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Abstract: Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and 

relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), 

and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like 

normalized difference vegetation index (NDVI) or soil adjusted vegetation index (SAVI) developed with 

near infrared (NIR) and red bands.  In this study, we present results of those analyses for two study sites 

with different plant species: 1) a managed loblolly pine (Pinus taeda L.) forest in coastal North Carolina 

for canopy temperature and gs and 2) a managed Blueberry (Vaccinium corymbosum) orchard within a 

natural forest in coastal Georgia (Z-Blu orchard) for the LAI.  An Object Based Image Analysis (OBIA) 

technique was employed on the Z-Blu orchard to distinguish the forest species and establish their 

correlation with LAI using ground-truthing.  Similarly, we used OBIA technique for the forest speciation on 

Turkey Creek watershed at Francis Marion National Forest site in coastal South Carolina with ground-

truthing.  Both classified images yielded 80% classification accuracy based on field verifications. Similarly, 

>90% correlation was obtained for the LAI map developed for Z-Blu orchard site plant speciation. 

However, for the NC pine site, the correlations were poor, with R2 values of 0.33 and 0.26 for gs v/s 

Landsat Middle Infrared (MIR) and gs v/s Landsat Thermal Infrared TIR models, respectively. This study 

on advanced image processing approach for forest speciation and ET parameters prediction/estimation 

can be a basis for similar other studies in the region.  
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INTRODUCTION 

Plant evaporation and transpiration or evapotranspiration (ET) rate depends upon air and canopy 

temperature, solar radiation, vapor pressure, wind velocity, and nature and type of the evaporating 

surface (Viesmann and Lewis, 2004). While plant evaporation occurs mostly from the above canopy 

interception and understory/litter evaporation, transpiration involves the withdrawal and transport of water 

from soil/aquifer system from plant roots and stem, and eventually from plant leaves into the atmosphere 

(Senay et al., 2013).  Available heat energy (radiation and air temperature), capacity to transport vapor 

away from the evaporative surface by wind and humidity, soil water content availability are the guiding 

factors for the evapotranspiration (Viesmann and Lewis, 2004). Most important parameters that govern 

ET are leaf area index (LAI), canopy temperature (Tc), stomatal conductance (gs), wind velocity, and soil 

moisture or volumetric water content (Panda et al., 2012). Evaporation from canopy interception also 

depends upon canopy storage capacity and canopy closure/density besides the LAI (Amatya et al., 

1996).  The LAI is a seasonal parameter and is an indicator of crop growth, for that matter ET as it 

correlates very well with it (Sun et al., 2011).  LAI is also an indication of the biophysical capacity for 

energy acquisition by the vegetation canopy (Fisher et al., 2008) besides being a key parameter of 

ecosystem structure (Sun et al., 2011) and a valuable driver in the scaling effort as it is well correlated 

with normalized difference vegetation index (NDVI) derived from remote sensing images (Hwang et al., 

2009).  Optical direct method using LI-COR LAI-2200 (LI-CORTM) or hemispherical photographs and 

semi-direct methods using litter collection and allometric methods are used for local estimation of LAI 

(Brauman et al., 2012; Sampson et al., 2011; le Maire et al., 2006). Local measurement of plant stomatal 

conductance is conducted with a direct optical measurement using SC-1 Leaf Porometer (Decagon 

Devices, Inc.) (Brauman et al., 2012) or using a semi-direct method of vapor pressure deficit algorithm 

(Pearcy et al., 1989; Sack and Scoffoni, 2012).  Stomatal conductance of pine needles was measured by 

a LiCOR-1600 porometer for estimating and modeling transpiration of pine forests (McCarthy et al., 1991; 

Amatya et al., 1996; Amatya and Skaggs, 2001).  Canopy temperature is estimated with direct 

measurement using thermometers (Bastiaanssen et al., 1998). However, routine in-situ measurement of 

these plant parameters are very time consuming and expensive (Panda et al., 2011; Panda et al., 2012; 

Amatya et al., 2011; Sampson et al., 2011; ). Recent studies show the efficiency of remotely sensed data 
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in estimating stomatal conductance, canopy temperature, LAI  and ET (Rouse et al., 1973; Curran, 1980; 

Moran et al., 1994; Carter, 1998; Justice et al., 1998; Olioso et al., 1999; North, 2002; Provoost et al., 

2005; le Maire et al., 2006; Panda et al, 2011; Nouri et al., 2012; and Amatya et al., 2011; Hafeez et al., 

2002; Senay et al., 2013).   

Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery can help predict plant 

stomatal conductance, surface temperature, vegetation stress, and soil moisture amount (Senay et al., 

2013; Hafeez et al., 2002; Lllesand and Keifer, 1994). Vegetation indices like normalized difference 

vegetation index (NDVI) or soil adjusted vegetation index (SAVI) developed with near infrared (NIR) and 

red are able to remotely determine such forest hydrologic parameters including LAI (Senay et al., 2013; 

Narasimhan et al., 2003; Lllesand and Keifer, 1994). Remote estimation of LAI is typically conducted 

using selected individual band spectral reflectance or digital number (DN) values or a combination of 

them with the development of spectral indices like Normalized Difference Vegetation Index (NDVI) or soil 

adjusted vegetation indices (SAVI) (Goel and Qin, 1994; Turner et al., 1999; Schultz and Engman, 2000; 

Coonrod and McDonnell, 2000; Walthall et al., 2004; Willaert et al., 2005; Panda et al., 2011; Panda et 

al., 2012; Amatya et al., 2011). Remote measurement of stomatal conductance is conducted using 

suitable band (mid-infrared) of landsat satellite imagery (Lee, 1994; Carter, 1998; Amatya et al., 2011). 

Thermal band of landsat satellite imagery is used for the remote estimation of canopy temperature (Lee, 

1994; Amatya et al., 2011; Senay et al., 2013). Review article by Wang and Qu (2009) explains how 

numerous studies have already been conducted on remote estimation of soil volumetric water content 

estimation using satellite, aerial, or simple digital photographic image analysis. However, the secret to the 

success of the remote application of the ET parameters estimation lies with accurate image 

segmentation. Advanced image segmentation techniques help distinguish different type of plants among 

the forest vegetation and thus support accurate remote estimation of these. The processes include 

analysis of the spectral, textural, and other thematic attributes of the land-use types in the remotely 

sensed imageries. The latest advanced image processing approach, object based image analysis (OBIA) 

is the best approach for such classification (Burnett et al., 2003). 

Image classification generally comprises four steps including preprocessing, training, decision 

making, and accuracy assessment (Seetha et al., 2014). The initial step of pre-processing involves 
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geometric and atmospheric correction, band separation, noise suppression, texture mapping, if 

necessary, principal component analysis and vegetation index development. The training step includes 

supervised or unsupervised classification algorithm usage and in this study we used even better OBIA 

algorithms. This includes the selection of a particular feature in the image that best describes the pattern. 

The decision step includes choosing the suitable algorithms for comparing the image patterns with the 

target patterns or finding image patterns that correspond to the field situation. With OBIA, in this step, the 

clusters are found not only through spectral pattern, but with textural and other thematic attributes as 

described in earlier paragraph. The final step is to assess the accuracy of the image classification by 

ground truthing (Seetha, et al., 2014). The most important step of image classification is the selection of 

the efficient image segmentation or classification algorithm to classify the image with the best accuracy; in 

this case the advanced OBIA algorithm is tested for our study.  

A long-term (1988-2008) monitoring and modeling study to evaluate water balance including 

ecosystem ET during a life cycle of a managed pine stand, including effects of silvicultural and water 

management treatments, was just completed using three 25 ha experimental watersheds in eastern North 

Carolina (NC) (Amatya and Skaggs, 2011; Tian et al., 2012).  This study was conducted as a potential 

basis to the alternative method of estimating ET from different forest species including loblolly pine (Pinus 

taeda L.), pine understory, switchgrass (Panicum verbatim), a cellulosic crop with a potential for 

bioenergy, and its understory intercropping between the pine rows in an ongoing multicollaborative 

project assessing the hydrologic and water quality effects of switchgrass intercropping in managed pine 

forests (Ssegane et al., 2014).  

The objectives of this study are to: 

1. Develop and present a new remote sensing-based procedure for estimating plant canopy 

temperature, stomatal conductance, and LAI for various forest/vegetation species. 

2. Develop an OBIA procedure to segment the study area images with the aid of LiDAR (Light 

Detection and Ranging) data to classify different plant species in three study areas with dissimilar 

forest types. 
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METHODOLOGY 

Study Sites  

The first study site (Fig. 1a) is on Carteret 7 tract, located in Carteret County, North Carolina 

(Latitude of 34.822oN and Longitude of -76.668oW), owned and managed by Weyerhaeuser Company.  

The site consists of three artificially drained experimental watersheds (D1, D2, and D3) that are about 

24.7, 23.6, and 26.8 ha in size, respectively. When the watersheds were established in early 1988 the 

land cover consisted of 14-year old mid-rotation loblolly pine (Pinus taeda L.).  

  

 

1(a) (AOI 1) 1(b) (AOI 2) 1(c) (AOI 3) 
Figure 1: Study area map showing the National Agriculture Imagery Program imagery for North Carolina 

(NC) site (a.AOI1), South Carolina (SC) site (AOI2), and Georgia (GA) site (b. AOI2). 

(Note: From here onwards, the three sites will be described as AOI1, AOI2, and AOI3.) 

 

In 2009, when a new study began to examine effects of switchgrass intercropping  in the 

traditional pine forest AOI1,the then control watershed D1 was harvested  and a switchgrass 

intercropping treatment between beds of young pine was installed in 2012.  Similarly, the 2nd watershed 

(D2) harvested in 1995 and planted in 1997 now served as a control (Ssegane et al., 2014).  A 

switchgrass treatment was installed on the third watershed (D3) that was fully harvested by spring 2010. 

A fourth treatment watershed (D0) was established north of D1 (Figure 1) in 2009 where a young pine 

with natural understory treatment was installed for the switchgrass intercropping study.  The artificially 
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bounded watersheds are surrounded by forested land in the north, south, and west, and by agricultural 

land in the east. McCarthy et al. (1991) characterized the topography of the site as flat Coastal Plain with 

a gradient of 0.1 % and ground surface at about 3 m above sea level. The Deloss fine sandy loam soil on 

the site is classified as very poorly drained with a shallow water table under natural conditions.  Each 

watershed is drained by four parallel lateral ditches about 1.4 – 1.8 m deep, spaced 100 m apart (Figure 

1).  The mean annual rainfall over a 21-year period is 1517 mm with a 10 – 15 % annual increase due to 

hurricanes and tropical storms (Amatya and Skaggs, 2011). The estimated annual Penman-Monteith 

based potential evapotranspiration (P-M PET) for a standard grass reference varied between 785 mm to 

1254 mm (Amatya and Skaggs, 2011), with an average of 1010 mm for the 21-year (1988-2008) period. 

For a detailed description of the site soil parameters, climatological data, and forest stands, the readers 

are referred to McCarthy et al. (1991), Amatya et al. (1996), Amatya and Skaggs (2011), and Ssegane et 

al. (2014). 

The second site, AOI2 is a part of Turkey Creek watershed located adjacent to US Forest Service 

Santee Experimental Forest at Francis Marion National Forest in coastal South Carolina (Figure 1b- 

AOI2). This watershed is a third-order stream system draining an area of approximately 5,240 ha (Amatya 

et al., 2013) and located about 60 km northwest of Charleston near Huger, in Berkeley County, South 

Carolina (33° 8' N, 79° 48' W). The main channel has braided in some locations, which is anastomosed 

and stable with mature root systems of bottomland species such as bald cypress and tupelo gum along 

the streambanks and in some locations in the channel (Amatya and Jha, 2011).  Land use within the 

watershed is comprised of 44% pine forest, mostly loblolly (Pinus taeda L.) and longleaf (Pinus palustris) 

pine, 35% thinned forest, 10% forested wetlands, 8% mixed forest, and 3% agricultural, roads, open 

areas, orchards for sapling development, and impervious areas (Haley, 2007). Sand is the dominate 

substrate material. The watershed is dominated by poorly drained clayey, mixed soils of the Wahee 

series mostly on the northern part and Lenoir series, with shallow argillic horizons with less than 3 m 

depth mostly on the southern part (Amatya and Jha, 2011). 

The third study site, AOI3 is in Nahunta, GA (Fig 1 (c) – AOI3).  The site is a 52.6 ha (130 acre) 

well managed commercial blueberry orchard known as ZBlue Berry Farm. The WGS coordinate of the 

site’s location is 310 12’ 13.95” N and 810 58’ 50.62”. The orchard has different land-uses such as pine 
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outer cover, two types of blueberry, rabbit eye and high bush, grass, bare soil, waterbodies (pond for 

irrigation), etc. The site is monitored by a weather station set up by Automated Environmental Monitoring 

Network (AEMN, www.Georgiaweather.net). Weather or climate parameters including the soil moisture 

amount is monitored at the weather station. The plant/vegetation species is different here from the study 

site 1 and, hence, chosen for a contrasting analysis of the OBIA image segmentation technique. 

Data Acquisition 

The field stomatal conductance for the pine needles measured using a LiCOR-1600 porometer on 

pine forest stands at the AOI1 site from 1988 to 1992 for estimating transpiration together with the 

measured LAI and weather parameters both in the field water balance (Amatya et al., 1996; McCarthy et 

al., 1991) and hydrologic modeling (Amatya and Skaggs, 2001) were used in this study.  The data is 

presented in Table 1 below. The measurements were done on specific tree needles within three 

experimental plots on a 2-3 week basis.  Details of the measurement and analysis procedures are given 

elsewhere (Amatya et al. 1996; Amatya 1993). 

Following Landsat ETM+ 7-band satellite imageries were acquired for the study sites AOI1. The 

imageries were collected between 1988 and 1992 corresponding to the field stomatal conductance and 

canopy temperature data measurements acquired during that period.  

 
Table 1. Stomatal Conductance v/s MIR (Middle Infrared) and TIR (Thermal Infrared) data 
(1988-92)  
 

Month/Year  Julian Day  

Stomatal 
Conductance 
(mmoles/m2/s)  MIR band  

TIR 
band  Image Date  

Oct-88  287  34.39  47  128  9/16/1988  

Oct-88  301  38.77  78  42  10/18/1988  

Apr-89  107  46.89  68  114  4/12/1989  

May-90  129  39.96  91.45  105.5  5/1/1990  

Oct-90  305  35.44  40.88  99  11/25/1990  

Feb-91  36  30.81  57.95  112  3/1/1991  
 

http://www.georgiaweather.net/
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Freely downloadable, three-band (RGB) 1m resolution and four-band (RGB & NIR) NAIP 

(National Agricultural Imagery Program) Imagery of 2011 were acquired for AOI 2 and AOI3 sites, 

respectively.  LiDAR data (30 cm resolution) was obtained for the AOI 2 site along with stream and road 

network to support OBIA based image classification. For OBIA classification, these geospatial features 

provided spectral, textural, and thematic attributes of the land-use types supported in OBIA rule sets 

(described later) development for better image segmentation accuracy. The forest cover classification 

map for AOI 2 (Figure 2a) site and Z-blu orchard management specification vector (Figure 2b) for AOI 3 

were acquired for image classification ground truthing. IDRISI Taiga (Clark Labs, Clark University, 

Worcester, MA) software for high-end image processing and eCognition (Trimble Geospatial, 

Westminster, CO) Developer software for OBIA analysis, QT Modeler (Applied Imagery, Silver Spring, 

MD) software for LiDAR data processing, and ArcGIS 10 (ESRI, Redlands, CA) software for all spatial 

data analysis were used in the study. 

 

 
 

(a) (b) 

Figure 2: (a) forest cover classification map for AOI 2 and (b) Z-Blu orchard management vector showing 

different land-uses (Courtesy, Witherbee Ranger Station, Francis Marion National Forest, Cordesville, SC 

and Z-Blue Farm Manager, Nahunta, GA). 
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Individual bands used for the stomatal conductance and plant canopy temperature models for 

AOI1 were extracted from the Landsat ETM+ imageries in ArcCatalog.  Examples of a single date image 

bands are shown in Figure 3a, b, c, and d. 

 

Figure 3: Example of different Landsat band images of AOI 1a in Figure 1 used for estimating stomatal 

conductance and canopy temperature (NIR – Near infrared, MIR- Middle infrared, and TIR – Thermal 

infrared) 

Image Analysis  

Plant canopy temperature, stomatal conductance, and LAI model development 

As described earlier, remotely sensed information based stomatal conductance and canopy 

temperature estimation models were developed for the AOI1 site and LAI estimation model was created 

for AOI3 site. Thermal (plant canopy temperature) raster was created in IDRISI Tiaga software using the 

TIR band and the emissivity value of 0.95 (Lillesand and Keifer, 1994) following the equations below:. 

Lλ = offset + gain x DN                   Equation (1) 

TB = K2 / (ln((K1 / Lλ) + 1)     Equation (2) 

where, offset and gain, K1, K2 are user defined parameters, respectively. DN is the digital number in the 

thermal energy, and TB is the Blackbody temperature. The constant K1 must be in Wm-2 sr-1 µm-1 (watts 

per sq. m. per steradian per micron) and constant K2 in Kelvin.  

St = TB / (1 + (λ x TB / ρ) x ln ε      Equation (3) 

where, λ = wavelength of emitted radiance in micrometers, ρ = h x (c / σ) = 1.438 x 10-2 (mK), σ is the 

Boltzmann constant (1.38 x 10-23 J/K), h is the Plank’s constant (6.626 x 10-34 Js, c is the velocity of light 

(2.998 x 108 m/s), and ε is the emissivity in the range of 0 and 1.Once, the statistics  (mean digital) values 
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of MIR & TIR bands were calculated, they were data logged to the corresponding stomatal conductance 

values. Multiple regression models were developed with stomatal conductance v/s MIR, and stomatal 

conductance v/s TIR band digital information in MiniTab 16 (Minitab Inc., State College, PA) statistical 

software.  

LAI raster was developed for the AOI3 site using the relationship developed by Schultz and 

Engman (2000),  

LAI   =  - ln (SAVI + .371)/.48                                              (Equation 4),  

which calculates LAI using the soil adjusted vegetation index (SAVI) from NAIP orthoimagery.  

Forest speciation to support ET based model parameter estimation model development 

Finally, forest plant speciation analysis was conducted using the OBIA multiresolution 

segmentation technique for AOI 2 & AOI 3 sites as ground truth supporting information (Figures 2a and 

2bb) was available for both sites to conduct classification accuracy assessment. The AOI1 site did not 

have any supporting data for accuracy assessment in 1989-1992. With the OBIA image segmentation, 

image indices, site elevation raster developed with LiDAR, other land-use specifying vector data 

(mentioned earlier) were used for rule sets development and subsequent multiresolution segmentation. 

Individual bands (Red, Green, Blue, and NIR) were separated from the NAIP imageries using 

ArcCatalog module of ArcGIS10. Vegetation indices, such as NDVI, Green vegetation index (GVI), Soil 

Adjusted Vegetation Index (SAVI), and Band ratios (BG/NIR2, RG/NIR2, and BR/NIR2) were developed in 

IDRISI Taiga using Image Calculator and with the below equations 

                       NDVI = (ρir - ρr) / (ρir - ρr)   Equation (5) 

    GVI =  (ρir - ρg) / (ρir - ρg)   Equation (6) 

                                                   
                                                                                                       Equation (7)                                                                          
 
                                                                                          

where, ρr , ρg and ρir are spectral reflectance from the R-, G- and NIR-band images, respectively, and the 

L is a constant that represents the vegetation density. Huete (1988) defined the optimal adjustment factor 

of L = 0.25 to be considered for higher vegetation density in the field, L = 0.5 for intermediate vegetation 

density, and L = 1 for the low vegetation density.  
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LiDAR data was processed for AOI 2 and AOI 3 sites to produce ground elevation raster (DEM) 

and the plant height raster (nDSM) using the QT Model Builder software. These raster were imported to 

eCognition software. It was found that NDVI, BG/NIR2 ratio and Blue band raster were a good 

representation of spectral behavior of different forest plant species present in both the study areas (AOI 2 

and AOI 3). Initial rule sets were developed using spectral characteristics to classify different forest 

species. Second rule set was developed using plant height raster to distinguish plant species with similar 

spectral characteristics.  (Note: This rule set was only used with AOI 3). Because rule sets are site 

specific to support image classification based on forest species and other land- uses present. Then, the 

OBIA based shape geometry (Length/width; asymmetry; and compactness) was used to develop the third 

rule set to distinguish plant species not separated with last two rule sets. Finally, a rule set was developed 

with proximity to thematic features like roads and streams as particular type of plants grows close to 

them. (Note: This rule set was only used with AOI 2). Ultimately the Multiresolution segmentation 

procedure was completed with eCognition software using the rule sets. Classification rasters for both the 

sites were compared with the classification maps (Figures 2a and 2b) obtained from the corresponding 

land management agencies in those two study areas and classification accuracy assessment was 

conducted.  

Results & Discussion 

Plant canopy temperature raster & stomatal conductance models for AOI 1 

   Figures 4 and 5 represent the correlation models fitted with a second order polynomial for each 

of the MIR and TIR band DN values, respectively, and the corresponding field measured stomatal 

conductance values for only six different measurement periods.  The computed coefficient of 

determination (R2) values obtained with limited field observations (n = 6) for stomatal conductance v/s 

MIR and stomatal conductance v/s TIR are 0.33 and 0.26, respectively, suggesting a fair relationship 

between Landsat image band width-based digital values and stomatal conductance for pine trees.  We 

hypothesize that the relationships could possibly be improved with inclusion of more measurements. 

Figure 6 shows the plant canopy temperature or Thermal raster obtained using equations 1 -3 provided in 

the Materials & Methods section. The data range in Figure 5 suggests that it is feasible to use the 

Thermal band raster in such analysis. 
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Figure 4:  Second order polynomial fitted for s stomatal conductance versus MIR correlational model (n = 

6) 

 

Figure 5:  Second order polynomial fitted for a stomatal conductance versus TIR correlational model (n = 

6) 
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/m

2
/s) 

(mmoles/
m

2
/s) 



Journal of Spatial Hydrology 
Vol.12, No.1 Fall 2014 

 
 

 

 

 

 

 

 

 

Figure 6:  Thermal raster using 06/28/1988 satellite image that shows the surface temperature of pine 

trees.  

 

Leaf Area Index (LAI) model development for AOI 3 (Z-Blu orchard) 

Figures 7 and 8 show the calculated SAVI and LAI rasters for the Z-Blu blueberry orchard (AOI 3) 

at the GA site developed in IDRISI Taiga software using the 1-m resolution NAIP imagery with equations 

suggested in the Materials and Methods section.  Based on the analysis of the LAI raster for AOI 3data, it 

is clearly evident that the individual plant species have very specific LAI.  With selected locations, the 

plant/land use types (numbered with integers) when correlated with five different ranges of LAI values 

(the five groups generated with Jenks classification algorithm supporting five distinct forest species and 

other land uses in the orchard), coefficient of determination (R2) values of 0.91 was obtained.  The dark 

green areas in the LAI images indicate various stages of blueberries. Even the different stages of 

blueberries (new plant rabbit eye (dark green) and older high bush and rabbit eye (faint green) have 

distinguishable LAIs.  The surrounding pine and oak forest species have completely distinguishable LAI 

values as obtained by the modeling. 



Journal of Spatial Hydrology 
Vol.12, No.1 Fall 2014 

 

 

Figure 7: SAVI raster for AOI 3 Georgia site. 

 

   Figure 8: LAII raster for AOI 3 Georgia site  

 

Forest plant speciation using OBIA technology for AOI 2 and AOI 3  

Figures 9 a-f show results for step by step rule set developed for AOI 3 image segmentation. The 

rule set equations are inscribed inside the figures. It is to be noted, however, that any rule set developed 

for one study area may not be useful for another study area. 
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Fig 9a: Initial rule set and information for a selected 
object 

Fig 9b: Rule set for calculated NDVI 

  

Fig 9c: Rule set for initial high bush classification 
with mixed result. 

Fig 9d: Rule set for initial rabbit eye classification 
with mixed result. 

  
 

Fig 9e: Initial rule set for high bush classification with 
geometric attribute. 

 
Fig 9f: Rule set for rabbit eye classification with 

geometric attribute 
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Figures 10 a-d show the rule sets developed using a step by step process with vegetation 

spectral characteristics, tree height, geometric shape of objects, and closeness to the thematic layers of 

the part Turkey Creek watershed. (AOI 2). The figures contain the rule sets that were developed in each 

process.  

 

Fig 10a: Rule set to use tree height raster (nDSM) info for distinguishing orchards.  

 

 

Fig 10b: Rule set to distinguish bare soil and shrubs using spectral characteristics.  
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Fig 10c: Rule set to classify Oak/Gum/Willow trees using spectral & nDSM information.  

 

Fig 10d: Final rule set to distinguish loblolly pine from other vegetation using thematic layer  
proximity.  
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Figure 11 shows the final classified map of AOI 2 (part Turkey Creek forested watershed). The 

forest species such as oak/gum/willow,  loblolly pine, other pine species, orchard, and small trees, bare 

soil and shrubs and other land-uses like roads and streams are distinguished in the part Turkey Creek 

watershed area and it was compared with the classification vector map (Figure 4) with satisfactory results. 

Figure 12 represents the final classification map of the Z-blu (AOI 3) orchard with three classes (Rabbit 

eye, high bush, forest vegetation). It compared very well with Figure 2b with a high accuracy. Proper 

groundtruthing for accuracy assessment has not been conducted at any site. It will be conducted soon 

and the OBIA classification models will be refined in future study. However, the land use classes obtained 

from the OBIA segmentation process were correlated with the forest cover classification map for AOI 2 

(Figure 2a) site and Z-blu orchard management specification vector (Figure 2b) for AOI 3 and R2 values 

of 0.84 and 0.88, respectively, were obtained. 

 

 

Fig 11: Final classified map of part Turkey Creek coastal forested watershed ((AOI 2) along with the rule 
sets.  

 



Journal of Spatial Hydrology 
Vol.12, No.1 Fall 2014 

 

 

Fig 12: Final classified map of Z-Blu blueberry orchard (AOI 3) along with the rule sets.  

Conclusions 

The study confirms that plant canopy temperature, stomatal conductance, and LAI can be 

estimated reasonably well on spatial basis by using the correlation models developed with the data 

derived from analysis of spectral, textural, and other thematic attributes of remotely sensed imageries 

(LANDSAT ETM+7, NAIP, LiDAR) with corresponding field measurements.  Rule sets based OBIA 

technique also performed well to classify different forest species at two coastal study sites with different 

vegetation although a thorough ground truthing and classification accuracy assessment is warranted.  

The result obtained from the LAI raster developed for the AOI 2 study site with pine and other hardwood 

mixed forest was also encouraging.  When compared with the OBIA based classified image, a high visual 

correlation was observed for LAI and different plant species.  
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