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Abstract:

Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters
and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for
DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant
growth in lowland forests. The analysis was carried out for multiple long-term model predictions of hydrology,
biogeochemistry, and plant growth. Results showed that long-term mean hydrological predictions were highly sensitive
to several key plant physiological parameters. Long-term mean annual soil organic C content and mineralization rate
were mainly controlled by temperature-related parameters for soil organic matter decomposition. Mean annual forest
productivity and N uptake were found to be mainly dependent upon plant production-related parameters, including
canopy quantum use efficiency and carbon use efficiency. Mean annual nitrate loss was highly sensitive to parameters
controlling both hydrology and plant production, while mean annual dissolved organic nitrogen loss was controlled by
parameters associated with its production and physical sorption. Parameters controlling forest production, C allocation,
and specific leaf area highly affected long-term mean annual leaf area. Results of this study could help minimize the
efforts needed for calibrating DRAINMOD-FOREST. Meanwhile, this study demonstrates the critical role of plants in
regulating water, C, and N cycles in forest ecosystems and highlights the necessity of incorporating a dynamic plant
growth model for comprehensively simulating hydrological and biogeochemical processes. Copyright © 2013 John
Wiley & Sons, Ltd.
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INTRODUCTION models tend to be complex and usually require a large
number of input parameters (Johnsen et al., 2001; Van
Oijen et al., 2005). Many parameters used in process-
based models are difficult or even practically impossible
to obtain from actual measurements (Makler-Pick et al.,
2011). The uncertainty in parameter values increases the
likelihood of errors and bias in model predictions (EPA,
2003; Beven, 2008). Therefore, identifying key model
parameters and processes and refining model structure
are important steps for developing and evaluating
process-based models (Arora, 2002; EPA, 2003; Sieber
and Uhlenbrook, 2005).

Sensitivity analysis has been widely used for
quantifying effects of changes in model parameters
on variance of model predictions (Wang et al., 2005;
Pappenberger et al., 2008; Saltelli and Annoni, 2010;
Dobler and Pappenberger, 2012). Results of sensitivity
analysis provide insights into which parameters

Process-based forest ecosystem models are useful
research and management tools for exploring forest
ecosystem dynamics and providing policymakers and
forest managers with necessary information for making
scientifically sound decisions (Makela er al., 2000;
Johnsen et al., 2001). These models conceptualize
scientific knowledge and understanding of the integrated
hydrological, biogeochemical, and plant physiological
processes occurring in forest ecosystems, and thus, they
have certain advantages over empirical models in mech-
anistically simulating these coupled processes (Makela
etal.,2000; Johnsen et al., 2001). However, process-based
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(or processes) are most influential on certain model
outputs (Pappenberger et al., 2008). Such information is
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a useful guidance for model calibration and validation
and can be used for refining and improving model
structure to reduce model complexity (Sieber and
Uhlenbrook, 2005). Generally, there are two types of
methods for sensitivity analysis: local and global methods
(Fieberg and Jenkins, 2005; Pappenberger et al., 2008;
Saltelli and Annoni, 2010). In local sensitivity analysis,
only one parameter is changed at a time, while keeping all
other parameters at their base values. This type of
sensitivity analysis is commonly referred to as the one-
at-a-time (OAT) method. It is known that the OAT
method is only suitable for linear and additive models
as it ignores the interaction effects among model
parameters (Saltelli and Annoni, 2010). Because of its
simplicity and high computation efficiency, however,
this method has been widely used for sensitivity
analysis of hydrological, biogeochemical, environmen-
tal, and ecological models (Haan and Skaggs, 2003;
Esprey et al., 2004; Xenakis et al., 2008; Kim et al.,
2012), although most of which are nonlinear and
nonadditive. In contrast to local methods, global
sensitivity analysis is an advanced approach that is
capable of altering values of all parameters simulta-
neously in each model simulation. Global sensitivity
analysis methods have been strongly recommended for
nonlinear and nonadditive computer models (EPA,
2003; Saltelli and Annoni, 2010). Among the methods
of global sensitivity analysis, the most widely used is
the variance-based global sensitivity analysis, which
partitions the variance of model outputs to influence
of individual parameters and their interactions (Saltelli
and Annoni, 2010). Sobol's (2001) method, the Fourier
amplitude sensitivity test (FAST), and extended FAST
(E-FAST) (Saltelli et al., 2000, 2005) are widely
used methods for variance-based global sensitivity
analysis.

DRAINMOD-FOREST is an integrated forest eco-
system model for simulating water, soil carbon (C), and
nitrogen (N) dynamics and plant growth in natural and
managed forests on shallow water table soils (Tian
et al., 2012a,2012b). Previous studies successfully
tested DRAINMOD-FOREST for predicting hydrolog-
ical processes, nitrate and dissolved organic nitrogen
(DON) losses in drainage, and plant growth for three
artificially drained loblolly pine (Pinus taeda L.)
plantations under various management practices over a
21-year period (Tian et al., 2012a,2012b, 2013). The
model is highly nonlinear and nonadditive because of
the tight interactions among its three components:
hydrology, biogeochemistry, and plant growth. This
integrated forest ecosystem model has a large number of
input parameters with respect to plant physiological
properties, soil hydraulic properties, and soil biogeo-
chemical properties regulating C and N cycles. Some of

Copyright © 2013 John Wiley & Sons, Ltd.

S. TIAN ET AL.

these parameters are difficult to determine through field/
laboratory measurements and are usually obtained
through model calibration.

The objective of this study was to conduct a compre-
hensive global sensitivity analysis for DRAINMOD-
FOREST to identify key model parameters controlling
the long-term mean hydrological, soil C and N, and plant-
related predictions. Results of this study are useful in
verifying the interactions and feedbacks among the three
components of DRAINMOD-FOREST. Information
obtained would guide model users to efficiently calibrate
the model and help forest managers understand processes
controlling the long-term sustainability of forest planta-
tions. This study could also validate the model structure
and provide insights into the complex interactions among
various model components. Lastly, findings of this study
should be of general implications for other comparable
integrated ecosystem models.

MATERIALS AND METHODS

DRAINMOD-FOREST

DRAINMOD-FOREST (Figure 1) is an integrated,
process-based, and stand-level forest ecosystem model
that integrates a physiology-based forest growth model
with DRAINMOD (Skaggs, 1999) and DRAINMOD-N
II (Youssef, 2003; Youssef et al., 2005) models. The
model was developed to simulate hydrological process-
es, soil C and N dynamics, and tree growth for natural
and managed forests on naturally poorly drained shallow
water table soils (Tian er al., 2012a). In addition to
common silvicultural practices, forest plantations in this
kind of landscape are often artificially drained by open-
ditch networks to reduce excess water stress and
improve forest productivity.

The hydrologic component, DRAINMOD, was origi-
nally developed for evaluating the performance of
drainage and associated water management systems in
agricultural fields (Skaggs et al., 1999, 2012). It conducts
a water balance on either an hourly or daily basis for a soil
column midway between two parallel drains, extending
from the soil surface down to a shallow impermeable
layer. After necessary modifications were incorporated,
the current DRAINMOD component of DRAINMOD-
FOREST is capable of simulating detailed hydrological
processes in lowland forest ecosystems, including rainfall
interception, throughfall, infiltration, evapotranspiration
(ET), subsurface drainage, surface runoff, vertical and
lateral seepage, water table fluctuation, and soil water
distribution in the vadose zone (Figure 1). Infiltration is
simulated using the Green—Ampt equation. Subsurface
drainage is calculated using Hooghoudt's equation for
water table drawdown and Kirkham's equations for
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ponded surface conditions. Surface runoff is estimated as
the difference between rates of precipitation and infiltra-
tion, once site-specific surface depressional storage is
filled (Skaggs et al., 1999). DRAINMOD-FOREST
internally calculates daily potential ET (PET) using the
Penman—Monteith method with canopy conductance
estimated as a function of climatologically regulated
stomatal conductance and leaf area index (LAI), which is
predicted by the forest growth model. A modified version
of the Gash model (Gash et al., 1995) is used to estimate
rainfall interception.

DRAINMOD-N II was developed by adding soil C and N
cycling components to the hydrologic model DRAINMOD.
It simulates a detailed N cycle including atmospheric
deposition, application of mineral N fertilizers and organic
N sources, plant uptake, N mineralization and immobiliza-
tion, nitrification, denitrification, ammonia volatilization,
and N losses via surface runoff, lateral subsurface drainage,
and vertical deep seepage (Figure 1). Transport of both
mineral N and DON in the soil profile is simulated using a
finite differential solution to a multiphase form of the one-
dimensional advection—dispersion reaction equation. The
nitrification and denitrification processes are simulated
using the Michaelis—Menten function. The soil C submodel
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of DRAINMOD-N II divides organic matter into three soil
organic matter (SOM) pools (active, slow, and passive), two
aboveground and belowground residue pools (metabolic
and structural), and a surface microbial pool (Figure 1).
Each organic matter pool is characterized by a specific
organic C content, potential rate of decomposition, and
C:N ratio. The decomposition of each organic matter
pool is simulated using first-order rate kinetics as a
function of maximum decomposition rate and environ-
mental constraints. In DRAINMOD-N I, the temper-
ature constraint function is based on a form of the
Van't Hoff equation with variable Q10. DRAINMOD-
N II was recently modified to simulate biogeochemical
and physical processes of DON, including production
of DON from diverse SOM pools, microbial consump-
tion, partitioning between solid and aqueous phases,
and physical transport along the soil profile (Tian
et al., 2013).

The forest growth component in DRAINMOD-
FOREST was mainly adapted from the 3-PG model
(Landsberg and Waring, 1997) with changes related to
soil mineral N and water stresses affecting vegetation
growth (Tian et al., 2012a). Gross primary production
(GPP) is estimated using the radiation use efficiency
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Figure 1. Schematic diagram of hydrological, biogeochemical processes and plant growth in a typical drained forest ecosystem as simulated by

DRAINMOD-FOREST. Soil organic matter pools: STR = structural pool, MET = metabolic pool, MCR = microbial pool, ACT = active pool, SLO =slow

pool, PAS =passive pool, PSOM = potentially soluble soil organic matter, DOC =dissolved organic carbon, DON =dissolved organic nitrogen. Nitrogen

cycle: Volati =volatilization, Fertil =fertilization, Depos =air deposition, Denitrif = denitrification, Immobi =immobilization, Mineral = mineralization,
Nitrif = nitrification, Adsorp = adsorption, Desorp =desorption. (Tian et al., 2012a)

Copyright © 2013 John Wiley & Sons, Ltd.
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method, which relates intercepted radiation to biomass
production through quantum use efficiency (QUE). Environ-
mental stresses considered in the model include air
temperature and the availability of soil water and N. Net
primary production (NPP) is estimated as a function of GPP
and carbon use efficiency (CUE) in this study. The model
partitions assimilated C into foliage, stem, and root biomass
using species-dependent allometric functions, which are also
regulated by soil water and nitrogen status. Live biomass loss
through foliage litterfall is estimated as a function of leaf
longevity, while fine root turnover is quantified on the basis of
fine root lifespan. Several outputs, including forest produc-
tivity, LAI, tree diameter, and height, are provided by the
forest growth component.

DRAINMOD-FOREST considers the internal
feedbacks and interactions among hydrological, biogeo-
chemical, and physiological processes in forest ecosys-
tems (Figure 1). Specifically, first, ET is estimated as a
function of soil water conditions and PET. PET is
calculated using the Penman—Monteith equation on the
basis of dynamically simulated LAI, stomatal conduc-
tance, plant height, and canopy fraction by the vegetation
growth component. Second, DRAINMOD predicted
hydrological variables including soil water conditions
and drainage, which are used by DRAINMOD-N II to
simulate the reactive transport of soil N and predict
mineral N and DON leaching losses. Third, canopy
photosynthesis and C allocation to different plant tissues
simulated by the plant growth model are affected by water
and mineral N deficit stresses predicted by DRAINMOD
and DRAINMOD-N 11, respectively. Fourth, litterfall and
root turnover simulated by the plant growth model are
sources of organic matter for the soil C and N cycles
simulated by DRAINMOD-N II, which affects the availabil-
ity of soil N and plant growth. A detailed model description of
DRAINMOD-FOREST is given by Tian et al. (2012a).

Two-step sensitivity analysis

Because of these interactions among various processes
that are simulated in the three components of
DRAINMOD-FOREST, the model is highly nonlinear
and nonadditive. Thus, the variance-based global
sensitivity analysis approach was selected to conduct
the sensitivity analysis of DRAINMOD-FOREST. The
sensitivity analysis was conducted for nine model
outputs: two hydrology related (mean annual drainage
and ET), five soil C/N related (long-term mean of SOM
content, mean annual mineralization rate, plant uptake,
nitrate, and DON leaching losses), and two plant related
(mean annual NPP and mean LAI). Given its large
number (67) of model input parameters, computation
‘cost’ in terms of the total number of model simulations
required for this global sensitivity analysis can be

Copyright © 2013 John Wiley & Sons, Ltd.

S. TIAN ET AL.

prohibitively high. Therefore, the OAT method was
firstly used for initial parameter screening to select the
top 20 parameters for each model prediction, which are
further included in the global sensitivity analysis. A
similar two-step global sensitivity analysis was also
used by Wang et al. (2005). Results from this two-step
global sensitivity analysis could partly minimize the
potential bias generated from a single method, because
different sensitivity analysis methods may yield
different rankings with respect to the importance of
model parameters (Frey and Patil, 2002; Pappenberger
et al., 2008).

Screening procedure. The screening procedure was
carried out for 67 parameters using the Latin hypercube
(LH) OAT (LH-OAT) method (van Griensven et al.,
2006). The LH method, used in this step, is a stratified
sampling technique that divides the range of a
parameter (X) value used for the OAT analysis into N
intervals of equal probability. One sample is randomly
generated from each interval to produce N
nonoverlapping samples (X;, i=1, 2, 3, ..., N) of each
parameter. For each model simulation, the value of
only one parameter was changed while keeping the
other parameters fixed at their base values.

A relative sensitivity index (Wang et al., 2005),
defined by Equation 1, was used to quantitatively
evaluate the responses of each model output to changes
in individual parameters. The relative sensitivity index
(RSI) can be either negative or positive, indicating the
two trends of change in model outputs.

o))
=1 L\Xit1 —Xi ) \Oi 0
RSIpx = i=1 +1 e +1+ )

where RS, x is the relative sensitivity index for model
output O with respect to model parameter X and O;
represents the model output corresponding to model
parameter value X;. The first term inside the summa-
tion of Equation (1) represents the change in model
output O per unit change in the value of model
parameter X, while the second term is used to
normalize the response. The top 20 parameters with
highest absolute magnitude of RSI were selected for
carrying out the global sensitivity analysis.

Variance-based sensitivity analysis. Variance-based
analysis is one of the most prevalent methods used
in global sensitivity analysis (Saltelli et al., 1999).
This method has been widely used across various
engineering disciplines such as chemical engineering
(Saltelli et al., 2005), water resources engineering
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(van Griensven et al., 2006), and environmental
engineering (Kioutsioukis et al., 2004). It decomposes
the total variance of model output into individual
contributions of each input parameter and their
interactions as expressed by (Saltelli er al., 2005)

HM»

k
> Vimt... (2
m>j

T

k k k
V) =BV X3V + LT
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where V(Y) is the total unconditional variance of model
output (Y) with k model parameters, V; represents the
first-order fractional variance of model outputs, Vj; is
the second-order fractional variance of model outputs,
and Vj,, and V,, _; are higher-order variances of
interactions among multiple (=3) model parameters i, j,
m, ..., k. In general, only the first two terms are
considered in the sensitivity analysis. These two terms
are calculated by Equations 3 and 4:

Vi=V(E(Y|X; =x])) A3)

Vi=V(E(Y|X; =x,X; = x])) )

V(E(X =) - v(E(V% = x))

where V(E(Y ‘Xi =x})) represents the variance of
expected value of ¥ when X; has a fixed value x; and

v(E(vX =% =x))
expected value of Y when X; has a fixed value x; and
X; has a fixed value x;.

The first-order sensitivity index S; for parameter X;
represents the contribution of individual parameters to the

variance of model outputs and can be calculated as

is the variance of the

o)

The first-order sensitivity index cannot fully address
the impacts of one parameter on the model predictions if
interactions among parameters exist. The Sy, of parameter
X; is defined as the sum of its main sensitivity measure
and its interaction effects with all other parameters and
can be expressed as (Saltelli et al., 2005; Pappenberger

et al., 2008)
v [E(Y|X~l. - xii)}

V(Y)

Sr,=1-— (6)

where V{E (Y 1X_; :xii)] represents the variance of

model outputs caused by changes of all model parameters
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other than parameter i. By definition, S, is greater than or
equal to S;. The difference between St, and §; is a measure
of how much X; is involved in interactions with all other
input variables. The sum of Sz, or §; is an indicator of
the presence of interaction effects among parameters
when the sum of S7, is great than 1 and/or the sum of §;
is less than 1.

Pappenberger et al. (2008) indicated that for
correlated inputs the first-order effects are larger than
the total effects because of the dependence structure in
the inputs. However, it also depends upon the way the
sensitivity method is formulated. Generally, parameters
with small total sensitivity indices are of negligible
effect on the model output and can be fixed at a
nominal value. In contrast, parameters with high first-
order indices have strong identifiable influence on the
model output and need to be determined accurately. It
is possible that some parameters may have small first-
order indices but large total sensitivity indices,
indicating large effects on the model output due to
their interactions with other parameters. In this study,
we selected the E-FAST method (Saltelli et al., 1999)
to carry out the variance-based global sensitivity
analysis. This method has proven to be more reliable
and computationally efficient than other variance-based
techniques (Saltelli er al., 1999, 2000). Saltelli et al.
(1999) provided a detailed description of the E-FAST
method. This E-FAST method was previously used to
conduct sensitivity analysis for the DRAINMOD-N II
model (Wang et al., 2005).

Set-up of sensitivity analysis

The sensitivity analysis of DRAINMOD-FOREST was
applied to a loblolly pine plantation (about 24 ha) located in
Eastern North Carolina, USA, which was previously used
for a field testing of DRAINMOD-FOREST (Tian et al.,
2012a). The site is relatively flat (less than 0.1% slope) and
has hydric soil (Deloss fine sandy loam, fine-loamy, mixed,
semiactive, Thermic Typic Umbraquults). It was drained
by four 1.2-m-deep parallel lateral ditches dug at 100-m
spacing. This type of loblolly pine plantations is typically
distributed in the lowland areas of South-eastern USA.
Onsite measured long-term (21-year) precipitation is
1517mm, and ET is 1005mm (Amatya and Skaggs,
2011). Model simulations in this study were applied for a
21-year (1988-2008) period with onsite climate measure-
ments, including temperature, precipitation, solar radia-
tion, wind speed, and relative humidity (Amatya and
Skaggs, 2011). The simulation covered a typical mid-
rotation pine plantation (14-year-old trees in 1988) until its
harvest in 2009. A detailed site description including
drainage system, soil properties, and vegetation can be

Hydrol. Process. 28, 4389—4410 (2014)
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found elsewhere (Tian et al., 2012a). To eliminate effects
of disturbances of management practices, the sensitivity
analysis excluded commonly used silvicultural practices
such as fertilization, thinning, and harvesting.

DRAINMOD-FOREST requires three types of input
parameters: soil physical properties (Table Al in Appendix),
soil C and N cycle-related parameters (Table A2 in
Appendix), and vegetation-related parameters (Table A3 in
Appendix). Drainage system settings, including drain
spacing and depth, were excluded from this sensitivity
analysis because these are certain for most study sites.
Parameters of soil C and N dynamics include soil physical
and chemical properties, N transport and transformations
parameters, and parameters quantifying decomposition of
SOM. Vegetation parameters are mainly associated with
NPP, C allocation, litterfall, and physiological properties. A
total of 67 parameters were included in the screening
procedure. Parameter distributions and ranges were carefully
defined on the basis of published studies (Tables A1, A2, A3
in Appendix). In this study, ranges of plant-related
parameters were selected specifically for loblolly pine,
while most (when applicable) hydraulic and soil C and
N related parameters were obtained from literature for
South-eastern USA. Similar to other sensitivity analysis
studies of forest ecosystem models (Verbeeck et al.,
2006; Xenakis et al., 2008), most model parameters
that do not have adequate published literature values
were assumed to follow a uniform distribution
characterized by minimum and maximum values. Other
parameters that have sufficient documented values were
assumed to follow a normal distribution. The base
value of each parameter was set as the calibrated value
obtained in a previous model testing (Tian et al.,
2012a). Each of the 67 parameters was arbitrarily
partitioned into 10 intervals, and a total of 670 runs of
DRAINMOD-FOREST were carried out for the screen-
ing procedure. In this study, the E-FAST generated
2600 samples from 20 parameters previously selected
from the screening procedure. For the total nine model
outputs considered in this study, a total of 23400
model runs were carried out. The parameter sampling
and post-sensitivity index (S7, or §;) calculation were
carried out using the SIMLAB software, developed by
the Joint Research Centre of the European Commission
(SIMLAB, 2011).

Computer models that simulate long-term SOM
dynamics usually require a steady-state solution for
initial SOM pools before conducting model calibrations
and validations (Lardy et al., 2011). The initial SOM
content was determined from two field measurements
conducted in 2007 (unpublished data), which is an
acceptable approximation of initial conditions because
changes in the SOM of forest soils usually occur over
long periods (several decades to centuries) (Johnson

Copyright © 2013 John Wiley & Sons, Ltd.
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etal.,2003). The initial partitioning of SOC into active,
slow, and passive pools was adjusted prior to each
model execution to achieve quasi-equilibrium among
the three SOC pools. An iterative procedure, requiring
multiple runs (usually less than five) of the model
using the measured 20-year climate record, was
followed to obtain the initial partitioning of SOC
(Tian et al., 2012a).

RESULTS AND DISCUSSION

Parameters controlling hydrologic predictions

Figures 2 and 3 summarize the RSI, S;, and St, of the
selected 20 parameters for model predictions of long-
term annual mean ET and drainage (Q), respectively.
According to results obtained from the LH-OAT
screening, the selected 20 parameters are the same
but with opposite impacts on mean annual ET and Q
(Figures 2A and 3A). For instance, increasing QUE and
specific leaf area (SLA) will increase ET (positive RSI
in Figure 2A) and reduce drainage (negative RSI in
Figure 3A). Among these selected parameters, three are
related to soil hydraulic properties, five are related to
soil C and N dynamics, and 12 are related to
vegetation. The top five parameters ranked by the
LH-OAT sensitivity analysis are all related to plant
physiological properties, including canopy QUE, SLA,
C allocation ratio between leaf and stem (P20),
maximum stomatal water conductance (gsmax), and
CUE. The S; (Figures 2B and 3B) and S7, (Figures 2C
and 3C) obtained from the E-FAST analysis suggested
the same top five parameters, but with different
rankings, with maximum stomatal water conductance
ranked first, QUE ranked second, and SLA ranked fifth.
Parameter rankings given by S; and S7, based on the
global sensitivity analysis are very similar. Neverthe-
less, the summation of all S; and S7, was 0.95 and 1.4
for ET predictions and 0.91 and 1.3 for Q predictions,
respectively, indicating the presence of interactions
between these parameters. Among all parameters, the C
allocation ratio between leaf and stem (P20) has the
largest interaction effects with other parameters, with
an S; of 0.09 and an S7, of 0.18.

The top five parameters identified by the sensitivity
analysis (Figures 2 and 3) are related to plant
physiological processes, suggesting that vegetation is
the dominant factor regulating the long-term mean
hydrological predictions. The model was not found
very sensitive to soil hydraulic conductivity, a com-
monly recognized parameter with large influence on
hydrological processes (Blanco-Canqui et al., 2002;
Haan and Skaggs, 2003) (ranked 16th by the LH-OAT
screening procedure and ninth by the global sensitivity

Hydrol. Process. 28, 4389—-4410 (2014)
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Figure 2. Results of the two-step global sensitivity analysis for long-term annual mean evapotranspiration (ET). (A) The relative sensitivity index (RSI),
(B) the first-order sensitivity index (S;), and (C) the total order index (S7,) of these identified top 20 parameters through screening procedure. Parameters
associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed bars, respectively
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Figure 3. Results of the two-step global sensitivity analysis for long-term annual mean drainage (Q). (A) The relative sensitivity index (RSI), (B) the
first-order sensitivity index (S;), and (C) the total order index (S7,) of these identified top 20 parameters through screening procedure. Parameters
associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed bars, respectively

analysis). This conclusion is different from results of an
OAT sensitivity analysis of the DRAINMOD model
applied for an agricultural field located in the South-
eastern USA (Haan and Skaggs, 2003), in which the
lateral hydraulic conductivity of the bottom soil layer

Copyright © 2013 John Wiley & Sons, Ltd.

Hydrol.

was found to be the dominant parameter influencing
DRAINMOD predictions of long-term mean annual
drainage. However, these results are not contradictory
because the previous analysis did not take into
consideration the dominant role of plant canopy in
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regulating the water flux between canopy and air (Arora,
2002). Similar to findings from this study, recent local
sensitivity analyses on DRAINMOD (Luo et al., 2009)
and the watershed-scale version of DRAINMOD (called
DRAINWAT) (Kim et al., 2012) also concluded that PET
estimated using various methods is the most sensitive
temporal parameter affecting its hydrological outputs.

We also found that a few soil C and N related
parameters had minor but noticeable effects on model
predictions of hydrological processes (Figures 2 and 3).
For instance, the decomposition rate of active soil C
pool (kdec6) was found with a sensitivity index higher
than that of soil hydraulic conductivity (conduc3). This
is evident because soil biogeochemical processes
influence the availability of plant nutrients and thus
affect vegetation growth and accordingly the long-term
mean hydrological expressions of the ecosystem (Lohse
et al., 2009).

The critical role of plants in regulating water and
energy fluxes between biosphere and atmosphere is
well known (Asbjornsen et al., 2011; Waring and
Landsberg, 2011). As we identified in Figures 2 and 3,
stomatal conductance (gsmax) and other plant-related
parameters are the dominant factors controlling water
losses through transpiration (Rodriguez-Iturbe, 2000;
Arora, 2002). This is confirmed by previous model
applications (Tian et al., 2012a,2012b). However, most
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hydrological models do not include a dynamic plant
growth component (Arora, 2002), which may explain
why previous sensitivity analysis of hydrologic models
did not identify a dominant influence of plant physio-
logical properties on hydrological predictions (van
Griensven et al., 2006; Tang et al., 2007; Foglia et al.,
2009). Results from this study verified the fact that it is
essential to adequately represent the dominant role of
vegetation in regulating long-term water cycle in both
process-based (Arora, 2002) and empirical hydrological
models (Donohue et al., 2007; Li et al., 2013).

Parameters controlling soil C and N related outputs

Soil organic matter content. Figure 4 shows RSI, S;,
and Sy, of the selected 20 parameters for model
predictions of long-term mean annual SOM content.
The LH-OAT screening procedure suggests that seven of
the top 20 parameters are soil C and N related, 12
parameters are plant related, and only one is soil physical
property related (Figure 4A). On the basis of the LH-OAT
screening procedure, there are six parameters having
noticeable effects on model predictions of long-term
mean SOM content: optimum temperature for SOM
decomposition (Toptl), empirical shape factor for
temperature function (betal), maximum decomposition
rates for slow (kdec7) and passive SOM pools (kdec8),
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Figure 4. Results of the two-step global sensitivity analysis for long-term annual mean soil organic matter (SOM) content. (A) The relative sensitivity

index (RSI), (B) the first-order sensitivity index (S;), and (C) the total order index (S7,) of these identified top 20 parameters through screening procedure.

Parameters associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed bars,
respectively
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canopy QUE, and CUE. The results of our LH-OAT
analysis are similar to results obtained in another
sensitivity analysis on a SOM model linked with the 3-
PG model (Xenakis et al., 2008). Rankings of top
parameters identified by LH-OAT and E-FAST are
similar. Nevertheless, S; and S7, based on the E-FAST
global sensitivity analysis (Figure 4B, C) demonstrated
that only four parameters have a substantial influence
over model predictions of long-term mean SOM content:
optimum temperature for SOM decomposition (Topl),
maximum decomposition rates of slow and passive pools
(kdec7 and kdec8), and empirical shape factor for
temperature function (betal). As demonstrated in
Figure 4B, C, S7,'s of the selected 20 parameters are
generally larger than S;. The sum of S; is 0.93, while the
sum of Sz, is 1.4, indicating the presence of interaction
effects among these parameters.

Theoretically, the long-term mean SOM content is
influenced by the balance among the total system
productivity, the delivery of new organic matter to
SOM pools, and the microbial decomposition. This is
clearly reflected in the results from the LH-OAT. For
instance, soil clay fraction (Clayfracl) showed a positive
impact on predicted SOM content because clay
physically protects SOM (Six et al., 2002), slowing
decomposition and reducing SOM loss. Meanwhile,
parameters such as QUE and CUE have positive impacts
on SOM because both parameters positively affect plant
production. The RSIs of decomposition rates of surface
litter pools (kdecl and kdec3) and of decomposition
rates of slow and passive SOM pools (kdec7 and kdec8)
have opposite signs. This is because the part of the
decomposed litter stored on the forest floor is recycled
into SOM, and thus, the decomposition of litter is
considered a source of SOM, while SOM decomposition
itself is a sink (Figure 1).

Both the LH-OAT and global sensitivity analyses
suggested that the temperature-mediated decomposition
processes exert a dominant influence on the long-term
mean SOM content. We found that the higher optimum
temperature for SOM decomposition poses a positive
impact on SOM content (Figure 4A). This is consistent
with the common view that global warming will reduce
soil C sequestration by accelerating the depletion of the
soil C storage (Knorr et al., 2005; Davidson and
Janssens, 2006).

The maximum decomposition rates of slow and
passive SOM pools were also identified as key
parameters regulating model predictions of long-term
mean SOM content, suggesting that stable SOM pools
are the main contributor to the SOM accumulation
because of their long residence time (Knorr et al.,
2005). The global sensitivity analysis suggests that
factors related to plant growth did not obviously affect

Copyright © 2013 John Wiley & Sons, Ltd.
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model predictions of SOM. Although root turnover is a
major pathway to SOM storage (Matamala et al.,
2003), root turnover rate was found to be insignificant
in controlling SOM content, presumably as a result of
the fast decomposition rate of root litter, which
usually has a low lignin-to-N ratio (Ostertag and
Hobbie, 1999). The insignificant effect of plant-related
parameters on model predictions of long-term mean
SOM content has also been found in conclusions
obtained by other similar studies (Paul et al., 2008;
Xenakis et al., 2008).

Nitrogen mineralization. For a forest plantation
without fertilization, N mineralization from SOM
decomposition is the main source of mineral N or
plant uptake (Vernimmen et al., 2007). RSI, S;, and S7,
of the selected 20 parameters for model predictions of
long-term mean annual mineralization rate are shown in
Figure 5. Nine of the top 20 parameters identified by
the LH-OAT screening procedure using the calculated
indices were plant-related parameters, while seven were
soil C and N cycle related and four were soil
hydrologic and texture related (Figure 5A). The most
sensitive parameters based on the screening procedure
were mainly SOM decomposition related, such as
parameters of temperature constraint function (toptl,
betal), decomposition rate of active (kdec6), slow
(kdec7), and passive (kdec8) pools, and plant-related
parameters, including QUE and N content in roots
(NconR) and leaf (NconL). Identified parameters by the
S; (Figure 5B) and S7, (Figure 5C) are largely different
from the LH-OAT results. According to the results of
global sensitivity analysis, only four parameters had
strong effects on model predictions of long-term annual
mean net N mineralization: the optimum temperature
for SOM decomposition (Toptl), maximum decompo-
sition rates for active (kdec6) and slow (kdec7) SOM
pools, and empirical shape factor for the temperature
function (betal). According to the S; (Figure 5B), the
ranking of decomposition rates of the active and slow
SOM pools climbed to the second and fourth,
respectively. The Sy, of the E-FAST analysis
(Figure 5C) suggests the same top four most sensitive
parameters as did the S;, while the fifth one was stem N
content (NconS) instead of leaf N content (NconL).
The presence of interactions among parameters was
indicated by the sums of first-order and total sensitivity
indices, which were 0.87 and 1.9, respectively. In
particular, global sensitivity analysis showed the stem
nitrogen content (NconS) with a low §; value (0.08)
and a high S7, value (0.63), suggesting that this
parameter interacts strongly with other parameters.

The sensitivity analysis suggested that long-term
mean annual N mineralization rate is dominated by

Hydrol. Process. 28, 4389—4410 (2014)
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Figure 5. Results of the two-step global sensitivity analysis for long-term annual mean mineralization rate. (A) The relative sensitivity index (RSI),

(B) the first-order sensitivity index (S;), and (C) the total order index (Sr,) of these identified top 20 parameters through screening procedure.

Parameters associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed
bars, respectively

decomposition rates of labile SOM pools and soil
temperature constraint parameters. The maximum
decomposition rates of active (kdec6) and slow (kdec7)
SOM pools were selected as very influential parameters
from the global sensitivity analysis, suggesting that the
labile SOM pools exert dominant control over the net
N mineralization because of their fast turnover and low
C/N (Muller et al., 2011). This was confirmed by
another study concluding that the decomposition of
labile SOM is the most important process influencing
availability of soil mineral N (Xenakis et al., 2008). In
contrast to the results obtained from the LH-OAT analysis,
those of the global sensitivity analysis suggested that the
decomposition rate of the passive SOM pool (kdec8) has
limited impact on mean annual N mineralization rate.
Compared with SOM decomposition rates, litterfall quality
and N content of tree tissues were found to be insignificant
factors controlling net N mineralization, which is confirmed
by a comparison across several North American forest sites
(Scott and Binkley, 1997). Comparable with many other
studies (Pastor and Post, 1986; Leiros et al., 1999; Dalias
et al., 2002; Knoepp and Swank, 2002), both LH-OAT and
E-FAST analyses demonstrated that parameters of temper-
ature constraint function (toptl, betal) have the most
influential impacts on predicted mineralization rate.
Although it is known that the soil moisture regime is
another factor affecting N mineralization in forest soils

Copyright © 2013 John Wiley & Sons, Ltd.

(Pastor and Post, 1986; Leiros et al., 1999; Knoepp and
Swank, 2002), the effect of soil moisture was found
insignificant in this study because the site is relatively
wet, as indicated by the long-term mean precipitation
of 1517 mm and mean water table depth of about 1m
in the study site (Amatya and Skaggs, 2011; Tian
et al., 2012c).

Nitrate losses. Figure 6 shows RSI, S;, and S7, for the
selected top 20 parameters influencing long-term mean
annual nitrate loss predictions. There were ten plant-
related parameters and nine soil C and N cycle related
parameters among the 20 parameters. According to results
of the LH-OAT screening procedure (Figure 6A), the five
most sensitive parameters were canopy QUE, optimum
temperature for SOM decomposition (Toptl), CUE, SLA,
and empirical shape factor for temperature function
(betal), while the maximum stomatal conductance
(gsmax) was ranked sixth. The ranking of the most
important factors regulating nitrate losses identified by the
E-FAST global sensitivity analysis was slightly different
than that identified by the LH-OAT screening. Specially,
the maximum stomatal conductance (gsmax) was ranked
third and second, respectively, according to the S; and S,
of E-FAST methods. In addition, the sum of S7, and S; for
all parameters is 1.4 and 0.88, respectively, suggesting the
presence of interaction effects among parameters.

Hydrol. Process. 28, 4389—-4410 (2014)
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Figure 6. Results of the two-step global sensitivity analysis for long-term annual mean nitrate losses. (A) The relative sensitivity index (RSI), (B) the
first-order sensitivity index (S;), and (C) the total order index (S7,) of these identified top 20 parameters through screening procedure. Parameters
associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed bars, respectively

Field studies have shown that nitrate leaching losses
from forests are controlled by its availability depending
on the sources and transformations and hydrological
processes, which control the transport capacity of the
system (Sebestyen et al., 2008; Tian et al., 2012c).
Parameters identified as controlling long-term mean
nitrate losses can be divided into three groups. The first
group relates to the source of nitrate, including
parameters influencing SOM decomposition, such as
maximum SOM decomposition rates (kdec6, kdec7,
and kdec8), optimum temperature for SOM decomposition
(Toptl), and empirical shape factor for the temperature
function (betal). Parameters of the second group are
associated with plant uptake, such as canopy QUE and N
content of leaf (NconL). Parameters of the third group
describe plant physiological properties controlling hydrolog-
ical processes and C assimilation, such as SLA, C allocation
ratio between leaf and stem (P20), and the maximum stomatal
conductance (gsmax). Most of the identified soil C/N cycling
parameters are comparable with those obtained in a previous
sensitivity analysis of DRAINMOD-NII model that was
conducted for agricultural field conditions (Wang et al.,
2005). In addition to soil temperature and active pool
decomposition rate parameters, Wang et al. (2005) found
denitrification parameters to be dominant in regulating nitrate
losses from agricultural ecosystems. However, denitrifica-
tion-related parameters were not among these key parameters
controlling model predictions of nitrate losses from
forests. This is generally evident because forest soils

Copyright © 2013 John Wiley & Sons, Ltd.

tend to have much lower nitrate concentration
compared with the fertilized agricultural land (Tian
et al., 2012a). In this study, plant-related parameters
were found to be the main factors controlling the long-
term nitrate losses because plant uptake is the main
sink of nitrate in forest ecosystems. Additionally, plant
physiological parameters largely control model pre-
dictions of hydrological processes (drainage and ET),
which are key factors in regulating physical losses of
nitrate (Creed and Band, 1998; Tian et al., 2012c). This
is also supported by a previous model calibration for
predicting nitrate losses from two loblolly pine
plantations (Tian et al., 2012a,2012b).

Nitrogen uptake. Nitrogen uptake is the largest N sink in
forest ecosystems, and accurate uptake prediction is essential
for quantifying soil C and N cycles. The RSI, S;, and St, of the
identified top 20 parameters controlling model predictions of
N uptake were summarized in Figure 7. Among these
selected 20 parameters, 12 parameters were plant related, six
were soil C and N related, and two parameters were soil
property related (Figure 7A). Results obtained from the LH-
OAT and E-FAST suggested similar rankings of these
selected parameters. According to the results of the global
sensitivity analysis (Figures 7B, C), most parameters
affecting N uptake were also found with interaction effects,
as suggested by the higher S, compared with ;.

DRAINMOD-FOREST simulates N uptake as a function
of biomass increment and tissue N content and the available

Hydrol. Process. 28, 4389—4410 (2014)
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Figure 7. Results of the two-step global sensitivity analysis for long-term annual mean annual nitrogen uptake. (A) The relative sensitivity index (RSI),
(B) the first-order sensitivity index (S;), and (C) the total order index (St,) of these identified top 20 parameters through screening procedure. Parameters
associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey filled, blank, and dashed bars, respectively

mineral N in the root zone, which is mainly controlled by the
N mineralization (Tian et al., 2012a). According to these
sensitivity indices from both the LH-OAT and E-FAST
methods, plant productivity-related parameters, includ-
ing canopy QUE and CUE, are the predominant
factors regulating N uptake. Given the close relation-
ship between forest production and N uptake, we
expected to find out that 16 out of the identified 20
parameters for N uptake were the same as those
parameters identified for mean annual NPP (Figure 9).
Leaf N content of plant (NconL) was also identified as
one of the key parameters controlling N uptake
because it affects both mineralization rate (Figure 5)
and plant N demand by the plant. Soil C/N cycling
parameters that have significant impacts on soil N
mineralization rates (Figure 5), such as optimum
temperature for SOM decomposition (Toptl) and
maximum decomposition rates for active (kdec6) and
slow (kdec7) SOM pools, also exert noticeable
impacts on N uptake, although not as significant as
the plant-related parameters (Figure 7).

DON losses. It has been widely recognized that DON
represents a large portion of N leaching from forest
ecosystems to surface waters (Perakis and Hedin, 2002;
Neff et al., 2003; Tian et al., 2012c). Challenges still exist
for accurately predicting DON losses using process-based
models because of the current limited understanding of
mechanisms controlling sources and sinks of DON, as

Copyright © 2013 John Wiley & Sons, Ltd.

well as its transport in the soil profile. DRAINMOD-
FOREST was modified to simulate key processes
associated with transformations and transport of DON
in the soil profile (Tian et al., 2013). In the modified
model, DON production rates were empirically linked
with organic matter pools on forest floor and in forest
soil. The Langmuir isotherm was used to quantify the
assumed instantaneous equilibrium between potentially
soluble organic nitrogen in solid and aqueous phases.
DON transport with groundwater flow was simulated
using a numerical solution to the advection—dispersion
reaction equation.

According to the LH-OAT analysis, there are six
parameters clearly influencing model predictions of DON
losses, including the maximum adsorption capacity
(Maxadsorp), CUE, the fraction of soil microbial pools
that is soluble (fsom), maximum decomposition rate of the
surface structural litter pool (kdecl), root turnover rate
(TurnoverR), and leaf longevity (Leaflife) (Figure 8A).
Results of the E-FAST analysis (Figure 8B, C) suggested a
different set of six most sensitive parameters: the fraction
of soil microbial pool that is soluble (fsom), maximum
adsorption capacity (Maxadsorp), binding affinity of the
soluble SOM (Bindaff), optimum temperature for SOM
decomposition (Toptl), the maximum stomatal conduc-
tance (gsmax), and empirical shape factor for temperature
function (betal).

According to the results of both the LH-OAT screening
procedure and global sensitivity analysis (Figure 8), we

Hydrol. Process. 28, 4389—-4410 (2014)
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Figure 8. Results of the two-step global sensitivity analysis for long-term annual mean dissolved organic nitrogen (DON) losses. (A) The relative
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found that the most important controlling factors for DON
losses are mainly associated with soil sorption, while
hydrological flux moderately influences the long-term
DON losses. This finding is similar to the results of sensitivity
analysis of other process-based models (Neff and Asner,
2001; Yurova et al., 2008), which highlight the importance of
accurately parameterizing the sorption algorithm for simu-
lating DON dynamics. This is further supported by an
uncertainty analysis of DRAINMOD-FOREST in predicting
long-term DON losses (Tian et al., 2013). Additionally,
hydrological processes (represented by the maximum
stomatal conductance (gsmax)) were also important in
predicting long-term annual DON losses. This is consistent
with experimental findings that discharge is a key factor
explaining the temporal dynamics of DON losses from forest
ecosystems (Mitchell, 2001; Tian et al., 2012c). We also
found that leaf longevity (leaf life), root turnover rate
(TurnoverR), and optimum temperature of SOM decompo-
sition (Toptl) have a moderate effect on predicted mean
annual DON losses.

Parameters controlling plant-related outputs

Net primary productivity. Figure 9 shows RSI, S;, and
S, of the identified top 20 parameters controlling model
predictions of mean annual NPP. Ten of the 20
parameters were plant related, eight were associated with
soil C and N cycles, and only two parameters were related
to soil hydraulic and texture properties (Figure 9A).

Copyright © 2013 John Wiley & Sons, Ltd.

According to the results of the LH-OAT screening procedure,
CUE and QUE have overwhelming positive effects on model
predictions of NPP, while parameters associated with
temperature constraints for plant growth (Toptp) and SOM
decomposition (Toptl), maximum stomatal conductance
(gsmax), and leaf longevity (Leaflife) have moderately
negative influences. Results of the LH-OAT and E-FAST
sensitivity analyses did not show obvious difference in terms
of parameter rankings, except for the empirical shape factor
for temperature function (betal). The interaction effects of
these parameters were demonstrated by results from E-FAST
(Figure 9B, C), as shown by the larger sum of S, (1.23),
compared with the sum of S; (0.92).

These results were supported by the sensitivity analysis of
the 3-PG model conducted by Esprey et al. (2004) and
Xenakis et al. (2008) who concluded that QUE and CUE
were the two key parameters controlling predicted forest NPP
in the 3-PG model. The high sensitivity of photosynthesis to
QUE was also reported by Verbeeck et al. (2006) and Song
etal. (2012). We also found that the optimum temperature for
plant growth (toptp) ranked fourth, which is comparable with
results obtained by other sensitivity analysis of 3-PG-based
models (Esprey et al., 2004; Xenakis et al., 2008). However,
unlike previous sensitivity analyses on the 3-PG model
(Esprey et al., 2004; Xenakis et al., 2008; Song et al.,
2012), we did not find the NPP highly sensitive to
exponent power (PowerBD) in the relationship between
stem mass and diameter. This difference can be primarily
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Figure 9. Results of the two-step global sensitivity analysis for long-term annual mean net primary production (NPP). (A) The relative sensitivity index

(RSI), (B) the first-order sensitivity index (S;), and (C) the total order index (S7,) of these identified top 20 parameters through screening procedure.

Parameters associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by grey-filled, blank, and dashed bars,
respectively

attributed to the different ranges specified in this study and
the other studies. The parameter range [1.5, 2.84] defined
in this study is specified for loblolly pine and was based
on insensitive field measurements (Jenkins, 2004), while
previous studies determined the parameter range by
arbitrarily increasing and decreasing the base value by
30%, resulting in an unrealistic range for loblolly pine
[1.7, 3.3]. This example also suggested that researchers
must carefully assign proper ranges and distributions to
parameters for sensitivity analysis.

Similar to the results of Xenakis et al. (2008), results of
LH-OAT sensitivity analysis indicated that soil C cycling
parameters had little direct impact on productivity of the
forest ecosystem. The optimum temperature constraint for
SOM decomposition (Toptl) slightly affected model
predictions of mean annual NPP, as confirmed by Esprey
et al. (2004). However, on the basis of the first-order
indices of global sensitivity analysis (Figure 9B), the
maximum decomposition rate of active SOM pool
(kdec6) ranked third and the decomposition rate of slow
SOM pool (kdec6) ranked eighth among the 20
parameters influencing model predictions of NPP. The
importance of the maximum decomposition rate of active
SOM (kdec6) for predicting NPP is consistent with the
importance of kdec6 for controlling net mineralization
(Figure 5), which is the main source of mineral N
affecting vegetation growth and forest productivity.
Therefore, results of the global sensitivity analysis are
more realistic than those obtained from the LH-OAT

Copyright © 2013 John Wiley & Sons, Ltd.

sensitivity analysis in this study and in other studies
(Esprey et al., 2004; Xenakis et al., 2008).

Compared with other parameters, maximum stomatal
conductance was found to be a much less influential
parameter affecting model predictions of NPP (Figure 9),
suggesting that stomatal conductance does not play a very
significant role in simulated C cycle by DRAINMOD-
FOREST, which is supported by another sensitivity analysis
on an ecosystem model called WxBGC(Miao et al., 2011).
However, we think this conclusion is only valid for plant
growth models using radiation use efficiency methods to
simplify photosynthesis processes, in which the stomatal
conductance did not directly affect the exchanges of carbon
dioxide between the leaf's interior and ambient air. In reality,
the stomatal conductance has been commonly found to be a
critical property in regulating the C flux between plant canopy
and atmosphere (Kleidon, 2004).

Leaf area index. The LAl s the key variable in regulating
water, C, and energy fluxes between canopy and air
(Rodriguez-Iturbe, 2000; Arora, 2002). Fourteen of the
identified top 20 parameters for model predictions of LAI
were plant related, five parameters were associated with soil
C/N dynamics, and only one parameter was related to soil
hydraulic properties (Figure 10A). According to the results
obtained from the LH-OAT screening procedure, LAI was
highly sensitive to canopy QUE, CUE, leaf longevity
(Leaflife), foliage-to-stem partitioning ratio (P20), and SLA
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Figure 10. Results of the two-step global sensitivity analysis for long-term annual mean annual leaf area index (LAI). (A) The relative sensitivity index
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of mature trees. The same top four parameters were identified
by the OAT analysis of this study and by previous OAT
sensitivity analyses of the 3-PG model (Esprey et al., 2004;
Xenakis et al., 2008). S; and S, from the E-FAST analysis
also suggested similar top sensitive parameters, but with
different ranking orders.

These identified top sensitive parameters represent the
processes of assimilation and allocation of C and litterfall,
which regulate the balance of leaf biomass. For instance,
the C allocation ratio between leaf and stem (P20) determines
the amount of C allocated to leaf, the canopy QUE
dominantly affects the amount the NPP, and the SLA defines
the size of LAI for a given unit of leaf biomass. Model
predictions of NPP and LAI are noticeably sensitive to
maximum decomposition rates of liable SOM pools (kdec6
and kdec7) and optimum temperature of SOM decomposition
(Toptl) (Figures 9 and 10), validating the tight linkages
between biogeochemical processes and plant growth. The
minor negative impacts of the maximum stomatal
conductance (gsmax) and wilting point (Wilpntl) suggest
that hydrological parameters only posed limited influence
on plant growth in the study site.

Implications

Figure 11 summarizes the S; indices based on E-FAST
global sensitivity analysis. Of a total of 30 parameters
(excluding the three parameters specified for DON

Copyright © 2013 John Wiley & Sons, Ltd.

simulation) selected for nine model outputs, four
parameters are related to soil properties, ten are associated
with soil C and N cycles, and the other 16 are plant-
related parameters. For each model output, the number of
parameters with S; above 0.1 is less than four, suggesting
that model performance is only controlled by a few input
parameters. This finding provides model users with a
useful guide to efficient model calibration by targeting the
few most influential parameters for data acquisitions and
value adjustments, while safely setting default values
for other less influential parameters. Meanwhile, results
of the E-FAST sensitivity analysis revealed that the S,
was higher than S; across all selected parameters. This
suggests that interactions among input parameters were
strong and cannot be revealed by local sensitivity
analysis using the OAT method. This is especially true
for the parameters selected for model predictions of
nitrate losses (Figure 6), which is consistent with findings
of the previous sensitivity analysis of the DRAINMOD-N
IT model (Wang et al., 2005).

Hydrological processes are known to play a key role in
regulating C and N cycles in many terrestrial ecosystems
(Morales et al., 2005). Lack of accurate representation of
hydrological processes in ecosystem models could result
in large bias in model predictions of C cycle in boreal
ecosystems (Govind et al., 2009). Nevertheless, this
comprehensive sensitivity analysis did not find a
significant effect of soil hydraulic-related parameters on
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Figure 11. Summary of the first-order sensitivity index (S;) of E-FAST analysis for each of the nine model outputs. Parameters related to the DON
module were excluded from this figure. Parameters associated with soil physical properties, plant, and soil carbon and nitrogen cycles are highlighted by
solid, dashed, and dotted rectangles, respectively

predicted long-term mean annual NPP. Hydrology-related
parameters were also not in the list of sensitive parameters
regulating long-term predicted mean SOM content,
although soil moisture has been regarded as one of the
key factors regulating SOM decomposition (Schimel
et al., 1997; Six et al., 2002; Reichstein et al., 2005). This
is mainly due to the site-specific climatic conditions
characterized by large precipitation with long-term mean
annual precipitation of around 1500 mm and shallow water
table depth (about 1 m) (Amatya and Skaggs, 2011; Tian
et al., 2012a). Because of large precipitation and high water
table, soil moisture is not a key factor constraining forest
productivity and long-term SOM accumulation at the study
site. Similarly, field experiments have found temperature
effects on SOM decomposition more pronounced than soil
moisture effects in temperate and boreal regions (Davidson
et al., 2000).

In contrast, this study revealed the critical importance
of plant physiological properties in regulating long-term
hydrological predictions and suggested that it is essential
to quantify the critical role of vegetation for accurate
hydrological modelling of the forest ecosystems. Previous
studies showed that different dynamic plant growth
models used in hydrological simulation models could
result in contradictory conclusions. For example, recent
global hydrological simulations suggested that the rising
atmospheric CO, concentration increased continental
runoff (Gedney et al., 2006; Betts et al., 2007), while
another simulation study reported opposite conclusions
(Piao et al., 2007). Results from the comprehensive
sensitivity analysis of DRAINMOD-FOREST also
demonstrated strong influences of plant physiology-related
parameters on model predictions of biogeochemical
predictions (Figure 11). In the future, refining the structure,
framework, and parameters of the dynamic plant growth
model should be of critical importance for investigating
hydrological and biogeochemical changes caused by
climate and land use changes.

Copyright © 2013 John Wiley & Sons, Ltd.

CONCLUSIONS

This study identified key model parameters affecting
model predictions of DRAINMOD-FOREST through a
simple LH-OAT procedure followed by a two-step global
sensitivity analysis. Results showed that long-term
hydrological predictions were highly sensitive to plant-
related physiological parameters such as maximum
stomatal conductance, parameters regulating productivity,
C allocation to leaf, and SLA index. Long-term SOM
content and mineralization rate were highly sensitive to
temperature-related parameters regulating microbial
decomposition processes. Mean annual NPP and nitrogen
uptake were highly sensitive to plant production-related
parameters, including canopy QUE and CUE. Nitrogen
uptake was also moderately sensitive to nitrogen content
of tree components and SOM decomposition parameters.
Mean annual nitrate losses were highly sensitive to
parameters controlling plant production, including canopy
QUE, CUE, and SOM decomposition parameters. Model
predictions of DON losses were predominately controlled
by parameters of the adsorption algorithm. LAI was
highly sensitive to canopy QUE, CUE, leaf longevity, C
allocation coefficient, and SLA of mature trees. Results of
this study verified the critical role of plant physiological
processes in regulating hydrological and biogeochemical
processes in forest ecosystems and demonstrated that it is
essential to incorporate a dynamic plant growth model in
integrated forest ecosystem models.
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APPENDIX: RANGES AND DISTRIBUTIONS OF INPUT PARAMETERS

Table Al. Hydrologic and soil parameters for different soil layers

Soil layers (cm)

Parameters Abbreviations 0-40 40-100 100-200 Sources

Soil conductivity (mm sh Condui U(14-42) U@4-14) U4-24) (NRCS, 2011)

Wilting point (cm3 cm_3) Witpnti U(0.04-0.14) U(0.04-0.27) U(0.04-0.34)

Drainable porosity Drain0i U(0.05-0.15) U(0.05-0.15) U(0.05-0.15)

Bulk density (g cm ) Pl U(0.8-1.2) U(1.0-1.4) U(1.0-1.6)

Clay fraction (%) Clayfraci U(5-20) U(18-35) u(0-40)

Distribution coefficient mi U(0.37-26.2) U(0.17-8) U(0.07-8) (Smethurst et al., 1999)

Note: U(Min, Max) = uniform distribution with the minimum (Min) and maximum (Max) values, i=1, 2, 3, representing the three soil
layers, respectively.

Table A2. Parameters for simulating soil C and N cycles

Parameters Abbreviations Sources
Transport

Longitudinal dispersivity (cm) Londis U(0.2-29.8)

Tortuosity T U(0.3-0.7) (Wang et al., 2005)

Nitrification

Maximum rate (ugg~' day™") knitmax U(0.4-33.5) (Nishio and Fujimoto, 1990; Stark

and Firestone, 1996; Diggs, 2004;
Vernimmen et al., 2007)

Half saturation constant (ug gfl) knitm U(0.3-0.7) (Nishio and Fujimoto, 1990)
Optimum temperature (°C) Toptnit U(0.3-0.7) (Malhi and Mcgill, 1982; Saad and
Conrad, 1993)

Empirical shape factor betanit U(0.3-0.7) (Saad and Conrad, 1993; Wang et al., 2005)
Upper pH limits pHup U(7-9) (Mosier et al., 2002; Simek et al., 2002;
Lower pH limits pHlow U-7) Wang et al., 2005)
Value of pH function for low fpHlow U(0-0.2) (Wang et al., 2005)
Value of pH function for high fpHup U0-0.4)
Empirical exponent for pH pHexp U(0.5-2)
Upper soil moisture (0) limits Oup U(0.6-0.8) (Wang et al., 2005; Lehuger et al., 2009)
Lower 0 limits Olow U(0.3-0.6)
Value of 0 function at flow fwp-nit U(0.1-0.4) (Wang et al., 2005)
Value of 0 function at 6up fsat-nit U(0-0.2)

(Continues)
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Parameters Abbreviations Sources

Exponent for 6 function enit U(0.5-2)

Denitrification

Maximum rate (ug g71 dayfl) kdenmax  U(1.0-7.0) (Barton et al., 1999; Wang et al., 2005)
Half saturation constant (ug gfl) kdenm U(5.0-120) (Wang et al., 2005; Lehuger et al., 2009)
Optimum temperature (°C) Toptden U(18.5-35) (Saad and Conrad, 1993)

Empirical shape factor betaden U(0.09-0.37) (Wang et al., 2005)

Threshold of relative saturation wipsden U(0.5-0.9)

Empirical exponent for 6 eden U(1.5-2.5)

Maximum decomposition rates of each SOM pool

Surface structural litter pool Kdecl U(0.00055-0.022)  (Parton et al., 1993; Kelly et al., 1997,

Surface metabolic litter pool Kdec2 U(0.003-0.05) Kirschbaum and Paul, 2002; Diggs, 2004)
Surface microbial pool Kdec3 U(0.006-0.06)
Belowground metabolic pool Kdec4 U(0.004-0.09)
Belowground structural pool Kdec5 U(0.0006-0.027)
Active SOM pool Kdec6 U(0.00055-0.04)
Slow SOM pool Kdec7 U(0.00007-0.001)
Passive SOM pool Kdec8 U(0.000001-0.00004)
Environmental factors regulates SOM decomposition
Optimum temperature(°C) Toptl U(18.5-35) (Saad and Conrad, 1993)
Empirical shape factor Betal U(0.093-0.372) (Wang et al., 2005)
Value of 0 function at wf fwp-dec U(0.1-0.4)
Value of 0 function at ws fsat-dec U(0.4-0.7)
Empirical exponent for 0 edec U(0.5-2.0)
DON-related parameters
Dissolvable fraction of microbial and metabolic poolfsom U(0.3-0.6) (Neff and Asner, 2001)
Maximum adsorption capacity (mgg™") Adsorpmax U(0.2-30) (Vandenbruwane et al., 2007; Kothawala
Binding affinity (107> cm® mg™") Bindaff  U(0.2-50) et al., 2008; Kothawala and Moore, 2009)
Diffusion coefficient (cm®day ") Diffcoeff  U(0.3-5) (Jones et al., 2005)
Table A3. Vegetation input parameters
Parameters Abbreviations Sources
Foliage: stem partitioning coefficients P2 U(0.5-1.1) (Valentine et al., 1997; King et al.,
P20 U(0.4-0.9) 1999; King et al., 2002; Maier
Maximum fraction of NPP to roots Rootmax U(0.35-0.6) et al., 2004; Samuelson et al., 2004)
Minimum fraction of NPP to roots Rootmin U(0.2-0.35)
Constant in the stem mass versus diameter relationship ConsBD U(0.06-0.13) (Jenkins, 2004; Samuelson et al.,
Power in the stem mass versus diameter relationship PowerBD U(1.5-2.84) 2004; Zhou et al., 2009)
Minimum temperature for growth (°C) Tminp U(—2-2) (Strain et al., 1976; Teskey et al.,
Optimum temperature for growth (°C) Toptp U(17-25) 1987; McNulty et al., 1996)
Maximum temperature for growth (°C) Tmaxp U(35-45)
Leaf longevity (months) Leaflife U(18-22) (Zhang and Allen, 1996; Finzi et al., 2001;
Will et al., 2006)
Average root turnover rate (1072 dayfl) TurnoverR U(0.17-0.8)  (King et al., 2002; Pritchard et al., 2008)
Specific leaf area (all sided) (m? kgfl) SLA N(10.8, 3.9) (Baldwin et al., 1997; Shi and Cao, 1997;
Jokela and Martin, 2000; Ewers ef al., 2007)
Extinction coefficient of PAR by canopy LEC U(0.42-0.76) (McCrady and Jokela, 1998; Sampson and

Allen, 1998; DelLucia et al., 2002)
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Table A3. Continued

Parameters Abbreviations Sources
Canopy quantum efficiency (g MJ ) QUE U(0.4-0.83) (Dallatea and Jokela, 1991; DeLucia

et al., 2002; Martin and Jokela, 2004)
Carbon use efficiency CUE U(0.35-0.69) (Kinerson et al., 1977; Maier et al., 2004)
Maximum stomatal conductance (mmol H,O m2 s_l) gsmax U(85-212) (Green et al., 1994; Murthy et al., 1997,

Amatya and Skaggs, 2001; Domec et al.,
2009; Gonzalez-Benecke et al., 2010;
Aspinwall et al., 2011)

Nitrogen content of leaf (%) NconL N(1, 0.3) (Green et al., 1994; King et al., 1997;

Nitrogen content of stem (%) NconS N(0.14, 0.06) Murthy et al., 1997; Burton et al., 2002;

Nitrogen content of fine root (%) NconR N(0.74, 0.34) Albaugh et al., 2004; Will et al., 2006;
Gonzalez-Benecke et al., 2010)

Lignin content of leaf (%) LconL U(22-25) (Booker et al., 1996; Finzi and

Lignin content of stem (%) LconS U(25-30) Schlesinger, 2002)

Lignin content of fine root (%) LconR U(23-26)

Note: U(Min, Max)=uniform distribution, N(mean, SD)=normal distribution. The mean and standard deviation for Gaussian
distribution and minimum and maximum for uniform distribution were derived from published references.
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