Is TIMBER INSURABLE? A StupY OF WILDFIRE RISKS IN
THE U.S. FOREST SECTOR USING SPATIO-TEMPORAL
MODELS
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In the U.S. forest products industry, wildfire 1s one of the leading causes of damage and economic
losses. While individual wildfire behavior 1s well studied, new hterature 1s emerging on broad-scale
(e¢.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational vari-

ables across both spatial units and time periods. Several statistical models are used to quantify
the risks. We develop several maximum likelihood estimation methods to account for spatio-

temporal auto-correlation in conditional risks. A group index insurance scheme i1s proposed, and
its associated actuarially fair premium rates are estimated and presented. Implications for wildfire

management policies are also discussed.
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The U.S. timber products sector 1s the world’s
largest in both market value and volume, and
accounted for 24% of total world output and
23% of total world consumption from 2000
to 2010 (Department of Commerce 2012).
A large portion of the timber industry is
based on natural and planted forests that
cover one-third of the U.S. landscape. Fur-
ther, 57% of all U.S. production is based on
timber harvested from southern U.S. forests
(Smith et al. 2010), large segments of which
are prone to damaging wildfires (Malamud
et al. 2005). Hence, land owners and man-
agers take steps to reduce expected damages
by preventing fire occurrence (Prestemon
et al. 2010) by managing fuels so that they
burn less intensely and less frequently
(Cleaves et al. 2000) and by suppressing fires
when they occur. The USDA Forest Service
and the Department of the Interior spent a
combined average of $1.4 billion/year from
2000 to 2011 1n inflation-adjusted 2011 dollars
(USDA Forest Service 2011; Department
of the Interior 2012) on mitigating losses
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through timber salvage (Prestemon et al.
2006). However, limited efforts are made to
provide private landowners with financial
instruments that mitigate expected losses
from wildfires. This 1s surprising, given then
potential to help alleviate private losses (e.g.,
Butry et al. 2001; Kent et al. 2003).

After wildfires, private landowners and
other affected residents are often assisted In
an ad hoc fashion. Often, non-profit orga-
nizations such as the American Red Cross
extend aid that addresses personal needs.
Other local non-profit programs, such as the
Georgia Wildfire Relief Fund (State of
Georgia 2008), provide assistance to affected
residents and engage in local ecosystem
restoration over the long term.

Government assistance after wildfires 1s
typically delivered in the form of tax cred-
its and government-subsidized low-interest
loans. In 2007, the Internal Revenue Service
(IRS) and the California state government
eranted tax relief for Southern California
wildfire victims following large wildfires in
2007 and 2008 (Internal Revenue Service
2007, 2008; State of California 2008). Often,
assistance from the government requires that
a wildfire be large and particularly damag-
ing. When juxtaposed with the reality that
most fires are small, a significant number
of landowners affected by wildhire are not
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included in coordinated federal or state
actions to aid victims, and therefore effective
risk management instruments are lacking.'

Real-world experience with forest 1nsur-
ance has a mixed record. In the United
States, a very limited number of timber 1nsur-
ance programs addressing multiple perils are
available on the private market. Examples
include the Davis-Garvin Agency’s standing
timber insurance and the Outdoor Under-
writers’ standing timber insurance. These two
programs offer all-risk insurance policies on
a case-by-case basis in a few small regional
markets. However, the overall nationwide
forest landowners’ insurance participation is
very small.

The paucity of multi-peril forest msurance
plans in private markets implies a high cost
that results from the difficulties associated
with monitoring and administering multi-
peril insurance. In some sense 1t may be
too difficult to precisely measure risks from
all possible hazards. In the case of inaccu-
rate monitoring or poorly measured risks,
insurance providers may face moral hazard
and adverse selection problems, which arise
when agents assume more risks because they
have insurance. Such moral hazard actions
may range from simple mismanagement of
property to intentional fraud.

Adverse selection occurs from inaccurate
rates when high-risk agents are more likely to
purchase insurance than low-risk agents, thus
leading to an adversely-selected insurance
pool. Precisely modeling and pricing risks 1s
essential for avoiding adverse selection. Com-
pared with multi-peril insurance, for which
it may be difficult to trace all risk sources,
a single-peril insurance plan only requires
consideration of the limited risks associated
with the specific hazard. An actuarially fair
single-peril insurance plan can be more easily
implemented, and therefore has the poten-
tial to increase insurance participation and
reduce adverse selection.

In most fire-prone regions of the United
States, wildfire is the most significant hazard
faced by timberland owners. There are thus
at least two benefits to be gained from devel-
oping a timber insurance product. First, such

l Individuals and businesses can claim wildfire losses as a
deduction in their income taxes. However, in the case of timber,
these casualty losses are only on the basis (investment costs). For
federal taxes, only casualty losses, net of any income obtained
from timber salvage, that exceed 7.5% of taxable income can be
claimed. For state taxes, these losses may not be claimed at all,
particularly in states without income taxes.
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a product could empirically quantity risks
and potentially attract insurance companies
and forest landowners to engage in a private
insurance market for risk sharing. Second,
such a product could provide a baseline esti-
mate of the timber-related net benefits of
wildfire risk mitigation (prevention, fuels
management, suppression) for individual
landowners, policy makers, and public land
managers. '

The first benefit stems from the notion
that recognition of a particular hazard and
its spatio-temporal transmission mechanisms
may warrant the development of single-
peril insurance products that accurately
measure wildfire risks. Given the fact that
wildfire risks are usually catastrophic, if actu-
arially fair rates can be implemented In a
single-peril insurance plan, risk-averse forest
landowners will purchase such products 1f
they are offered by insurance companies.
Such a private insurance market can ease
the destructive losses of forest landowners,
even in the absence of government interven-
tion. Furthermore, as forest disaster relief 1s
becoming a fast-growing burden for govern-
ments worldwide (Holecy and Hanewinkel
2006), developing private wildfire nsurance
products can lessen the financial stresses
associated with taxpayer-funded support, and
make ad hoc disaster reliet unnecessary.

The second benefit of developing a timber
insurance product stems from the notion
that understanding the causal tactors asso-
ciated with wildfire could result in broader
welfare gains to society. Understanding
how wildfire risks are propagated spatio-
temporally and how they depend on inputs
can lead to more rational public policies and
private landowner decision making. How-
ever, wildfire production is complicated by
the existence of both purchased and free
inputs that need to be jointly considered 1n
the statistical models required to generate
a fair insurance scheme (e.g., Prestemon,
Mercer, and Pye 2008). Another complica-
tion is that a practical, effective surance
policy needs to minimize adverse selection
and moral hazard distortions, and should be
able to induce incentive-compatible actions
by forest landowners to prevent wildfire
risks (e.g., Amacher, Malik, and Haight 2006;
Crowley et al. 2029). A fairly-priced 1nsur-
ance plan also needs to evaluate compliance
policies that decrease outbreak probabilities
by reducing hazards in advance. Prescribed
burning is an example of efforts made by
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forest landowners and governments to reduce
wildfire risks (e.g., Cleaves et al. 2000; M.ercer
et al. 2007).

The State of Florida provides a natural
setting for evaluating a wildfire timber nsur-
ance product. Nearly half of the state’s 35
million acres of land—16.1 million acres—is
forested (Smith et a.. 2010). Florida ranks
among the top five tree-planting states in the
United States, with one-third of its forests
covered in pine plantations. Thus, Florida’s
forest products sector is heavily dependent
on the fire-prone and fire-vulnerable invest-
ment of private landowners. Florida’s timber
products sector is an important income and
employment generator, with annual income
ranging from $2 billion to $4 billion/year, and
employment ranging from 35,500 to 61,400
people from 1990-2010. The sector also gen-
erated nearly 1% of the state’s income 1n
2010 (Department of Commerce 2012). At
the same time, Florida experiences over 4,000
wildfire occurrences per year, on average,
with approximately 200,000 acres of forest
land being burned in a typical year. More-
over, the fact that 70.7% of Florida’s forests
are privately held by 509,000 non-industrial
landowners (Butler 2008) suggests that a

potentially significant demand for forest wild-

fire insurance protection could exist in the
state.”

This paper studies spatially and temporally
correlated wildfire risks in Florida using data
covering 1981 to 2005.° We evaluate many
of the underlying causal factors (purchased
or free inputs) associated with wildfire risks.
We find that vegetation types, climate, and
socioeconomic conditions have significant
influences on the probability of fire occur-
rence. An annual county-level contract, which
pays a pre-determined indemnity to all those
insured in an affected county in the event
that a wildfire index exceeds a pre-specified
level, is proposed. Statistical models are used
to quantify wildfire risks at the county-level
and to estimate expected insurance indem-
nities. A key component of the insurance
modeling involves the estimation of several
spatio-temporal, lattice models. Imphcations
for wildfire management policies are also
discussed.

2 Similar arguments could be made for other fire-prone states
in the region (e.g., Georgia, Mississippi, Alabama, Texas) where
timber values are high, wildfires are frequent, and forest ownership
is dominated by private landowners.

3 The Florida wildfire data set provided by the Florida Forest
Service was only available for this time period.

()
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Risk Models and Insurance Contracts

The central tenet of any effective insurance
scheme is a full understanding of all risks
underlying the associated hazards. An actu-
arially fair insurance premium (or premium
rate) is based upon knowledge of risks; the
actuarially fair rate is the rate (expressed 1n
terms of total premium as a percentage of
total liability) that sets total premiums equal
to expected total indemnities.

A model measuring the actuarially fair
premium rate is usually expressed 1n terms of
a conditional probability density or a cumu-
lative distribution function that underhes the
risks associated with possible outcomes. In
some insurance programs, such as life msur-
ance, a loss is an all-or-nothing event. In this
case, because the payout amount 1s prede-
termined, an actuarially fair premium rate
is equivalent to the conditional probability
that the loss event occurs. Such surance
contracts are appropriate for wildfire risks,
where any exposure to wildfire for properties
within a small site usually results in a total
loss. For an insurance contract underwriting
a total loss event, if we denote z =1 to be a
loss event (z =0 otherwise), the expected loss
can be expressed as:

E(Loss)=P(z=1)E(loss|z =1).

The probability of a loss event 1s usually
given as a function that i1s conditional on a
vector of observable covariates, X, and the
associated parameter estimates vector P,
that 1s,

(2) P(z=1)=F(Xb).

When the contract specifies a fixed indem-
nity in case of a loss event (i.e., E(loss|z =
1) = Payment is predetermined), then the
fair premium 1is equivalent to E(Loss)=
F(XB)*Payment, and the actuarially fair pre-
mium rate is thus equal to the probability ot
loss.

Combining the aforementioned risk
function and the theoretical discussions In
Prestemon et al. (2002), we construct a model
to describe broadscale wildfire risks. Wildfire
hazards arise from different sources, such
as lightning and arson. Hence, a broadscale
wildfire risk function (Prestemon et al. 2002)
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can be written as:

(3) Bu=) Bis.

where By, 1s the ratio of total burned area by

wildfire to the total forestland area of county
s In year ¢, and B;, represents the burnt ratio
caused by hazard source ;. On an aggregate
level, the burnt ratio i1s equivalent to the wild-
fire risk probability.* Therefore, the wildfire
damage function of the burnt ratio caused by
hazard { can be written as:

(4)

where X, 1s a vector of observable variables
assoclated with wildfire hazards.
Understanding factors that determine loss
probabilities 1s crucial for modeling risks. For
forest wildfire insurance, factors such as tree
types, characteristics of forest land, weather,
and socio-economic factors are potentially

important risk determinants.’

Further operational i1ssues should also
be considered when designing an insurance
program. One important component of
Insurance provisions is the insurance cov-
erage period. For example, in agricultural
insurance contracts, the insurance period
1s usually specified on a calendar year or
crop season basis. We assume an insurance
period corresponding to a calendar year with
no loss of generality. It is also important to
identify insurance periods because risks can
only be conditioned on information avail-
able prior to the beginning of an insurance
period. For example, although drought is
a significant cause of wildfires and may be
predictable, precipitation in year t+1 1s
generally unknown 1n year ¢. Therefore, our
Insurance parameters are always conditioned
on variables that are observable in the year
betore the terms of coverage are determined.

BE.SJ = Fi(Xsrﬁ‘)a

4 Divide the land of a county into n equally sized small sites.
The probability that one small site i1s burned within a time period
1s denoted as P(Z =1). If we assume homogeneous broadscale
risk within a county, following the law of large numbers, the
burnt ratio B, which is the number of burned sites divided by n,
converges to P(Z=1) as n goes to infinity.

’ Fuel management and suppression effort may also be related
with wildfire risks. However, our focus is to produce an actuarially
fair insurance product, and wildfire prevention/suppression actions
are endogenously determined by environmental factors. As long
as the variables included in our statistical model have adequately
accounted for the varying rates of prevention/suppression effort
and fuel management, our modeling should be sufficient to
estimate and forecast a fair premium.
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Empirical Analysis

We use fire occurrence data collected by

the Florida State Forestry Division from
1981-2005. A total of 132,371 individual fires
were recorded over this period, and each

record describes characteristics of an indi-
vidual wildfire. The 1nitial time, township 1D,
cause, fuel type, spread speed, duration, and
acreage burned are documented. Weather
statistics for the same period were collected

from the National Climate Database Cen-

ter (NCDC) of the National Oceanic and
Atmospheric Administration (NOAA). Land

characteristics were obtained from the Forest
Inventory and Analysis Database (FIADB),
which 1s administrated by the USDA’s Forest

Inventory and Analysis National Program.®
Soclo-economic statistics were collected from
the Regional Economic Information System
(REIS) data set assembled by the Bureau of
Economic Analysis of the U.S. Department of
Commerce.

In our analysis, the unit of observation 1s a
county. This choice i1s dictated by our avail-
able data, though the analytical approach
1s applicable to any geographic or tempo-
ral unit of observation for which suitable
data exist. Although the fire data consist of
township-level records, detailed information
for many of the factors suspected to be rele-
vant to wildfire risks are only available at the
county level. Wildfire can spread quickly over
a large area spanning township boundaries,
so county-level statistics about wildfire losses
may be more accurate and useful. Finally,
premium calculations at the county level
smooth the premiums across different timber
farms without inducing adverse selection.
A group (index) insurance plan, if condi-
tioned on a county-level index, can also help
alleviate moral hazard and adverse selection
(Smith and Goodwin 2011).

The dependent variable 1n our analysis 1s
the annual county-level burnt ratio (burnt
area as a proportion of the total forest area).
As 1llustrated 1in figure 1.a, the distribution
of this variable 1s highly right-skewed, sug-
gesting that conventional risk modeling
approaches that assume normality may not

® The FIADB county-level observations are generated from
measurements of fixed-location plots. These plots are visited on
a periodic basis (every few years) to gather information in the
form of tree volumes by species and product classes, among other
variables.
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Figure 1. Distributions of burnt ratio and its logarithm

be appropriate. We therefore use as our
response variable a log-transformation ot
the burnt ratio that smoothes the burnt ratio
(all observations are positive), and yields a
distribution that is much closer to normal
(figure 1.b).

Several observable factors are relevant
to wildfire risks. For example, certain forest
types such as oak and hickory are believed to

be more resistant to wildfire spread. Variables
representing the shares of several groups ot
forest lands are considered here, including
the group of long-leaf slash pine forests and
loblolly/shortleaf pine forests, the group of
oak/pine forests and oak/hickory forests,
and the group of oak/gum/cypress torests.
We form an aggregate composite variable
for the area comprised of all other forest
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land types.” Two crucial weather variables
affect wildfire likelithoods, that 1s, drought
and temperature. We represent drought and

temperature factors using the 12-month
Standardized Precipitation (SP12) index
and the Heating Degree Day (HDD) index,
respectively. Hurricanes are also a significant
weather phenomenon that hypothetically
influence wildfire risks (Myers and van Lear
1998; Chen and Goodwin 2011). We measure
hurricane risks by using the historical annual
frequency of hurricanes at a given location.®
Human intervention, including deliberate
or accidental incendiary events, are repre-
sented by population, employment, and the
proportion of forest land that i1s privately-
owned. These factors have been identified as
potentially relevant causal factors of arson
and other crimes (see Becker 1968), and their
empirical significance has been verified by
existing research (Prestemon et al. 2002).

Table 1 presents summary statistics and
variable definitions for wildfire risks and
relevant explanatory factors” Our analysis
utilizes annual county-level observations for
all 67 counties in Florida from 1981 to 2005,
resulting in 1,675 county-year combinations.
To recognize the need for conditioning infor-
mation to be available prior to the provision
of insurance, all covariates are lagged one
year in the empirical models.

Several estimation approaches to estimat-
ing the conditional probability model were
considered. As the simplest and most com-
mon model, an ordinary least squares (OLS)
regression of y,, on X, | was adopted:

(5)

where y,, 1s a wildfire risk indicator and Xj,_
1s a vector of lagged observable covariates.

Y1 = Xs,,f'“—-]ﬁ'i‘ SET

7 As suggested by an anonymous referee, a significant portion of
timber plantations in Florida are intensively managed with short
rotations, which may affect wildfire risks. We considered alternative
models that accounted for pine plantations. The resulting models
suffered from multi-collinearity problems, and thus our final
specification did not include plantation shares. These alternative
results are available upon request.

® Future research may benefit from a consideration of
temporally-variable hurricane risk measures that reflect long-
run weather cycles. The accuracy and utility of such measures
remains open to debate, and these factors are not used in this
analysis.

? Ground fuel is related to wildfire risks. In this study, forestland
ratio is used to represent such information. We found that this
proxy is more desirable than other alternatives such as biomass
density, living tree density, and tree mortality in terms of the
eoodness of fit. In addition, adding any of the abovementioned
alternative variables did not improve the results, and led to
multi-collinearity problems.
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However, existing research has found that
wildfire risks are both spatially and tempo-
rally autocorrelated (Prestemon et al. 2002:
Prestemon and Rutry 2005). As a resuit,
an OLS regression based solely on the
independent variables may not account
for spatio-temporal autocorrelation.

An alternative approach includes temporal
lags of the dependent variable and the aver-
age of neighboring observations of the lagged
dependent variable to correct for temporal
and spatial autocorrelation. For example, it

only the first-order temporal lag 1s included,
the model can be expressed as:

(6)

where y;,. 1s the average of all {y;,_}, given
| € O, and O, represents the set of all spatial
units bordering county s. A more general
class of such models can be written In a
vector form as:

(7)

where Y, 1s a vector of observations of
the dependent variable for all of the spa-
tital units at time 7, and X,_; represent the
lagged covariates. Equation 6 1s a special
case of equation 7, but with a spatial weight
matrix W. Elements of the spatial weight
matrix W are defined as W =1/(the number
of county i's neighbors) if counties i and |
are neighbors, and 1s zero otherwise. This
method simplifies estimation, but does imply
that spatial transmission does not occur
contemporaneously (see Ripley 1981).

The response variable of our interest—
either wildfire frequency or propensity—is
observed annually. While a wildfire rarely
lasts longer than a month, simultaneous spa-
tial interactions within a year are more likely
to underlie the truth. Therefore, we have also
developed a regression model with autore-
gressive, spatio-temporal dependence, in the
form of

(8)

The differences between the two afore-
mentioned models (equations 6 and 8) are
not limited to the fact that p 1S a simulta-
neous spatial dependence parameter 1n
equation 8, while p 1s a lagged spatial depen-
dence parameter in equation 6. Unlike the
model represented by equation 6, for which
it 1S convenlent to adopt OLS estimation

Vst = PVsi—1 T qVsr—1 T+ Xsi—1P+ €gs

Yi=poWY, .1 +qgY1 + Xi1B+ €4,

Yg — pWYr + qu_'i + X{m]ﬁ_" E;.
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Table 1. Definition and Statistics of Variables
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Variable (County Level) Definition N Mean Std. Dev.
Burnt ratio Burnt forestland size/total 1675 0.0109 0.0392
forestland size
Log (Burnt ratio) Logarithm of burnt ratio 1675 —5.6251 1.8754
Forestland ratio Total forestland area/county size 1742 0.5168 0.2813
Private share Proportion of private owners’ 1742 0.7434 0.2585
forestland
L.ongleaf /slash pine and Proportion of longleaft /slash pine 1742 0.4144 0.1840
loblolly /shortleaf forestland and loblolly / shortleat
pine share pine forestland
QOak/pine and Proportion of oak/pine forestland 1742 0.2076 0.1243
oak/hickory share and oak/hickory forestland '
Qak/gum/cypress share Proportion of oak/gum/cypress 1742 0.2209 0.1241
forestland
Daily average of HDD Sum of daily Heating Degree Day 1742 2.7920 1.4247
Index indices within a year divided by
365
December SPI12 index December’s probability of observing 1742 0.2531 0.9798
a given amount of precipitation
for next 12 months
Hurricane incidences Annual count of hurricane strikes 1742 0.1819 0.4777
within 40 miles of a county’s
centroid
Population density No. of residents per acre of county 1742 (.3887 0.6928
land
L.og(population density) Logarithm of population density 1742 —1.8720 1.3548
Employment ratio Percentage of worktorce population 1742 0.4253 0.1159

techniques, the spatio-temporal autore-
gressive model (equation &) may present
estimation challenges. In particular, it may
be difficult to estimate parameters when the
welght matrix W appears iteratively in the
log-hkelihood function.

Another challenge i1s how to incorporate
the temporally-lagged dependent vanable.
As Chiff and Ord (1975) noted, the lagged
dependent variable Y,_; can be treated as
an independent variable, as long as Y,_; is
independent of current errors €,. In addi-
tion, if the assumption that errors {€,} are
serially independent is satisfied, the esti-
mation method for simultaneous equations
systems 1s applicable (Johnston 1972). Cuft
and Ord (1975) devised a maximum like-
lthood estimation method for models with
spatial dependence, and proved that an OLS
regression approach will not produce con-
sistent estimates in that scenario. Therefore,
we modified their method to accommodate
the spatio-temporal modeling context and
developed a similar maximum likelihood
estimation method.!"

" For further information, please see the supplementary
appendix online, |

In addition to scenarios where the depen-
dent varlable 1s autocorrelated, researchers
have often built empirical models in which
autocorrelation exists among errors. Such
an i1dea comes from the notion that if the
independent covariates are not comprehen-
sive enough, the unexplained parts of the
dependent variable are still likely to have
spatio-temporal interaction. Therefore, we
modified the maximum likelihood estimation
method of Ord (1975), and constructed a
model with spatio-temporal autocorrelated
errors in the form of

(9) erxr—1ﬁ+ Uh
and
(10) U, =oWU, +qU,_ 1+ €.

Our estimation methods have 1mportant
advantages 1n the presence of spatial and
temporal correlation. The simultaneous spa-
tial dependence parameter p 1s an important
factor to be estimated. Although conven-
tional models such as equation 7 allow for
lagged spatial interaction, the potential for
simultaneous transmission In a broad time



220 January 2014

Amer. J. Agr. Econ.

Table 2. Estimates and Statistics from Conventional Regressions Parameter

OLS Model Conventional S-T Model
Estimate Std. Error Estimate Std. Error
5.1—1 —0.0292 (0.0349
Y1 0.2643*** (.0264
Intercept —4.4674** 0.2873 —3.6629*** 0.3189
Forestland ratio —3.5721*** 0.2802 —2.6151*** 0.2946
Private share 1.4833*** 0.2392 0.9049*** 0.2384
Longleaf /slash & loblolly /shortleaf 3.2207*** 0.3878 2.9126*** 0.3939
QOak/pine & oak/hickory —1.7279*** 0.3834 —0.7750** 0.3789
QOak/gum/cypress 2.0596*** 0.4157 1.7687** 0.4151
Daily average of HDD index —0.3193*** 0.0532 —0.3094*** 0.0540
December SPI12 index —0.2757*** 0.0413 —0.11217F 0.0448
Hurricane incidences ~0.1118 0.2069 —(.1649 0.1988
Log(population density) 0.3627*** 0.0442 0.2650*** 0.0449
Employment Ratio —2.2862™** 0.4367 —1.5802*** 0.4350
Summary Statistics
6 2.6798 2.4659
R? 0.4091 0.4446
Max. VIF 3.6447 4.4866
Max. condition index 23.9007 28.9506
Autocorrelation Test

Percentage of years when spatial 24.00% 29.17%
autocorrelation found 1n residuals
Percentage of counties where temporal 5.97% 10.45%

autocorrelation found in residuals

Note: Asterisks *, ** and *** represent significance at the 10%, 5%, and 1% levels, respectively.

scale has been 1gnored. In some cases, 1f the
spatial dependence within the same period
does Indeed exist, misspecification of the
model may lead to estimation biases.

Table 2 presents the results of a simple
OLS regression (equation 3) and the con-
ventional spatio-temporal linear regression
(equation 6). The OLS results suggest that
all of the conditioning explanatory vanables,
except for the hurricane frequency measure,
have statistically significant impacts on wild-
fire risks.!! The conventional spatio-temporal
model produces similar results, except that
the coefficient of the HDD index 1s not sta-
tistically significant. Temporal dependence
i1s shown to be positive and significant, while
the lagged spatial dependence 1s not statisti-
cally significant and is small in magnitude.'”

' Other variables may also be relevant. Examples include
wildfire prevention/suppression etfort, law enforcement, and road
densities. We constdered these factors and found that they were
correlated with other included variables and that their inclusion
did not change the overall results. Further, some data do not
cover the entire time span from 1981 to 2005. Results using these
variables are not presented here, but are available upon request.

12 Both the variance inflation index (VIF) and condition index
are small, which suggests that no multi-collinearnty exists among
the covariates.

Overall, the specification of the models and
the choice of explanatory variables appears
to receive strong empirical support.

Autocorrelation tests for the residuals,
however, confirm our concerns. Although
temporal autocorrelation i1s successfully
controlled for, neither model sufficiently
corrects for spatial autocorrelation.!> The
residuals are autocorrelated in approximately
one-quarter of the years, and adding a lagged
dependent variable does not alleviate auto-
correlation, suggesting that spatial linkages
are more likely to exist simultaneously. This
is less of a concern within the context of pre-
dicting the conditional probability of specific
wildfire risks, but it does suggest that the
models are inetficiently estimated and may
result in misleading inferences.

The difference between the magnitudes of
coefficients in these two models also suggests
possible misidentification by the OLS model.
The estimated coetficients of observable vari-
ables 1n the OLS model are always larger

13 Each county is checked for first-order autocorrelation using
the Breusch-Godfrey test at the 5% significance level. Spatial
autocorrelation is checked using Geary’s C index permutation
test at the 5% significance level every year.
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Table 3. Statistics of Spatio-Temporal Autoregressive Regressions

S-T Auto. Dep.”

S-T Auto. Err.?

Parameter Estimate Std. ErrorEstimate Std. Error
Spatial dependence 0.2813*** 0.0269 0.3445*** 0.0288
Temporal dependence 0.2489*** 0.0244 0.2495*** 0.0241
Intercept —2.4588*** 0.3063 —4.9675*** 0.3987
Forestland ratio —1.9814*** 0.2784 —2.8695*** 0.4221
Private share 0.7071*** 0.2264 0.9400*** 0.3321
Longleaf /slash & loblolly /shortleaf 2.5052*** 0.3757 3.5459** (0.5583
Oak/pine & oak/hickory —0.7039* 0.3599 —0.5574 0.6093
Oak/gum/cypress 1.4335*** 0.3961 3.0884*** 0.5990
Daily average of HDD index —0.1991*** 0.0517 —0.4627*** 0.0896
December SPI12 index —0.0379 0.0405 —0.0528 0.0868
Hurricane incidences —0.0883 0.18&87 0.5003 0.4336
Log(population density) 0.1969*** 0.0426 0.3686*** 0.0649
Employment Ratio —0.9281** 0.4117 —1.7992** 0.5565
Summary Statistics
G 2.2252 2.1991
Autocorrelation Test
Percentage of years when spatial 12.50% 8.70%
autocorrelation found in residuals
Percentage of counties where temporal 11.94% 11.94%

autocorrelation found in residuals

Note: Asterisks *, ** and *** represent significance at the

0%, 5%, and 1% levels, respectively.

“The autoregressive model with spatio-temporally autocorrelated dependent variables (see equation 8).
PThe autoregressive model with spatio-temporally autocorrelated dependent error terms (see equations 9-10).

than those in the spatio-temporal model. This
1s not surprising, because the spatio-temporal
model has taken temporal and neighboring
county 1mpacts into consideration, while
the OLS regression only models wildfire
risks conditional on independent variables.
If spatio-temporal autocorrelation indeed
exists, influences of covariates may be exag-
gerated by the OLS model, and thus lead
to 1naccuracies 1n insurance design and the
mismanagement of wildfire control programs.

Table 3 presents the results of the spatio-
temporal autoregressive model and the
model with spatio-temporal autocorrelated
errors. Similar to the conventional models
(table 2), most parameter estimates suggest
statistically significant influences. Climate
factors, such as temperature and drought,
affect wildfires as expected. Cold weather
(represented by the HDD index) appears to
significantly reduce wildfire risks. The sig-
nificant impact of population density again
verifies that human intervention is an impor-
tant causal element of wildfire s. Factors
related to the economic welfare of the pop-
ulation 1n a given county may also reflect
economic stresses related to deliberate acts
of arson (Prestemon and Butry 2005). High
employment significantly mitigated wildfire

risks, since employed persons have higher
opportunity costs of time and are less likely
to commit arson.

Private ownership of forests always implies
a significantly higher wildfire risk. Since
rangers and forest police work actively on
public forest lands, private lands are expected
to be more vulnerable to wildfire threats. The
group of longleaf/slash pine, loblolly/shortleaf
pine, and oak/gum/cypress forests have
significantly higher fire risks. The latter result
reflects the fact that swamp fires are easily
spread.

Contrary to expectations, the SP12 index,
which represents drought conditions, 1s not
statistically significant 1n these two models.
Likewise, oak/pine and oak/hickory forests
are not significant in the model with autocor-
related errors. The direction of the impacts
from these two variables, though, are still as
expected. With the exception of the hurricane
index, coefficients of other covariates are all
statistically significant with the anticipated
signs.!*

4 As noted by an anonymous referee, lightning is also an
important causal factor for wildfire. Results that included lightning
were similar to those presented in the paper and reflected
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Another 1mportant implication of our
results 1s that spatial dependence 1s now sta-
tistically significant, which 1s in contrast to
estimates of the conventional spatio-temporal
model. This finding confirms suspicions that
the conventional spatio-temporal modeling
specifications neglected to consider contem-
poraneous spatial linkages between wildfire
risks within a given year. Further, spatial
autocorrelation among residuals has been
reduced significantly relative to the results
for the conventional models. The percentage
of years with spatially autocorrelated resid-
uals decreases from around 25% to close to

10%. This is not surprising since the methods
account for simultaneous spatial interactions,
while conventional models only consider
lagged spatial interactions. These 1mprove-
ments confirm that these models are superior
for evaluating spatio-temporal autocorrelated
wildfire risks. Finally, since the smaller esti-
mated variance of errors implies a better fit,
these two models provide a more desirable
tool for predicting wildfire risks.

The primary goal of our empirical anal-
ysis is to construct models that precisely
estimate conditional wildfire probabilities
to determine actuarially fair insurance pre-
mium rates. An actuarially fair premium that
abstracts from administrative and operating
costs (including any return to capital) associ-
ated with the program should be set equal to
the expected loss. The expected loss 1s usually
expressed as:

(11) E(lossy) = [ E(Payment |z, Og)

X f(zsr O )dzs,

where z,, 1S an indicator that one of the claim
provisions has been triggered (1.e., that a
loss event has occurred). Further, © rep-
resents the conditioning variables that are
conceptually relevant to the risks, and f(z)
represents the corresponding probability den-
sity function of the loss event. When a fixed
payment 1s made only if a specific outcome
occurs (e.g., death in the case of life insurance
contracts), the fair premium can be simplified
to:

(12) E(lossgy) = Pr(zy, =1|®g4) x Payment,,,

substantial multi-collinearity with other climate measures such
as precipitation and temperature.
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where Pr(zy) represents the corresponding
actuarially fair insurance premium rate. As
noted, it is also a conditional probability
that can be empirically estimated using the
aforementioned models.

Similarly, for wildfire risks, expected losses
for a comprehensive insurance scheme that
can be offered to an individual timber owner
can be expressed as:

(13) E(loss)g = Pr(og|0Og)

X E(Payment,|og, Og),

where oy represents a loss event caused by
wildfire at location s in time ¢, and Payment
represents compensation for the loss. How-
ever, in light of the problems associated with
adverse selection and moral hazard outlined
above, such an insurance plan would not be
expected to be viable in the forest industry.
The first difficulty comes from the tact that
wildfire outbreaks are distributed unevenly
across space and are too volatile to model
accurately at the individual land parcel level
of resolution. Second, the value of timber
ranges widely across stands and over time,
due to variations across stands in species and
qualities of the timber products they contain.
Therefore, the transaction costs associated
with assessing both individual risks and ha-
bility values may be too high to implement
such an individual wildfire nsurance plan,
potentially causing moral hazard and adverse
selection.

A group insurance plan at the county level
may be able to overcome such complications.
One advantage of group insurance plans is
that they can smooth risks across the whole
county by basing coverage on an aggregate
index. In addition, if the actions of individual
agents do not significantly atfect the aggre-
gate index or index threshold that governs
coverage, moral hazard is diminished. We
can use the burnt ratio to represent the fire
probability as

(14) E(loss)y =z X E(Payment |25, Og),

where z;, 1s the expected burnt ratio. Our
models forecast the burnt ratio for county
s iIn time ¢, which we assume follows a
log-normal  distribution conditional on
information available at time ¢-1. However,
results using the burnt ratio directly, such as
equation 14, are not robust in our empirical
models. Even though the logarithm of burnt
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ratio 1s normally distributed, 1ts varnations
will be exponentially amplified when the
logarithmic form 1s converted back into the
original level.

Our index insurance plans, however, are
unattected by these issues. In a hypothetical
timber 1nsurance program, the claim pro-
cedure could work as follows. Before the
beginning of the insurance period, both insur-
ance providers and forest landowners agree
on an indemnity trigger for the burnt ratio
index, say Zg =8%, and the insured agents
pay premiums to insurance companies. At the
end of the insurance period, the federal or
state authority 1ssues a final burnt ratio for
each county based on statistics document-
Ing fire occurrences. When the actual burnt
ratio z; in a county exceeds the threshold
stipulated 1n the contract, say 8%, every
insured forest landowner in this county will
receive a fixed payment. Note that in such
Index plans, payments are made to all insur-
ing landowners regardless of whether they
experienced fire losses. Thus, in our example,
the actuanally fair premium is:

(15) E(loss)sy = Pr(zs > 2y |Og)

x E(Payment |zZg > Zg, Og).

The premium rate, which is the ratio of the
premium to the liability, 1s:

(16) Pr(Zsr - Esr\(")sr) =1 — (I)((ln zsr = uSI)/GSI)a

where ¢ (-) 1s the standard normal cumulative
distribution function, and zg ~ In N(pg,0?).
The mean p and the standard error ¢ are esti-
mated by our models. Since the mean burnt
ratio 1s approximately 0.1% (table 1), we
consider triggers of 10%, 1%, 0.15%, 0.1%,
0.05%, 0.01%, and 0.001%.

Summary statistics of the estimated
premium rates for different triggers are

presented in table 4. Because a smaller trig-

ger provides more comprehensive protection,
premium rates increase as the trigger level
declines. Premium rates among spatio-
temporal models are fairly similar. In con-
trast, the OLS regression, which ignores
spatio-temporal autocorrelation, generally
produces much higher premium rates. This
indicates that premium rates may be over-
estimated 1if one does not consider spatio-
temporal autocorrelation. Recall that the
ettects of observable covariates on risks are
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overestimated when spatio-temporal corre-
lation is 1gnored (table 2). This also suggests
that the resulting higher rates will likely
discourage participation in the 1nsurance
plans. Further, if information is not perfectly
symmetric, overestimating premium rates
will result in an adversely-selected pool of
insured agents, which may endanger the
sustainability of such programs.

Figure 2 and online supplementary figure
compare the average actual burnt ratio
between 1983 and 2005 (figure 2) to the aver-

age estimated premium rates using different
models for the same time period (online sup-
plementary figure). The overall similarities
of the maps suggest an appropriate selection
of covariates. Although the visual differences
between the four maps of premium rates
are not substantial, the mosaic patterns gen-
erated by the preferred models are closer
to the actual burnt ratio map than those of
the conventional models, which suggests a
better fit.

An mmportant function of any insurance
program 1s accurately calculating premi-
ums. The total premium depends on the
premium rate and the expected payout.
The Payment, in equation 15, which is the
product of insured acres and the indemnity
payment per acre, can be set exogenously
in accordance with various policy goals. For
example, given that the payment will be made
to all insured timber owners if the threshold
1s surpassed, the indemnity amount may be
set at a level that corresponds to the cost
of desired fire risk mitigation actions that

may be taken 1n response to localized fire

outbreaks. For example, payments may be
set as:

(17) Payment,
= (Insured Acres),
X [(Timber Value Per Acre),

X (Actual Loss Ratio)
+ (Prevention Cost)],

where (Actual Loss Ratio);, 1s equivalent to
the burnt ratio z;, in equations 15 and 16.
Since county-level timber volume and
regional timber prices are readily available,
it 1s straightforward to estimate the aver-

age timber value per acre in each county.!®

'> Timber loss values are not limited to the values of trees. For
example, even a young stand of trees too small to be commercially
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Table 4. Estimated Premium Rates Given Different Trigger Indices

Model Mean

Reimburse if burnt ratio > 10%:

OLS Model 0.0296

Conventional spatio-temporal 0.0249
model

Model with dependent responses 0.0242

Model with dependent errors 0.0239

Reimburse if burnt ratio > 1%:

OLS Model 0.2059

Conventional spatio-temporal 0.1946
model

Model with dependent responses 0.1938

Model with dependent errors 0.1971

Reimburse if burnt ratio > 0.15%:

OLS Model 0.5189

Conventional spatio-temporal 0.5079
model

Model with dependent responses 0.5051

Model with dependent errors 0.5139

Reimburse if burnt ratio > 0.1%:

OLS model 0.5935

Conventional spatio-temporal 0.5835
model

Model with dependent responses 0.5803

Model with dependent errors 0.5893

Reimburse if burnt ratio > 0.05%:

OLS model 0.7136

Conventional spatio-temporal 0.7058
model

Model with dependent responses 0.7026

Model with dependent errors 0.7109

Reimburse if burnt ratio > 0.01%:

OLS model 0.9108

Conventional spatio-temporal 0.9073
model

Model with dependent responses 0.9063

Model with dependent errors 0.9102

Reimburse if burnt ratio > 0.001%:

OLS model 0.9939

Conventional spatio-temporal 0.9928
model

Model with dependent responses 0.9932

Model with dependent errors 0.9934

Median Std. Dev. Max. Min.
(0.0048 0.0546 0.4595 2.2380E-6
0.0031 0.0471 0.3582 3.2602E-9
0.0027 0.0467 0.3641 1.8989E-9
0.0033 0.0420 0.2874 2.4611E-9
0.1176 0.2062 (0.9040 7.3282E-4
0.1019 0.2059 0.8650 7.2380E-6
0.0998 0.2093 0.8729 5.3640FE-6
0.1075 0.2029 0.8171 5.9200E-6
0.4888 0.2642 0.9931 2.1562E-2
0.4749 0.2757 0.9896 8. 7885E-4
0.4779 0.2841 0.9910 7.5272E-4
0.4859 0.2768 0.9827 7.6228E-4
0.5869 0.2535 0.9967 3.77963E-2
0.5775 0.2665 (.9949 2.0512E-3
0.5811 (0.2749 (.9957 1.8007E-3
0.5865 0.2671 0.9911 1.7999E-3
(.7399 0.2187 0.9991 8.8282E-2
0.7379 0.2337 0.9987 7.5751E-3
0.7429 0.2408 0.9989 6.9019E-3
0.7457 0.2328 0.9975 6.7755E-3
0.9481 0.1059 (0.9999 3.5634E-1
0.9517 0.1235 0.9999 8.0182E-2
0.9549 0.1239 (.9999 7. 7763E-2
0.9536 0.1187 (0.9999 7.4655E-2
0.9988 0.0133 1.0000 0.8504
0.9991 0.0254 1.0000 0.5249
(0.9993 0.0238 1.0000 0.5281
0.9992 0.0232 1.0000 0.5109

il

Prevention costs are used to compensate
forest owners’ preventive actions that may
be taken once a fire occurs 1n a given county.
Such steps include building fire breaks and
removing excess fuels. In the case of conta-
gious (spatio-temporally correlated) risks,
preventive actions may provide positive
externalities across spatial units and across
time periods. This occurs 1f payments permit

valuable may still have a non-zero loss value due to stand re-
establishment costs and delayed rotations, as determined by the
insurance adjuster.

costly risk mitigation efforts that reduce the
risks ot wildfire spread. Non-insured timber
owners, neighbors, and the local commu-
nity may realize benefits from the decreased
risks that result from mitigation efforts.
Therefore, such an 1nsurance scheme may
help to mitigate overall wildfire nsks and
thus enhance social welfare. The realiza-
tion of such externality benefits may require
compensated timber owners to undertake
mitigation eftorts.

Insurance provisions sometimes require
specific actions following a claim. If the
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trigger index is surpassed, the expected
indemnity in equation 15 can be expressed as
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be conditioned using relevant information,
the premium paid by the insured should be
actuarially fair.

We consider a validation study to simulate
the viability of this insurance plan. Because
actuarial fairness only depends on the con-
ditional probabilities, the choices of Timber
Value Per Acre and Prevention Cost will not
affect program performance. Thus, we assume
for simplicity, but without loss of generality,
that the average timber value is identical for
all counties and years in Florida, which is
estimated to be $983 per acre (Bronson). Fire
prevention cost is assumed to be $112 per
acre, which roughly corresponds to the labor
costs (valued at minimum wage) of removing
excess fuel on a 2,000 square foot plot.

An important operational issue involves
specifying the trigger index. Since the typ-
ical burnt ratio fluctuates dramatically
across counties, timber owners from dif-
ferent counties might be unwilling to buy an
insurance policy with a universally constant

x E {[(Timber Value Per Acre)yx zy + (Prevention Cost)|zy> Zy, Oy}

= (Insured Acres)y x (Timber Value Per Acre)g x E(zy|zg > Zs, Ot)

(18)  E(Payment |z > Zg, Og)
= (Insured Acres)y
+ (Prevention Cost),
where

E(z:]2g > Zops Osr) =€XP(hss + 0@/2)
X D (s + 0% — InZg;) fo5r) /[1—
@ ((In Zg — pg)/og)], given zy
~In N(us,,cf,).

The actuarially fair premiums are:

(19)  Premiumg = E(loss)g

trigger. Therefore, we assume an insur-
ance plan whose provisions are attached
to the expected burnt ratio. For example,
if the predicted burnt ratio is estimated
to be 2, =10%'" and the target coverage
level is C =80%, the trigger index will be
Zqg =C x 23 =8%. The associated actuari-
ally fair premium (equation 19) can then be

= E(Payment |2y > Zg, Og) x (Premium Rate),

= {(Timber Value Per Acre),, x exp(jLyg + Gf,/Z) X D((g + 032-,
+ (Prevention Cost) x [1 — ®((InZy —

The trigger index of the burnt ratio Z is
predetermined and has no influence on the
conditional wildfire probability. Hence, as
long as the probability of a fire (i.e., the dis-
tribution of burnt ratio zy ~ In N(pLS,, S,)) can

—InZy)/oy)

W) /05)] X (Insured Acres)y, } .

16 The expected burnt ratio z is given by 2, = exp(iLy + 02/2).
given zy ~In N(jLy;0%).
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simplified as:

(20) Premiumg = {(Timber Value Per Acre),,

xexp(lst + 05/2) X D (05/2 — In Clog)
+ (Prevention Cost) x [1 — ®(InC /oy
+ 0y /2)] X (Insured Acres),, .

Such a plan more closely reflects expected
wildfire risks and thus should be more widely
accepted. In our validation experiments, we
assume full participation and use parame-
ter estimates from each model to forecast
annual wildfire risks. In each experiment, a
fixed coverage level of protection is offered.
For example, if Coverage =120%, a forest
landowner can only claim an indemnity pay-
ment 1f the actual burnt ratio zj, in his county
exceeds 120% of the expected burnt ratio, z,,.
Premiums are assessed using equation 20, and
indemnities are determined by equation 17.

Summary statistics of simulated premiums
and indemnities for several insurance plans
are presented 1n table 5. The loss ratio, which
should be one for an actuarially fair plan, is
defined as the ratio of total indemnities to
total premiums. Ignorance of spatio-temporal
autocorrelation may cause overestimation of
premiums, which s confirmed (table 5) since
the programs derived from the OLS model
consistently collect much higher profits than
others. Within all four modeling specifica-
tions, the most desirable result (i.e., the loss
ratio 1s closest to one) is always generated
by one of the two preferred models. This
verifies our contention that the spatial cor-
relation of wildfire risks is more likely to
be contemporaneous. Although both pre-
miums and indemnities rise as the level of
protection becomes more comprehensive
(with a lower coverage value), the loss ratio
eventually approaches one and is stabilized
when target coverage is below 1.5%.!7 One
implication is that they are better able to
represent the entire distribution rather than
just the right part of the distribution. This
is reasonable because the log-normal distri-
bution of the burnt ratio is extremely right
skewed. The other implication is that a target
coverage level as low as 1% is small enough
to compensate most wildfire occurrences.

'’ Premiums and indemnities are also stabilized when coverage
<1:5%, according to statistics for a target coverage below 1.5%,
some of which are not presented in table 5, but are available
upon request.

Amer. J. Agr. Econ.

The validation results therefore support the
viability of this index insurance scheme. Over
half of the policies will not make reimburse-

ments 1f the target coverage is more than
50%. This reflects the fact that the standard
deviation of errors oy, 1s between 1.5 and 1.6
(tables 2 and 3). An alternative would be to
use the predicted median of the burnt ratio
instead of the expectation as the benchmark
score.!®

Conclusion and Discussion

dociety has long had to deal with natural
disasters using both ad hoc compensation
and more formal institutional arrangements.
While the latter may be best represented by
the largely private sector effort to provide
Insurance to property owners, timberland
owners have generally lacked insurance. We
evaluate an insurance instrument that pro-
tects timber owners against wildfire risks.
A single-peril index insurance scheme is
proposed and associated actuarially fair pre-
miums are estimated. A validation study
representing the operation of such a plan
supports the wiability of such index insur-
ance plans—at least from the perspective of
Insurance providers.

In this paper, we identified spatio-temporal
dependence for wildfire risks in Florida. To
this end, we developed two new structural
models that revised the spatial autocorre-
lation models of Ord (1975) to explicitly
address the spatio-temporal aspect of this
problem; contemporaneous spatial depen-
dence was incorporated and parameters
were estimated using maximum likelihood
methods. Our empirical analysis was based
on a complete survey of Florida wildfire
loss records from 1981 to 2005, as well as
data drawn from the National Forestry
Inventory and Analysis (FIA) database,
the Regional Economic Information System
(REIS) database, and the National Cli-
mate Data Center (NCDC) database. The
results confirmed that our proposed statistical
models offer advantages over conventional
models when recognizing spatio-temporal

autocorrelation and  when  calculating
premiums.
Our analysis also suggests potentially

important forest management implications.

18 MEdfﬂ”(Z_ﬂ) = eXPlirg ), gi"’e“ 25 ~ In N(H.’ih UE:)'



227

Is Timber Insurable?

Chen, Goodwin, and Prestemon

(penunuo))

SO0EL0 ¢1'6Y 891001 0 0 A 4 LY V1 POCel 807 00°8¢ B4 SI0119 Juapuadap yim [SpON
sasuodsal

01280 LT 99 89 1001 0 0 $L9C 05°SL 96CL1 681 G0'8C CEPe yusapuadop yim [9pOoN
[apoul

L6SL 0 ¢LV9 89 1001 0 0 0CVC 81 9T LO9CL] PCve LLLC 65 e [e1odwal-oneds [eUOHIUIAUOD)

861L0 SO'EY 891001 0 0 LB'1C v 0C 6L SLC 6C°¢C Py LC [¥°CE [epowr §7 10O

19,001 = 988I2A0))

890L°0 CE (Y 891001 0 0 05°0¢ 03¢l [vecl ¢S0¢ A0 4 9¢°0¢ S10112 Juapuadap Yim [9pON
sasuodsal

CLSLO 66°C9 89°1001 0 0 0S'TC LLYT €91 SLOT 91'$¢ CE 0 yuspuadap yim [9pOIN
[opowa

POT1L 0 ¢6'19 89°T00T 0 0 9661 48! CCe91 [9°0¢ L6t 8Y°0¢ [erodwa)-oneds [eUONUIAUOD)

¢I189°0 9009 89° 1001 0 0 RS'LIL 861 e 19¢ 6861 L8EC 0S5 1¢ [epowt §710

210, 07T = 93BISA0))

62690 09°6S 891001 0 0 6691 06°CI [RCII 09°9] [661 CL'SC S10113 Juspuadap yum [9pOoN
| sasuodsal

0CSL 0 8L65 891001 0 0 [€°LT 08¢l 90611 9L91 6861 89°CC judpuadap yiim [SPON
[opouw [erodwal-oneds

9CCL 0 ¢1'68 89°100T 0 0 99°01 LYVl 9C'0ST GO9I 0861 06°¢C [BUOI]-USAUO))

8L09°0 ¢9'9¢ 89°100T 0 0 eLel 141! CSeve 8101 6’61 [1°LC [epour S 10

19, 0ST = 938I3A0)

6L1L°0 LO9S 891001 0 0 eCel GO'TI £ 66 294! GCST 8Y°0C S10112 Jusapuadap yiim [OPON
sasuodsal

CISLO SRS 89 1001 0 0 el Pl 9L°1¢1 A 0C°¢S1 Oy 0¢ juopuadap yim [opoN
[opouwl

LIOTLO 66 VS 891001 0 0 Sl 60°¢tl 0L°¢et 124! 0CST CL0C [elodwal-oneds [eUONUSAUOD

C6£9°0 69'¢S  pRIT00] 0 0 0C'TI ¢891 IL6I1C €1l SN | 17T [epoll §° 10

20/, 00T = 93BIA0))

HONEY A9 "PIS XeN U UBIPDIN UEIN A PIS XEN Ul UEIPp9N UEBSN [PPOIN

SSO

IV 194 ANUWIapuj

Y 194 WNIWIJ

S[9A3T I3BIIA0)) JUIIJI(] YIIM SWIBISOLJ DUBINSU XOpU] JO APN)S UOHEPI[BA °S IqEL



Amer. J. Agr. Econ.

228 January 2014

96860

‘89100 1 = CIT +980S06(0 X €86 =1S0)) UONUIAJLJ + oney juing [eInpy x DY 134 anjea Jaquuj 4] uonenba Aq pajenoes st amoe 1ad Aiuwapur i) se suoredyt

LG ETT

[e6ll

[$81

-23ds [opowr AQ pa1o3jjeun SI anjeA wnwixew siy[ ‘pa21933uL sAem|e ST judwied ANUWLPUI SIY) ‘9% CpQ'CT Uey) 1d331€] SI [9A9] 3FRIZA0D AY] SSIUN ‘94,CQ°() PUB 2,8C') UIIMIAQ AJUO Ssem Iedk jey) 10] onel juing payadxs a1 duIg
'edIe pue[ 1S2J0] 2INUD S} JO 9|6 A[orewrixoidde o] jus[eAInba S yaym ‘6861 Ul AJUNOD) piemolg Ul IYp[im AQ 1uing pue| 1S3I0] JO sale [oZ'L] JO SSO| [e101 & 01 spuodsowiod Ayuwapul ul no pred junoure wnuixew SIYLp

swniwdld [e101 oY) AQ POPIAIP SANIUWAPUI [B10) Yl SB pauya(], -SAION

88VII

s10119 Juapuadap yim _mmoq,m

680 891001 0 b6 LY [COLT YA

sasuodsal

86860 L9 0y 891001 0 LGET] Svoll 9861 bS 008 Iv°0T1 L8V 61¢Cl yjuspuadap yim [9pON
[apoul

$686°0 L9 OV 89°1001 0 LSETT Svoll 90 8800t  9C0l1 OLV11 OV eCl [erodwial-oneds [BUOTIUIAUOD

L8860 68'1Y 891001 0 LS COBII GL'ST OI'Ley (9601 C8VII 681 [opouwt §'1O

10,1 = 988BI2A0))

bLSO'T 6L°6S 891001 0 PP ETT  9L°TOT GE]I 8L0CC  +0€8 6568 ZL'L6 $10113 yudpuadap yim w_uoz
sasuodsal

G8LO1 3P 8S 89 1001 0 6vell by €0l 9961 veel?d 008 CL68 6086 juspuadap yim [9poN
[opoul

90601 LL8S 891001 0 Ovell LO €01 6¢ 0¢ 65CLL LTS L 88 1E°L6 [eJoduraj-orjeds [eUOHUSAUOD)

90L0°1 £8°CY 891001 0 8eell Ov'L6 474 gr'vet  P0O'I8 0C 98 01°96 [opou S71O

10,01 = 98BIA0)

L8680 80°¢L 891001 0 0 SL'SY 6V 91 €L E91 8V 0v 12°81% 68°CS $10112 Juapuadap yum [SpON
sosuodsal

CIL6°0 bSeL 89 1001 0 0 LL 8V L9L] CLOIC el LSSy 60°tS juapuadap Yim [9pON
[opoul

86160 8C¢L 89°1001 0 0 96 9t LE8I PO 0OIC  L60F 86V LS [eiodwal-orteds [BUOIUDAUOD)

0858°0 8CCL 89°T00T 0 0 SO'1Y 00°¢7C PGt B6'8E OtP 19°CS [epowt §°10O

10/, ()S = 93e12A0))

¥99L°0 2089 891001 0 0 c6'6¢C ¢Sl el 06'8C (a%) 00y SI0119 Juapuadap yum [SpON
sasuodsal

0vS$80 6689 891001 0 0 LSTE 0L 91 9681 ce6c CltE [0V Jjudapuadap yim [9pON
| [opowl

[1S6L°0 36'LY 89 1001 0 0 900t 6691 80981 91°6C L8CE ¢00v [ezodwra)-o1jeds [BUONUIAUOD

8ESLO 6L99 891001 0 0 89°LC 8L 1 PS'16¢  06LC {A43 LS OY [epou §71O

10/ 08 = JIBBIIA0))

,011e Y .qu PIS XEN UIN UBIDOIN UBIN A2 PIS XEN UIN UBIPIN UBIN i [PPON

SSO

210V 194 Ayuwapug

210V 124 WINIWal]

panupuo) °g JqEL



Chen, Goodwin, and Prestemon

Our results identify important causal factors
related to wildfire risks. These factors include
drought, high temperatures, and human
actions, all of which appear to enhance wild-
fire hazards significantly. Components of
forest land ecosystems also have significant
influences on fire risks. Thus, the government
and timber owners may consider actions to
reduce wildfire hazards, such as concentrating
fire suppression resources on certain types of
forestland and in high unemployment areas.
In addition, spatial and temporal spillover

effects of wildfire are confirmed. This sug-
gests that efforts to reduce the ignition

and spread of wildfires may imply positive
externalities, which may have important
policy implications.

Economists typically argue that govern-
ment intervention reduces overall economic
welfare unless a specific failure of the market
exists. Many arguments pointing to market
failures are advanced by proponents of sub-
sidized insurance, and most such arguments
are refuted by empirical evidence (Smith
and Goodwin 2011). However, one persua-
sive case favoring government support for
specific peril or multiple peril insurance
exists when such insurance may be used to
encourage mitigation efforts by those threat-
ened by contagious risk (Goodwin and Vado
2007). If subsidized compensation for losses
is provided when such a hazard is present,
mitigation efforts may be encouraged and
the spread of the hazard may be inhibited.
In such a case, aggregate economic welfare
could potentially be enhanced by subsidized
insurance. Subsides might also serve to miti-
gate free-rider problems and the distortions
that they entail.

From the government’s perspective, such
insurance may provide a useful financial
instrument to compensate wildfire losses
and alleviate wildfire risks. Compared to ad
hoc disaster relief, timber wildfire insurance
plans may have several advantages. First, the
coverage of insurance might be much wider
than that of disaster relief. Indeed, disaster
relief usually ignores small-scale wildfires,
which comprise a dominant share of all wild-
fires. Such index insurance programs may
also help wildfire suppression. Since indemni-
ties are directly attached to a wildfire index,
insured forest landowners have strong incen-
tives to report a wildfire despite its scale.
Thus, suppression actions can be taken in
a timely manner and the spread of wildfire

may be inhibited. At the same time, because
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an 1ndividual fire likely cannot influence the
aggregate index directly, moral hazard issues
are diminished.

The government can also more actively
engage 1n wildfire management with this
Insurance instrument. Disaster relief, which is
usually only granted after very large wildfires,
has almost no impact on reducing wildfire
risks. Because wildfire risks are positively
correlated In both space and time, mitiga-
tion actions should reduce neighboring and
future wildfire hazards. An insurance scheme

that supports preventive actions may lower
wildfire risks and associated future premiums,

and a lower premium will raise insurance
participation and encourage even more
preventive actions.!” Such reciprocal arrange-
ments will likely alleviate wildfire risks in the
long term. Further, unlike ad hoc disaster
payments, subsidies may be a more fiscally
stable instrument for the government.

Our main focus is to propose a risk-
management instrument for timber owners.
The accurate quantification of conditional
risks and insurance premium rates are nec-
essary ingredients of any insurance program.,
whether subsidized or private. Our objec-
tive is to derive such measures to guide
public policymakers and private insurance
providers. In this study it is not our intent
to quantitatively verify the rationale or
necessity of the aforementioned subsidized
scheme. Indeed, the role of government
in the provision and maintenance of such
wildfire insurance remains an important
topic for future policy deliberations and
research. Other important problems relating
to the dynamic behavior of landowners and
insurers also remain of interest. If insurance
induces more risk mitigation, risk profiles
may evolve over time along with insurance
participation.

" To ensure subsidized mitigation actions are performed,
restrictive insurance provisions and monitoring steps may be
required. As a reviewer correctly notes, the benefits of index
coverage may be diminished if individual monitoring is required.
However, validating mitigation is quite distinct from the range of
underwriting and data requirements necessary to adequately price
and loss-adjust policies offering individual coverage. Further, if
the subsidy for the insured is so big that the spillover benefits
to the uninsured neighbors can reduce expected losses of the
uninsured by a significant amount, free riding by the uninsured
may arise, which could result in a suboptimal Nash equilibrium.
To prevent such cases, a careful evaluation of the optimal subsidy
amount may be necessary. The goal of our research is not to
cvaluate insurance subsidies in detail, but rather to discuss the
modeling and pricing of fire risks. The role of subsidies is an
important topic for future research.
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