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Assessing Heterogeneity in Soil Nitrogen Cycling: 
A Plot-Scale Approach

North American Forest Soils Conference Proceedings

Soil N cycling processes are heterogeneous in both space and time. Process 
rates can dramatically change across the range of centimeters to meters and 
minutes to days, hindering our ability to predict and model these dynamics 

(Groffman et al., 2009; McClain et al., 2003). The environmental factors (i.e., soil 
moisture, pH, inorganic N concentrations, organic N, and available C) control-
ling N cycling processes such as N mineralization (Knoepp et al., 2008; Pastor et 
al., 1984; Pastor and Post, 1986), nitrification (Breuer et al., 2002; Nielsen and 
Revsbech, 1998; Sahrawat, 2008; Ste-Marie and Paré, 1999), and denitrification 
(Burgin et al., 2010; Firestone et al., 1980; Groffman and Tiedje, 1991) are well 
documented. However, the complexity and heterogeneity of these environmental 
factors create hotspots and hot moments with accelerated N transformation rates 
(Burgin et al., 2010; Johnson et al., 2010; Parkin et al., 1987; Schimel and Bennett, 
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The high level of spatial and temporal heterogeneity in soil N cycling pro-
cesses hinders our ability to develop an ecosystem-wide understanding 
of this cycle. This study examined how incorporating an intensive assess-
ment of spatial variability for soil moisture, C, nutrients, and soil texture 
can better explain ecosystem N cycling at the plot scale. Five sites distrib-
uted across a regionally representative vegetation and elevation gradient at 
the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains 
were sampled five times between November 2010 and March 2012. We used 
electromagnetic induction (EMI) to survey for soil moisture, soil texture, and 
near-infrared reflectance spectroscopy (NIRS) to estimate extractable NH4

+, 
total C, and total N concentrations. Laboratory assays of nitrification and 
denitrification potential rates were used as an index for N cycling dynam-
ics. Multivariate regression analysis indicated that the NIRS and EMI survey 
data explained 30 to 90% of the variability in potential nitrification rates (p < 
0.01) and 16 to 70% of variability in potential denitrification rates (p < 0.01). 
Two extrapolation approaches were used to calculate the mean and the vari-
ability of potential rates: (i) stratified selection of collected samples based on 
EMI and NIRS predictors; and (ii) random selection of collected samples. The 
mean for potential nitrification rates based on EMI and NIRS stratification 
yielded similar (oak–pine and mixed oak) and greater (northern hardwood 
and cove hardwood) rates, whereas potential denitrification rates were great-
er in all sites for the stratified-based estimates. This study demonstrated that 
the application of geophysical tools may enhance our ecosystem-level under-
standing of the N cycle.

Abbreviations: CH, cove hardwood; EMI, electromagnetic induction; MO-high, high-
elevation mixed oak; MO-low, low-elevation mixed oak; NIRS, near-infrared reflectance 
spectroscopy; NH, northern hardwood; OP, oak–pine; pDNF, potential denitrification;  
pNTR, potential nitrification; WS, Watershed.
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2004) that are challenging to quantify and model (Groffman et 
al., 2009; McClain et al., 2003).

Hydrologic models in combination with soil biogeochem-
ical models such as the NGAS Century (Parton et al., 1996) 
simulate N2 and N2O emissions from nitrification and deni-
trification using large watershed scale patterns of soil moisture 
(Band et al., 2001; Swank and Crossley, 1988; Tague, 2009; 
Tague et al., 2010) but lack utility at the plot scale (?ha) 
(Tague et al., 2010). Approaches capable of capturing fine-scale 
heterogeneity are needed to improve our ability to model and 
scale N cycling rates and fluxes (Groffman et al., 2009; Tague 
et al., 2010).

Geophysical techniques such as electromagnetic induc-
tion (EMI) provide a quantitative means to assess fine-scale 
soil texture and moisture variations through the measure-
ment of soil conductivity (Abdu et al., 2008; Robinson et al., 
2008b). Soil conductivity is mainly controlled by volumetric 
water content, clay content, temperature, and salinity (Everett, 
2005; Friedman, 2005). In agricultural and marine systems, 
research has shown that conductivity is controlled by nutri-
ent concentrations and salinity (Corwin and Lesch, 2005; 
Sheets et al., 1994; Zhu et al., 2010), whereas in forested sys-
tems, soil moisture and soil texture are the controlling factors 
(Sheets and Hendrickx, 1995; Triantafilis and Lesch, 2005). 
Therefore, EMI approaches have been used for soil textural 
(Triantafilis and Lesch, 2005; Weller et al., 2007) and mois-
ture (Reedy and Scanlon, 2003; Robinson et al., 2008b; Sheets 
and Hendrickx, 1995) assessments but far less commonly to 
estimate biogeochemical patterns and processes (Cockx et al., 
2005). Unlike traditional soil surveys methods, EMI rapidly 
captures thousands of measurements per hectare. Combining 
the high-spatial-intensity soil geophysical data from EMI with 
field-portable spectrophotometric sensors such as near-infrared 
reflectance spectroscopy (NIRS), which provides soil chemical 
attributes, allows mapping of both physical and chemical at-
tributes. Both EMI and NIRS map layers have been used ex-
tensively in precision agriculture to predict and optimize crop 
yields (van Vuuren et al., 2006; Zhang et al., 2002).

The southern Appalachian Mountains have been described 
as the “water tower” of the Southeast (Gragson and Bolstad, 
2006), making stream and river water quality important for the 
regional water supply. Nitrate concentrations in particular in-
crease with anthropogenic disturbance and have been found to 
be a key player in regional water quality (Knoepp and Clinton, 
2009). Nitrate is the mobile form of inorganic N in soils often 
susceptible to leaching (Aber et al., 1998, 1989). Therefore, 
this study focused on the process that produces NO3

− (i.e., 
nitrification) and the process that removes it from the ecosys-
tem by converting it into a gaseous form (i.e., denitrification), 
thus preventing leaching. Previous studies have identified soil 
moisture, NH4

+ concentrations, C/N ratios, and pH to be the 
main drivers of nitrification rates (Donaldson and Henderson, 
1990; Knoepp and Vose, 2007; Robertson and Vitousek, 1981; 
Sahrawat, 2008), whereas denitrification rates are generally 

thought to be controlled by soil moisture, NO3
− concentra-

tions, and organic C availability (Groffman, 2012; Tiedje et al., 
1984). In addition, wetting and drying cycles have been found 
to stimulate mineralization, nitrification (Cabrera, 1993; Fierer 
and Schimel, 2002), and denitrification (Groffman and Tiedje, 
1988), making variability in soil moisture an important factor 
controlling process rates both instantaneous and via distal con-
trols on the community composition (Groffman et al., 1988; 
Wallenstein et al., 2006).

In this study, we investigated the potential of high-spatial-
resolution EMI and NIRS measurements to estimate the vari-
ability of potential nitrification (pNTR) and potential deni-
trification (pDNF) rates in five forest types along a gradient in 
elevation, vegetation, N, and water availability in the southern 
Appalachian Mountains.

We hypothesized that patterns of spatial variability in soil 
conductivity, a proxy for soil moisture, will relate to patterns of 
process rates for nitrification and denitrification. In addition, we 
hypothesized that greater total C and inorganic N concentra-
tions would result in higher pDNF rates, whereas pNTR would 
be positively correlated to inorganic N concentrations. We ex-
pected spatial autocorrelation to indicate pNTR to be less het-
erogeneous (large range) than pDNF (small range) because redox 
conditions that drive pDNF are probably more variable across 
plots. We used spatial modeling techniques to predict pNTR 
and pDNF providing insights concerning where we could expect 
high and low process rates. This approach could dramatically im-
prove both sample collection efficiency as well as the accuracy of 
predicted N cycling rates across a larger spatial scale.

Methods
Study Site

The study was conducted at the Coweeta Hydrologic 
Laboratory, a 2180-ha U.S. Forest Service experimental forest in 
the southern Appalachian Mountains in western North Carolina. 
This area receives an average of 1800 ± 34 (low elevation) to 2400 
± 44 mm (high elevation) of precipitation a year (Coweeta Long-
Term Ecological Research, 1934–2011, http://coweeta.uga.edu/
dbpublic/dataset_details.asp?accession=1011). The highest aver-
age air temperatures are between June and August (20°C), and 
the lowest average air temperatures are between December and 
January (5°C). The growing season starts in May and ends in 
September (Swift et al., 1988).

We examined five sites (80 by 80 m) that represent the ma-
jor vegetation types within the Coweeta basin. All five sites are 
located in reference watersheds that have been undisturbed since 
1929 (Knoepp and Swank, 1998). Watershed 18 is a low-eleva-
tion watershed (13 ha) and includes xeric oak–pine (OP), cove 
hardwood (CH), and low-elevation mesic mixed oak (MO-low) 
forest community types. Watershed 27 is a high-elevation water-
shed (39 ha) and includes high-elevation mesic mixed oak (MO-
high) and northern hardwood (NH) forest community types. 
Table 1 provides detailed information regarding the elevation, 
slope, dominant vegetation, and soils for each site.
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Soil Sampling and Incubations

We determined potential nitrification (pNTR) and poten-
tial denitrification (pDNF) on fresh soil samples collected in 
March 2011, July 2011, November 2011, and March 2012. Using 
a stainless steel soil push tube, cores (15 cm mineral soil) were 
collected from randomly selected locations (three to six) within 
each of the five sites (OP, CH, MO-low, MO-high, and NH). For 
potential nitrification, ntotal = 67 (nOP = 12, nCH = 16, nMO-low 
= 16, nMO-high = 7, nNH = 16), and for potential denitrifica-
tion, ntotal = 87 (nOP = 15, nCH = 17, nMO-low = 16, nMO-high = 
20, nNH = 19). The location of each sample was obtained using 
an Archer GPS ( Juniper Systems Inc.). We divided core samples 
into forest floor and 0- to 15-cm-depth mineral soil (pNTR) or 
forest floor and 0- to 5-, 5- to 10-, and 10- to 15-cm-depth miner-
al soil (pDNF), and stored the samples in reclosable plastic bags 
at 4°C. Each soil sample was sieved (<2 mm) and homogenized. 
Gravimetric soil moisture was determined by oven drying a 10-g 
subsample of each soil at 105°C to constant weight. Potential ni-
trification assays were determined on field-moist soils within 72 
h of collection, and pDNF assays were conducted on field-moist 
soils stored at 4°C for <2 wk.

We used the amended slurry incubation method for pNTR 
determinations on both soil and forest floor (ntotal = 67) samples 
(Bodelier et al., 1996). Five-gram samples of sieved soil or for-
est floor were placed in 37-mL serum vials with 15 mL of media 
[0.33 g L−1 (NH4)2SO4 in deionized (DI) water buffered with 
0.14 g L−1 K2HPO4 and 0.027 g L−1 KH2PO4) (pH = 7.5). 
Each vial was wrapped in Al foil, with an Al foil cap to prevent 
evaporation and UV light inhibition of NH3 oxidizers. After 
the addition of the media, the vials were shaken at 10 relative 
centrifugal force (rcf ) at 25°C; 2-mL subsamples were collected 

after 0.5, 2, 6 to 8, and 24 h of incubation using a cut-off pipette 
tip. Subsamples were centrifuged for 10 min at 11,000 rcf and 
the supernatant was immediately frozen at −20°C until analysis 
for NO2

− + NO3
− using colorimetric methods (Bendschneider 

and Robinson, 1952).
Potential denitrification rates were determined using the 

acetylene block method (Groffman et al., 1999) on both soil 
and forest floor samples (ntotal = 87). Five-gram samples of 
sieved soil (2 g for forest floor samples) were added to 37-mL 
serum vials. The serum vials were purged with He for 1 min 
to displace O2 from the vial, and then 5 mL of incubation 
media was added to the serum vials. The media consisted of 
dextrose (1 mmol L−1) and NaNO3 (1 mmol L−1) in DI wa-
ter purged for 30 min with He gas. Assays were initiated by 
replacing 4 mL of headspace with 99% pure acetylene (10% 
v/v). The samples were incubated at 20°C while shaking (5 
rcf ) for 6 h. Gas subsamples were taken 0.5, 2, and 6 h after 
initiation of the incubation and stored in 3-mL gas vials un-
til analysis for N2O on a gas chromatograph with electron 
capture detector (Shimadzu Corporation GC-14A) with a 
10-port Valco valve (Valco Instruments) to prevent acetylene 
from saturating the detector.

Rates of pNTR and pDNF were determined via regression 
analysis of changes in solution NO3

− or N2O concentrations 
with time (rates were accepted if r2 > 0.8). All rate data were cal-
culated per kilogram of dry soil (as mg N kg−1 soil h−1). Using 
the total weight of dry soil or forest floor from each core subsec-
tion, a rate was calculated for the whole 0- to 15-cm-depth core 
(mg N kg−1 soil h−1).

In June 2011, georeferenced soil texture analyses were 
done on each of the five sites (OP, CH, MO-low, MO-high, 

Table 1. Selected site characteristics. Data were compiled from Coweeta Long-Term Ecological Research Program records (see 
www.coweeta.uga.edu for additional information). Modified from Knoepp and Swank (1998). Soils data were determined on soil 
profiles extending from surface to parent material (Thomas, 1996).

Parameter Oak–pine
Cove 

hardwood
Low-elevation mixed oak High-elevation mixed oak

Northern 
hardwood

Location 83°26¢ N 35°3¢ W 83°26¢ N 35°2¢ W 83°26¢ N 35°2¢ W 83°27¢ N 35°2¢ W 83°27¢ N 35°1¢ W
Elevation, m 788 801 860 1094 1389

Aspect, ° 180 340 15 75 20

Slope, ° 34 21 34 33 33

Vegetation oak–pine cove hardwood mixed oak mixed oak northern hardwoods

Dominant 
species

Pinus rigida Mill.
Quercus coccinea 

Münchh.
Quercus prinus Willd.

Carya spp.
Kalmia latifolia L.

Liriodendron tulipifera L.
Quercus prinus

Carya spp.

Quercus prinus
Carya spp.

Quercus rubra L.
Rhododendron maximum 

L.

Quercus prinus
Quercus rubra

Carya spp.
Rhododendron maximum

Betula alleghaniensis 
Britton

Quercus rubra
Betula lenta L.

Tilia heterophylla Vent.

Moisture regime xeric mesic mesic mesic mesic

Soil series
Evard–Cowee

Chandler
Edneyville–Chestnut

Saunook
Tuckaseegee

Trimont Chandler Plott

Soil textures
fine-loamy

coarse-loamy
coarse-loamy

fine-loamy
fine-loamy

fine-loamy coarse-loamy coarse-loamy

Soil subgroups
Typic Hapludults

Typic Dystrochrepts
Humic Hapludults

Typic Dystrochrepts
Humic Hapludults Typic Dystrochrept Typic Haplumbrepts
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and NH) (n = 10 per site) on 0- to 20-cm-depth soil samples 
collected from randomly distributed locations throughout 
each 80- by 80-m site. The sample location was also deter-
mined using an Archer GPS. Soil texture analysis was done us-
ing the hydrometer method (Robertson et al., 1999). In short, 
soils were oven dried at 105°C to a constant weight and sieved 
to <2 mm; all roots and rocks were removed and weighed. 
Forty grams of sieved soil was added to 175-mL plastic bottles 
with 100 mL of 5% hexametaphosphate and shaken overnight. 
The next day, the solution was washed through a 53-mm sieve 
with DI water. The particles captured on the sieve were col-
lected and oven dried (105°C) overnight (this constituted the 
sand fraction). The suspension that passed through the sieve 
was placed in a 1-L volumetric cylinder filled to 1 L. The sus-
pension was stirred and a few drops of amyl alcohol was used 
to reduce foaming. Hydrometer readings were taken at 1.5 
and 24 h. Silt and clay fractions were calculated according to 
Robertson et al. (1999).

Surveying
The EMI surveys were conducted in November 2010, 

March 2011, July 2011, November 2011, and March 2012. The 
EMI measurements were collected for 1 h per site, yielding ap-
proximately 500 measurements. We used a DUALEM-2S EMI 
sensor carried at a height of 1 m above the ground connected to 
an Archer GPS datalogger. The EMI recorded bulk soil conduc-
tivity (ECa) for both the horizontal coplanar coils (ECa-3m; 
theoretical cumulative signal of 70% at 3-m depth) and the per-
pendicular coils (ECa-1m; theoretical cumulative signal of 70% 
at 1-m depth), resulting in two measurements per sample loca-
tion (Beamish, 2011). Temperature varies widely among sites 
and between seasons and has a significant effect on conductivity 
readings. Therefore, all EMI conductivity measurements were 
standardized to the equivalent value at 25°C (EC25) (Reedy 
and Scanlon, 2003). Spatial analysis of EMI data was done using 
ArcGIS 10.0. In each site, predicted conductivity measurements 
were produced by ordinary kriging (Isaaks and Srivastava, 1989; 
Johnston et al., 2001). Subsequently, predicted values were ex-
tracted at soil sampling locations of process rates or soil texture 
outlined above. For every pixel (?1 m2) of the kriged maps, the 
standard error (SE), lowest value (low), highest value (high), 
and the D (i.e., maximum minus minimum) was calculated 
across all sampling dates (i.e., ECa-1m-low, ECa-1m-high, ECa-
3m-low, ECa-3m-high, SE ECa-1m, SE ECa-3m, DECa-1m, 
and DECa-3m). Data were checked for normality using normal 
Q–Q plots. Ordinary kriging can accommodate non-normal 
distributions as long as the spatial autocorrelation structure is 
not masked by extreme values (Isaaks and Srivastava, 1989). 
Therefore, in the case of non-normal distribution after natural 
logarithm transformation, the data were checked for extreme 
value outliers, and points were removed if necessary before krig-
ing analysis.

We used an ASD FieldSpec 3 NIRS (Analytical Spectral 
Devices Inc.) to assess total soil C and N (Chang and Laird, 

2002) and KCl-extractable NH4
+ ( Janik et al., 1998). We used 

the FieldSpec NIRS, which provides reflectance data with 1-nm 
resolution between 350- and 2500-nm wavelengths. All NIRS 
data were first transformed to the first derivative before analy-
sis. For calibration purposes, 46 sieved (<2-mm) oven-dried 
catalog samples previously analyzed for total C and N with an 
Elementar Flash EA 1112 NC analyzer (Thermo Scientific) 
were used. Carbon and N contents were converted to an aerial 
measure (kg C m−2 and g N m−2, respectively) using bulk den-
sity measures determined on each of the collected core sections 
(g cm−3) (n total = 79). Calibration between NIRS and KCl-
extractable NH4

+was established on the March 2011 and 2012 
samples. Twenty-five percent (n = 12 for each sampling time) 
of the samples collected on those dates were immediately ex-
tracted with 2 mol L−1 KCl on all mineral soil depths (0–5, 
5–10, and 10–15 cm); supernatant NH4

+ concentrations were 
analyzed according to colorimetric methods using an Alpkem 
3000 Series autoanalyzer (OI Analytical). Calibration models 
were developed by running full factorial cross-validation mul-
tivariate analyses using the Unscrambler software (CAMO 
Software Inc.) and produced predicted values for total C, total 
N, and NH4

+ concentrations.

Model Development and Statistical Analyses
Model development took place in three steps. First, a model 

was developed to assess correlations between soil physical prop-
erties (soil moisture and soil texture) and EMI measurements 
(ECa-1m-low, ECa-1m-high, ECa-3m-low, ECa-3m-high, SE 
ECa-1m, SE ECa-3m, DECa-1m, and DECa-3m). To deter-
mine significant correlations between the soil physical proper-
ties and conductivity data, stepwise multivariate standard least 
squares regression analysis was utilized, and the best model was 
selected by using the corrected Akaike’s information criterion. 
We used the same stepwise regression analysis to predict pNTR 
and pDNF rates based on EMI and NIRS variables (total C, to-
tal N, NH4

+
0–5cm, NH4

+
5–10cm, NH4

+
10–15cm). All data were 

natural logarithm transformed to acquire normal distribution, 
and regression residuals were evaluated for the absence of het-
eroscedasticity. Validation was done by randomly separating the 
data set into calibration (70%) and validation (30%) data sets. 
Model parameterization was done using only the calibration data 
set (training data set), whereas the predicted process rates were 
confirmed using the validation data set by regressing predicted 
against observed values.

The second step was to extract predicted EMI and NIRS 
values for each of the sampling locations. The extracted data 
were natural logarithm transformed and checked for normality 
using Q–Q plots in ArcGIS. Subsequently, the parameters se-
lected through the stepwise regression analysis described above 
were used to estimate process rates across the plots by simple 
ordinary kriging in ArcGIS 10.0 ( Johnston et al., 2001), as-
signing a predicted potential process rate to each pixel. To as-
sess spatial autocorrelation (major range) and spatial structure 
(nugget/sill ratio) of the predicted potential process rates, the 
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range, sill, nugget, and nugget/sill ratio were determined using a 
stable semivariogram fit (Isaaks and Srivastava, 1989; Johnston 
et al., 2001). A maximum lag distance of 75.4 m (two-thirds 
of the maximum pairwise distance between sampling points) 
was considered to prevent interpretations across a larger area 
than the plot size (Webster and Oliver, 2005). Each standard 
semivariogram was also tested for directionality or anisotropy 
(Isaaks and Srivastava, 1989). The root mean squared error 
never decreased by more the 5% when adding anisotropy into 
the model and, therefore, isotropy was assumed in all models.

The third step was to compare two extrapolation ap-
proaches, one based on random sampling and one based on 
stratified sampling determined by NIRS and EMI layers. 
First, we determined the mean, SE, and coefficient of varia-
tion (CV) of eight randomly selected samples for which po-
tential rates were measured for each site (i.e., OP, CH, MO-
low, MO-high, and NH) spanning all sampling times (i.e., 
March 2011, July 2011, November 2011, and March 2012). 
Second, for the stratified approach, we determined the quar-
tiles in data distribution for (EMI and NIRS) predicted pro-
cess rates for each site spanning all sampling times. We then 
used the predicted process rates to randomly select two actu-
ally measured samples from all four strata as determined by 
the quartile analysis (n = 8). Process rates predicted by NH4

+ 
concentrations were based on only March 2011 and 2012 (n 
= 4, one selection per stratum).

To assess significant differences in soil characteristics and 
process rates among different sites and watersheds, we con-
ducted one-way ANOVAs combined with Tukey pairwise 
comparisons (p < 0.05 unless specified differently). All data 
were tested for normality and natural logarithm transformed if 

needed to acquire normality. All statistical analyses were con-
ducted in JMP 9.

Results
Soil Conductivity

Soil conductivity estimated with EMI was not significantly 
different among sites. Significant differences were found among 
sampling dates for ECa-3m conductivity, with values measured 
in November 2011 being greater than those from March 2011 
(F2,55 = 3.2, p = 0.0473). The ECa-1m conductivity was great-
est in March 2012, exceeding both November and March 2011 
(F2,54 = 4.9,p = 0.055).

Soil Properties and Electromagnetic Induction
Soil physical properties varied significantly among sites 

(Table 2). The coarse fraction percentage (>2 mm) was sig-
nificantly greater at the CH site than all other sites except OP 
(F4,42 = 10.6, p < 0.001). The sand percentage was greater in 
OP than all other sites and lowest in NH (F4.42 = 26.0, p < 
0.001). The clay percentage was greatest in Watershed (WS) 
27 (MO-high and NH) compared with WS 18 (OP, CH, and 
MO-low) and lowest in OP (F4,42 = 21.6, p < 0.001), whereas 
the silt percentage was greater in NH than CH or OP (F4,42 = 
10.8, p < 0.001).

Conductivity measures at specific dates were unable to 
predict soil physical properties (soil texture and soil moisture). 
However, when pooling all data (i.e., DECa-3m, SE ECa-1m, 
and ECa-3m-high), significant correlations were detected. 
Overall, DECa-3m (i.e., maximum minus minimum) con-
ductivity proved to be the best predictor of soil texture (i.e., 
coarse fraction and clay percentage; Table 3; Fig. 1). Because 

Table 2. Soil properties by forest type for the coarse fraction, sand fraction, silt fraction, and clay fraction (0–20-cm depth) col-
lected in June 2011. The values for sand, silt, and clay only consider the <2-mm fraction. The C and N data on < 2mm bulk soil 
were determined using NIRS. 

Site† n Coarse Sand Silt Clay C N

—————————— g kg−1 —————————— kg C m−2 kg N m−2

OP 10    180 ± 20 ab‡ 820 ± 20 a 110 ± 20 c  70 ± 10 c 3.9 ± 0.3 ab 0.22 ± 0.01 b
CH 10 240 ± 20 a   720 ± 20 ab 170 ± 20 b  110 ± 10 bc 4.5 ± 0.3 ab 0.25 ± 0.01 ab
MO-low 10   140 ± 20 bc 700 ± 20 b 170 ± 10 b 130 ± 10 b 4.3 ± 0.3 ab 0.25 ± 0.01 ab
MO-high 10   150 ± 20 bc 680 ± 40 b   170 ± 20 bc 200 ± 10 a 3.3 ± 0.4 b 0.21 ± 0.01 b
NH 10 100 ± 10 c 550 ± 10 c 250 ± 10 a 200 ± 10 a 5.0 ± 0.3 a 0.27 ± 0.01 a

† OP, oak–pine; CH, cove hardwood; MO-low, low-elevation mixed oak; MO-high, high-elevation mixed oak; NH, northern hardwood.
‡ Data followed by different letters are significantly different at p < 0.05.

Table 3. Coefficients of determination for regressions between soil conductivity and soil particle abundance, determined as the 
difference between the minimum and maximum values (DECa-3m), the standard error (SE ECa-1m), and the highest value mea-
sured (ECa-3m-high). The values indicate the r2 for p < 0.05; + and − indicate the direction of the linear relationship. Watershed 
18 includes oak–pine, cove hardwood, and low-elevation mixed oak sites. Watershed 27 includes high-elevation mixed oak and 
northern hardwood sites.

Watershed n

r2

Sand Silt Clay

DECa-3m SE ECa-1m ECa-3m-high DECa-3m SE ECa-1m ECa-3m-high DECa-3m SE ECa-1m ECa-3m-high

——————————————————— g kg−1 ———————————————————
All 50 0.12 (+) – – 0.20 (−) 0.12 (−) – 0.28 (−) 0.20 (−) –

WS18 30 0.25 (+) 0.45 (+) – 0.29 (−) 0.53 (−) – 0.13 (−)† 0.19 (−) –
WS27 20 – 0.22 (−)† 0.33 (+) – 0.24 (+)† 0.30 (−) - – –
† Significant at p < 0.1.
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particle size differed greatly between WS 18 and WS 27 (Table 
2), watershed was also a significant predictor in the regression 
analysis (p < 0.001); therefore, the stepwise regression analyses 
for WS 18 and 27 were conducted separately. No significant 
relationships were found between pooled conductivity mea-
sures and the coarse fraction when separated by watershed. 
The SE ECa-1m (i.e., standard error of the mean ECa-1m con-
ductivity) was the best predictor for sand and silt contents in 
WS 18 (Fig. 2), whereas ECa-3m-high (i.e., the highest ECa-
3m conductivity for a specific location) was the best predictor 
of sand and silt contents in WS 27 (Table 3). In WS 27, SE 
ECa-1m was correlated strongly with soil moisture (Fig. 3). 
Analysis of data within individual forest types showed that the 

best predictor of the soil coarse fraction was 
ECa-3m-high in OP and MO (second-order 
polynomial; r2 = 0.44, p < 0.01; peak at 1.2 
mS and 20% coarse fraction; 95% confidence 
interval: 0.74–1.67 mS and 14–18% coarse 
fraction), and CH (r2 = 0.81, p < 0.001; 
95% confidence interval: 0.51–3.24 mS and 
21–29% coarse fraction). No significant cor-
relations with the coarse fraction were found 
for the NH site.

Nitrogen Cycling and Spatial Data
Calibration models with NIRS were 

used to predict soil NH4
+ concentrations 

and total C and N (Table 4). Potential ni-
trification was predicted by a multivariate 
regression model including ECa-3m-high 
and NIRS-estimated NH4

+
5–10cm concen-

trations (Table 5). For the NH site, the best 
model included only NIRS-based NH4

+
5–

10cm concentration (Fig. 4; Table 5). The oth-
er four sites were included in a single model, 
and pNTR was best predicted by ECa-3m-
high alone (Table 5). Overall, pDNF rates 
were best predicted by NIRS-based total C 
(Table 6). Watershed proved to be a signifi-
cant predictor in a multivariate regression 
with SE ECa-1m (p < 0.0001); therefore, the 

analysis was conducted by watershed. The SE ECa-1m proved 
to have the best predictive power in WS 27 for pDNF rates 
(Fig. 5; Table 6), while total C provided the best prediction in 
WS 18 (Table 6).

Spatial autocorrelation of the predicted potential nitrifica-
tion and denitrification rates as indicated by semivariogram analy-
sis showed that the major range and spatial dependence was often 
larger than the longest considered distance between points (75.4 
m) (Table 7). Major ranges smaller than the plot sizes were found 
for pNTR (OP, MO-low, and MO-high) and pDNF (all but 
CH). Spatial structure was strong for all pNTR models (nugget/
sill < 0.3), whereas the pDNF models showed weak spatial struc-
ture (nugget/sill > 0.3) for WS 18 (OP, CH, and MO-low) and 
strong spatial structure for WS 27 (MO-high and NH) (Table 7).

Additionally, we compared random to stratified methods 
(using EMI and NIRS data) of calculating a site-specific mean 
rate, SE, and CV (Table 8). Comparing the mean rates based on 
random or stratified selection showed greater estimates with the 
stratified approach for pNTR in CH (17 ± 11%) and in NH (32 
± 14%). No large differences could be observed for pNTR in the 
OP and MO sites. For pDNF measurements, however, random 
selection resulted consistently in lower estimates than the strati-
fied approach (OP: 5 ± 3%; CH: 193 ± 128%; MO-low: 14 
± 3%; MO-high: 24 ± 6%; NH: 41 ± 18%). Estimates of SE 
and CV were generally equal or higher in the stratified approach 
compared with the random selection approach.

Fig. 2. The (a) silt and (b) sand fractions (0–20-cm depth) regressed with the standard error of 
the bulk conductivity (SE ECa-1m) for Watershed 18. Both regressions (a) (p < 0.0001, r2 = 0.53) 
and (b) (p = 0.0003, r2 = 0.45) were significant.

Fig. 3. Fractional soil moisture (0–20-cm depth) regressed against the 
standard error of the bulk conductivity (SE ECa-1m) for Watershed 27 
(p < 0.0001, r2 = 0.56). 

Fig. 1. Regression between the maximum minus minimum bulk soil conductivity (DECa-
3m) and (a) coarse soil fraction and (b) clay content for all five sites (0–20-cm depth). Both 
regression (a) (p = 0.0055, r2 = 0.19) and (b) (p = 0.0004, r2 = 0.28) were significant.
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Discussion
The objective of our study was to 

investigate the utility of high-resolution 
geophysical methods, which estimate soil 
water content and soil texture, in assess-
ing plot-scale N cycling heterogeneity 
in southern Appalachian forests. Our 
results indicate that a combination of 
NIRS and EMI techniques are capable 
of predicting a significant portion of the 
within- and between-site variability in 
pNTR and pDNF activity. Soil type (i.e., 
soil particle size distribution) had a pro-
found effect on the relationships found 
between process rates and predictive 
variables (e.g., conductivity, NH4

+, C).
To understand the mechanisms be-

hind the relationship between soil con-
ductivity and pNTR and pDNF, we first 
needed to disentangle the relationship 
between soil conductivity and soil abi-
otic properties. Soil conductivity is si-
multaneously controlled by multiple fac-
tors, including soil moisture, soil texture, 
and soil ionic concentrations (Everett, 
2005). We found that the abiotic factors 
controlling soil conductivity were highly 
watershed dependent. Soil texture alone 
correlated strongly with conductivity in 
WS 18 (SE ECa-3m), whereas in WS 27 
soil moisture and texture were best cor-
related to SE ECa-1m and ECa-3m-high, 
respectively. Although relationships be-
tween conductivity and abiotic factors 
such as soil moisture and texture have 
been confirmed in studies of agricultural 
systems (Hedley et al., 2004; Robinson 
et al., 2008a; Zhu et al., 2010) and 
managed forest ecosystems (Doolittle 
et al., 1994; Huth and Poulton, 2007; 
McBride et al., 1990), rarely are they as-
sessed in soils as heterogeneous as moun-
tain forest soils (Zhu and Lin, 2010). 
For example, clay content was found to 
correlate with conductivity measures in 
a semiarid rangeland ecosystem (Abdu 
et al., 2008), but no such relationship 
was found in heterogeneous mountain 
ecosystems (Zhu et al., 2010). Zhu et 
al. (2010) suggested that the presence 
of higher clay content soils on dry slopes 
confounded the clay–conductivity cor-
relation, which could potentially be the 
case in our study as well.

Table 4. The P values and coefficients of determination for calibration models between 
near-infrared reflectance spectra (NIRS) and soil C and N contents and extractable NH4

+. 
Calibration models were developed on mineral soil (0–15-cm depth) for soil C and N and 
on both mineral soil and forest floor for NH4

+. The validation statistics are representative 
of a regression analysis between observed and predicted values.

Parameter
Entire data set Calibration data set Validation data set
p r2 n p r2 n p r2 n

C content, mineral soil, g kg−1 <0.001 0.997 46 <0.001 0.90 30 0.003 0.65 16
N content, mineral soil, g kg−1 <0.001 0.998 46 <0.001 0.89 30 0.024 0.52 16
Extractable NH4

+, mg N kg−1 <0.001 0.99 24 † † † † † †
† Data set was too small to separate into calibration and validation models.

Table 5. Regression analyses for potential nitrification; + or − indicates the direction of 
the relationship; n is the total number of values used in the model (NH4

+
5–10cm for March 

2011 and 2012 only and four missing values for SE ECa-3m). The validation statistics are 
representative of a regression analysis between observed and predicted values. 

Site†
Entire data set Calibration data set Validation data set

Parameters‡
RMSE r2 n RMSE r2 n RMSE r2 n

All sites 0.16 0.31** 31 – – 24 – – 9
High ECa-3m (−)
NH4

+
5–10cm (+)

OP, CH, MO 0.01 0.30** 49 0.005 0.29** 36 0.004 0.62 13 High ECa-3m (−)
NH 0.09 0.90** 9 0.07 0.94** 5 0.08 0.95 4 NH4

+
5–10cm (+)

** Statistically significant at p < 0.01.
† �OP, oak–pine; CH, cove hardwood; MO, mixed oak (both low and high elevation); NH, 

northern hardwood.
‡ �ECa-3m-high, highest conductivity value measured; NH4

+
5–10cm, NH4

+ concentration at the 
5–10-cm depth.

Fig. 4. Potential nitrification rates (pNTR) regressed against (a) the NH4
+ concentrations at the 

5- to 10-cm soil depth in the northern hardwood site (p < 0.001, r2 = 0.90) and (b) potential 
denitrification rates (pDNF) regressed against the standard error of the bulk conductivity (SE ECa-
1m) for Watershed 27 (p < 0.001, r2 = 0.70). 

Table 6. Regression analyses for potential denitrification; + indicates the direction of the 
relationship; n is the total number of values used in the model (four missing samples for 
SE ECa-1m). The validation statistics are representative of a regression analysis between 
observed and predicted values.

Site†
Entire data set Calibration data set Validation data set

Parameters‡
RMSE r2 n RMSE r2 n RMSE r2 n

All sites 1.37 0.15 ** 75 1.30 0.11* 52 1.47 0.32** 23 C (+)
OP, CH, MO-low 0.97 0.16** 41 0.91 0.13§ 29 1.03 0.41* 12 C (+)
OP 0.64 0.41* 12 ¶ ¶ ¶ ¶ ¶ ¶ C (+)
CH 1.06 0.26* 16 ¶ ¶ ¶ ¶ ¶ ¶ C (+)
MO-low – – 13 ¶ ¶ ¶ ¶ ¶ ¶ C (+)
NH, MO-high 
(Watershed 27)

0.98 0.70** 36 0.98 0.64** 25 0.91 0.84** 11 SE ECa-1m (+)

* Statistically significant at p < 0.05.
** Statistically significant at p < 0.01.
† �OP, oak–pine; CH, cove hardwood; MO-low, low-elevation mixed oak; MO-high, high-elevation 

mixed oak; NH, northern hardwood.
‡ SE ECa-1m, standard error of the values measured; C, C content.
§ Statistically significant at p < 0.1.
¶ Data set was too small to separate into calibration and validation models.
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Conductivity for any given sampling date did not corre-
late strongly with the abiotic factors assessed (i.e., soil moisture 
and soil texture); however, the variance in conductivity mea-
surements among dates (SE and DECa-3m) and ECa-3m-high 
were good predictors of abiotic factors. The use of variance 
measures (i.e., D and SE) and maximum values observed (EC-
high) is not common but they have proven to be successful 
variables in more heterogeneous systems (Vachaud et al., 1985; 
Zhu et al., 2010). Several reasons can be suggested for the value 
of variance measures. First, soil texture always influences soil 
conductivity, while soil moisture increases in importance dur-
ing wetter times. The difference between soil conductivity mea-

sured under dry and wet conditions has been demonstrated to 
be the most effective predictor for hotspots in soil moisture 
variation in a semiarid rangeland ecosystem (Robinson et al., 
2008a). We found a similar result for WS 27, where soil mois-
ture was correlated to SE ECa-1m. Watershed 27 had greater 
precipitation inputs in combination with finer textured soils 
that potentially resulted in higher soil moisture retention, 
as has been found before (Bonito et al., 2003). Alternatively, 
increases in soil moisture could increase the contribution of 
soil texture to the overall conductivity signal. In other words, 
increased soil moisture could act as a conductor and thus al-
low spatial variance in the soil texture to be more apparent in 
the soil conductivity measures. For example, Zhu et al. (2010) 
found soil texture mapping to be most successful with EMI sur-
veys after rain events. Similarly, we found that ECa-3m-high 
correlated with soil texture only in the wetter WS 27 (Swift et 
al., 1988), and SE ECa-1m correlated with soil texture in WS 
18. Thus, generally, the finer textured and wetter soils in WS 
27 resulted in a significant correlation between soil moisture 
and conductivity (SE ECa-1m) in addition to soil texture and 
conductivity (ECa-3m-high).

Potential nitrification rates would be expected to be 
greatest at near-field-capacity soil moisture (Strong et al., 
1999), high NH4

+ availability (Donaldson and Henderson, 
1990), high pH (Donaldson and Henderson, 1990; Knoepp 
and Vose, 2007), low C/N ratios (Knoepp and Vose, 2007), 
and high O2 and low CO2 concentrations (Keeney et al., 
1985; Sahrawat, 2008). In forested ecosystems, soil NH4

+ 
concentrations are considered the main limiting factor of 
nitrification rates (Montagnini et al., 1989; Ste-Marie and 
Paré, 1999), which was the case only for the NH site in this 
study. For all other sites, an increased ECa-3m-high conduc-
tivity, correlated to soil texture, showed a negative relation-
ship with pNTR rates. Higher ECa-3m-high conductivity 
is related to greater sand content and lower silt content and 
thus greater gas diffusion rates. Because O2 availability is one 
of the main controllers of nitrification (Keeney et al., 1985; 
Sahrawat, 2008), a higher sand content would allow higher 
nitrification rates, as was observed by Strong et al. (1999). 
Alternatively, these results could suggest that the fine par-
ticles (i.e., silt and clay) protect NH4

+ from oxidation and 
thus reduce the NH4

+ available for microbial uptake. This 
was confirmed by Strong et al. (1999) for soils with higher 
soil moisture content, similar to our NH site, while soils ex-
posed to frequent drying and rewetting events did not show 
a similar level of physical protection by finer particle sizes.

Overall, pDNF was best predicted by total soil C, as 
found in previous studies (Groffman and Tiedje, 1991; Luo 
et al., 1999; Myrold and Tiedje, 1985). However, we found 
pDNF in WS 27 to be best correlated with conductivity 
(SE ECa-1m), which probably reflects the strong correla-
tion with soil moisture in WS 27. No improvement in model 
prediction was accomplished by including total C, and thus 
C does not appear to be a limiting factor for pDNF in this 

Fig. 5. Predicted potential nitrification (pNTR) (left) and potential 
denitrification (pDNF) (right) based on electromagnetic induction 
and near-infrared reflectance spectroscopy data. The numbers 
represent the natural logarithm of the predicted process rates 
(mg N kg−1 soil d−1) as produced by ordinary kriging. The contour 
gradient indicates geometric intervals. Potential nitrification was 
predicted using the highest measured bulk conductivity value at the 
3-m depth (ECa-3m-high) for the oak–pine (OP), cove hardwood 
(CH), low-elevation mesic mixed oak (MO-low) and high-elevation 
mesic mixed oak (MO-high) sites and NH4

+ concentrations at the 
5- to 10-cm depth for the northern hardwoods site (NH). Potential 
denitrification was predicted using C (g C m−2) (OP, CH, and MO-
low) or the standard error of the bulk conductivity at the 1-m depth 
(SE ECa-1m) (MO-high and NH).
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watershed. This is similar to the results of other studies in 
northern hardwood forests that found that denitrification 
rates were limited by soil moisture and NO3

− concentrations 
rather than organic C due to the high organic C availability 
at these sites (Groffman, 2012; Groffman and Tiedje, 1988; 
Melillo et al., 1983).

Plot-scale potential nitrification and potential denitrifi-
cation rates determined by random sampling compared with 
EMI and NIRS stratified random sampling showed no signifi-
cant differences for pNTR in sites with low rates (i.e., OP and 
MO), whereas rates were greater for CH and NH. Scaling po-
tential denitrification rates to the plot level, however, showed 
that stratified sampling would result in greater mean rates for 
all forest types. Stratified sampling generally increased the vari-
ability (SE and CV) of the assessment, indicating that the re-
sults from random sampling underrepresented hotspot areas 
in the landscape and thus underestimated overall site N trans-
formation rates. In line with our hypothesis that pNTR would 
be less heterogeneous than pDNF, the autocorrelation analysis 
using semivariograms showed a larger range for MO (MO-low 
and -high) and NH, while showing a similar range for OP and 
CH. Selecting larger plot sizes might have enhanced the spatial 
structure and increased model predictive strength in the sites 
with a larger range than the plot size (pNTR: CH and NH; 
pDNF: CH).

These data suggest that on the plot scale (ha), assessing 
heterogeneity is most important in cove and northern hard-
wood systems, potentially underestimating rates by as much as 
200%. The importance of soil heterogeneity has been shown 
by previous studies for soil nutrient concentrations ( Johnson 

et al., 2010, 2011) and processes (Groffman and Tiedje, 1989; 
Harms and Grimm, 2008; Vidon et al., 2010), but rarely with 
the high resolution needed for plot-level assessment. We found 
no strong significant correlations between pNTR and pDNF. 
This uncoupled nature could be the result of low C/NH4

+ ra-
tios in OP, CH, and MO (Chiu et al., 2007), while in NH it 
could be due to lower O2 concentrations, as indicated by high-
er soil moisture (Focht and Verstraete, 1977) and lower sand 
content (Strong et al., 1999).

This study showed improved precision in extrapolating 
biogeochemical data to an ecologically relevant scale through 
the use of geophysical approaches that provide high-resolu-
tion spatial data. Including spatially dependent data increases 
the representative estimates and reduces sampling redundan-
cy for N cycling processes. However, site-specific calibration 
to the biotic processes of interest is generally required. These 
approaches will enable us to assess the spatial variability of 
biogeochemical cycling and improve extrapolation by strati-
fied sampling methods. Combining geophysical and strati-
fied sampling allowed us to address more specific questions 
regarding the regulation of N cycling processes. Approaches 
similar to the one utilized in this study are needed across mul-
tiple spatial scales to better parameterize the biogeochemical 
models of the future.
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Table 7. Semivariogram parameters fitted using a stable fit model with predicted process rates for potential nitrification (pNTR) 
and potential denitrification (pDNF). 

Site†
pNTR pDNF

Major range Full sill Nugget Nugget/sill Major range Full sill Nugget Nugget/Sill
m m

OP 41 1.1 ´ 10−5 0 0 43 0.15 0.11 0.73
CH >75.4 3.0 ´ 10−5 3.4 ´ 10−6 0.11 >75.4 0.077 0.058 0.76
MO-low 69 8.8 ´ 10−6 0 0 29 0.10 0.031 0.31
MO-high 64 2.1 ´ 10−5 2.1 ´ 10−6 0.10 0.18 0.015 1.5 ´ 10−5 1.0 ´ 10−3

NH >75.4 0.25 0.049 0.20 37 54 0 0
† OP, oak–pine; CH, cove hardwood; MO-low, low-elevation mixed oak; MO-high, high-elevation mixed oak; NH, northern hardwood.

Table 8. Comparison of the effectiveness of extrapolation for potential nitrification (pNTR) and potential denitrification (pDNF) 
as assessed by random selection and by stratified selection (determined by quartiles) based electromagnetic induction and near-
infrared reflectance spectroscopy data (n = 8 for both approaches, except for pNTR 427 and pNTR 527 n = 4).

Site†

pNTR pDNF

Random Stratified random Random Stratified random

Rate SE CV Rate SE CV Rate SE CV Rate SE CV

mg N kg−1 soil h−1 mg N kg−1 soil h−1 mg N kg−1 soil h−1 mg N kg−1 soil h−1

OP −0.01 0.01 394 0.02 0.03 386 200.7 81.5 115 210.7 81.6 110

CH 0.06 0.03 127 0.07 0.03 117 426.2 114.4 76 1247.7 754.3 171

MO-low −0.02 0.01 124 0.001 0.01 2169 168.9 34.0 57 193.1 37.6 55

MO-high −0.02 0.03 225 −0.02 0.03 274 161.4 29.3 51 200.0 34.8 49
NH 2.2 0.6 53 2.9 1.0 66 3874.4 892.5 65 5456.6 1969.8 102
† OP, oak–pine; CH, cove hardwood; MO-low, low-elevation mixed oak; MO-high, high-elevation mixed oak; NH, northern hardwood.
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