ment [35, 36]. Moreover, as these units are cleaved, the
number of free phenolic –OH groups present the lignin in-
creases dramatically. Aromatic units in native lignin contain
7–13 % phenolic –OH depending on the source [37], but as
lignin transitions from the growing plant to a biorefinery

Table 2 Integration of 13C peak clusters in several lignin samples

NMR region (ppm)

Run conditionsa 162–140 123–102.5 88–77 77–65 65–58

120 °C/0.1 M (organic fraction) 100.00 89.80 30.61 1.02 53.06

140 °C/0.1 M (organic fraction) 100.00 93.94 17.17 1.01 31.31

160 °C/0.1 M (organic fraction) 100.00 87.63 4.12 3.09 49.48

Ball-milled switchgrass lignin 100.00 110.53 36.84 50.72 43.54

a Temperature/acid concentration
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feedstock, its dissolution and removal from the matrix can
increase this amount to over 70% [38]. Even residual lignin in
woody biomass after fractionation exhibits as much as 25 %
free phenols [39]. Accordingly, catalyst development focusing
on selective transformation of substituted phenols would more
accurately model the structure of lignin as an isolated source
of renewable carbon. To address this problem, we are
employing oxidation of para-substituted phenolics with Co-
Schiff base complexes and oxygen that is applicable to the
arenes composing biorefinery lignin [40].

Cobalt-Schiff base complexes have been extensively used to
catalyze oxygen activation in the oxidation of phenols [41–44].
However, the use of these complexes for the oxidation of p-
substituted phenols as models of catalytic conversion of lignin
within the biorefinery has not been widely studied.We reported
that O2 in the presence of various Co-Schiff base catalysts [e.g.,
Co(salen), Fig. 4] and pyridine in MeOH at room temperature
converted several p-substituted lignin models into 2,6-
dimethoxybenzoquinone (DMBQ) in high yield. The proposed
mechanism of the transformation is shown in Fig. 5.

Co(salen) coordinates an axial ligand (L, typically pyri-
dine) and then adds O2 to form a catalytically active Co-
superoxo adduct (reaction II). The axial ligand is required
for effective catalyst reactivity, as Co(salen) itself binds O2

poorly [45]. Subsequently, the superoxo adduct abstracts a
phenolic hydrogen from the substrate (reaction III) resulting
in a phenoxy radical, which combines with a second equiva-
lent of the superoxo adduct (reaction IV). The final step
(reaction V) results in the formation of the quinone oxidation
product and formaldehyde.

More recent work reveals that reaction yield is also influ-
enced by the presence of different coordinating bases (Ta-
ble 3). We anticipated that stronger donors (e.g., those bearing
methyl groups) would afford higher yields of DMBQ by
enhancing reaction II and increasing the amount of catalyti-
cally active superoxo complex in solution. Using syringyl
alcohol as a model of the S units in lignin, we observed that
the yield of quinone shows a slight correlation with the pKa of
the imidazole’s conjugate acid. Exceptions were noted in
those cases where an inactive bis-imidazole Co complex that
cannot bind oxygen forms (for example, using Im and 1-
MeIm in a 10:1 ligand/catalyst [L/C] ratio) [46]. Thus, at a
lower L/C ratio of 1:1, the yield of DMBQ increases signifi-
cantly in the presence of 1-MeIm as a ligand. As the donor
ability of the imidazole ligand increases, the dioxygen affinity
of the Co complex and its ability to abstract a hydrogen atom
from the starting phenol also increases.

However, the yield of DMBQ plateaued as the donor ability
of the imidazole increased, both at a 1:1 and a 10:1 L/C ratio.
Computational evaluation of these complexes provided addi-
tional insight as to the mechanism of oxidation [47]. Examina-
tion of the geometry of the superoxo complexes formed in
reaction II revealed that they adopt an “umbrella” conformation
upon binding of the imidazole ligand, distorting the salen ligand
from planarity, consistent with previous X-ray analyses [48, 49].
Figure 6 shows the minimized structure for the Co(salen)/2,4-
dimethylimidazole complexwith oxygen, where the angle of the
salen ligand is measured at 145.15°. Depending on the imidaz-
ole ligand added, this angle varied between 145° and 171°.

We suggest that the stronger donor ability of the substituted
imidazoles and the resulting ligand distortion are
counterbalancing effects on the reactivity of Co(salen)/imid-
azole/O2 complexes. Strongly donating ligands promote bind-
ing of Co(salen) complexes to O2 by raising the energy of the
Co dz2 orbital, promoting transfer of an electron to the O2

[50]. However, attempting to use sterically hindered donors to

Fig. 4 Co(salen) as a typical example of a Co-Schiff base complex

Fig. 5 Mechanism for the Co-Schiff base catalyzed oxidation of p-substituted phenols to benzoquinones
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achieve that improved binding distorts the salen, reducing
electron donation from the ligand and minimizing the effect
of the external ligand that might otherwise be expected. The
result is that ligands showing higher donor ability do not have
a significantly better effect on yield than poorer donors [9].

Oxidation of compounds modeling lignin’s G units
proceeded in much lower yield. However, the effective use
of lignin within the integrated biorefinery will require that all
primary structural units in lignin can be converted to HVOs.
We found that the yield of quinone from the oxidation of
G models is strongly affected by the presence of sterically
hindered aliphatic nitrogen bases, e.g., the yield of ben-
zoquinone from the oxidation of vanillyl alcohol was
improved from 21 to 51 % upon the addition of
diisopropylethylamine (DIPEA). Importantly, this im-
provement was realized without compromising the al-
ready high yield observed for the oxidation of S models.
Mechanistically, we suggest that the presence of the hin-
dered base promotes partial deprotonation of the phenol
substrate, affording a phenoxide anion that is more readily
oxidized by the Co(salen)/O2 complex.

Most recently, we have synthesized a series of unsymmet-
rical Co complexes that incorporate a hindered aliphatic base
within the Schiff base ligand and that show excellent perfor-
mance in the oxidation of both S and G lignin models (Fig. 7
and Table 4) [51].

Fig. 6 Calculated minimum energy structure for Co(salen)/2,4-
dimethylimidazole complex with O2

Table 3 Influence of imidazole ligands on the yield of DMBQ from Co(salen)-catalyzed oxidation of syringyl alcohol
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Each of the new catalysts convert syringyl derivatives
(entries 1 and 2) into DMBQ in good to very good yield with
the N-benzyl catalyst (X = NCH2Ph) showing the highest
reactivity, affording DMBQ in 74% yield after only 1 h (entry
1) and comparable yields in 16 h with as little as 2 % catalyst.

Conversion of the starting alcohol to the corresponding alde-
hyde is observed as a side product in some reactions. More-
over, the catalysts exhibit significantly higher reactivity than
Co(salen). Interestingly, these oxidations do not require the
addition of an external axial ligand for Co, and indeed, addi-
tion of pyridine to the oxidation led to low yields of DMBQ
and recovery of much of the starting material. The increased
effectiveness of the N-benzyl system as a catalyst was dem-
onstrated by the oxidation of the G models vanillyl alcohol
and α-methyl vanillyl alcohol to the corresponding
monomethoxybenzoquinone (MMBQ) in 83 and 51 % yield,
respectively (entries 3 and 4). Moreover, several phenolic
lignin models containing both S and G subunits linked
through a β-aryl ether bond are converted to the

Table 4 Oxidation of lignin model monomers and dimers using unsymmetrical N-benzyl catalyst

entry substrate t(h) MMBQ(%) DMBQ(%) aldehyde(%)
1 1 74 19

2 16 - 72 11

3 16 83 - -

4 24 51 - 22

5 16 - 81 traces

6 16 17 86 traces

7 48 21 64 traces

8 48 0 10 0

HO

MeO

OMe

OH

N N

O O
Co

tBu

tBu

tBu X
NR =

R

X = NH, NMe, NCH2Ph,
NPh or CH2

Fig. 7 New unsymmetrical Co-Schiff base catalysts for oxidation of
lignin and lignin models
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Fig. 8 Typical 2D HMQC spectrum of lignin oxidation products
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Fig. 9 Organosolv lignin oxidation in the presence of DIPEA
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corresponding benzoquinones. Models bearing two S sub-
structures were converted to two equivalents of DMBQ in
81% yield (entry 5), and compounds incorporating both S and
G subunits also gave high DMBQ yields (entries 6 and 7).
More moderate yields of quinone were observed for the G
residue of these dimers. Interestingly, placing the S residue of
an S, G model dimer as the β-substituent led to much lower
yields of quinone product (entry 8). The current research is
examining the impact of moving the bound aliphatic base to
different locations within the salen ligand.

Collectively, these results demonstrate approaches po-
tentially able to convert both of the primary structural units
available in biorefinery lignin streams to benzoquinones as
examples of HVOs. We have applied these processes to
lignin isolated by our organosolv fractionation process.
Using O2 in the presence of Co(salen) and DIPEA, HMQC
analysis revealed that the main products from the oxidation
of switchgrass organosolv lignin were vanillin, DMBQ,
and syringaldehyde. Preliminary results from the oxidation
of poplar organosolv lignin using the newer catalysts show
the same products. While the yield of low molecular
weight product has remained low for the samples tested
to date, it is comparable to typical yields for related lignin
oxidations [52]. Figure 8 shows a typical NMR spectrum
of the products isolated after lignin oxidation. The forma-
tion of DMBQ is in line with model studies [40] that show
the selective conversion of the aromatic functionality. The
addition of an aliphatic base such as DIPEA produces
significant changes in the identity of the products of the
reaction (Fig. 9). As the amount of DIPEA is increased, the
amount of DMBQ is reduced and replaced by the presence
of a new structurally similar material. This new material is
also observed with the newer catalysts that include a hin-
dered base as part of the salen ligand. Preliminary results
from mass spectrometry suggest that this product is 2,5-
dimethoxybenzoquinone that could arise from the conver-
sion of G units in the lignin to MMBQ followed by Mi-
chael addition of methanol solvent during the oxidation.
We are continuing to investigate these processes and will
report results in future publications.

Conclusions

The ability to integrate production of biobased chemicals
with the production of biofuels will play a critical role in
development of an integrated biorefinery. Our research
has revealed that organosolv fractionation of biomass
can serve as a source of high-quality lignin. Further, this
lignin can be converted to low molecular weight aro-
matics. The current yield of these processes is low, but
ongoing work in our laboratories is examining methodol-
ogy to extend the lifetime of oxidation catalysts and

expand the number of substructural units able to be con-
verted by these processes.
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