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a b s t r a c t

Long-distance introductions of alien species are often driven by socioeconomic factors, such that conven-
tional “biological” invasionmodels may not be capable of estimating spread fully and reliably. In this study,
wedemonstrate anew technique forassessing and reconstructinghuman-mediatedpathwaysof alien forest
species entries to major settlements in Canada via commercial road transportation and domestic trade.

We undertook our analysis in three steps. First, we used existing data on movement of commodities
associated with bark- and wood-boring forest pests to build a probabilistic model of how the organisms
may be moved from one location to another through a transportation network. We then used this model
to generate multiple sets of predictions of species arrival rates at every location in the transportation
network, and to identify the locations with the highest likelihood of new incursions. Finally, we evalu-
ated the sensitivity of the species arrival rates to uncertainty in key model assumptions by testing the
impact of additive and multiplicative errors (by respectively adding a uniform random variate or sym-
metric variation bounds to the arrival rate values) on the probabilities of pest transmission from one
location to another, as well as the impact of the removal of one or more nodes and all connecting links to
other nodes from the underlying transportation network.

Overall, the identification of potential pest arrival hotspots is moderately robust to uncertainties in key
modeling assumptions. Large urban areas and major border crossings that have the highest predicted
species arrival rates have the lowest sensitivities to uncertainty in the pest transmission potential and to
random changes in the structure of the transportation network. The roadside survey data appears to be
sufficient to delineate major hubs and hotspots where pests are likely to arrive from other locations in
the network via commercial truck transport. However, “pass-through” locations with few incoming and
outgoing routes can be identified with lower precision. The arrival rates of alien forest pests appear to be
highly sensitive to additive errors. Surprisingly, the impact of random changes in the structure of the
transportation network was relatively low.
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1. Introduction

Large-scale domestic and international trade, involving the
relatively rapid and long-distance transport of immense quantities
of raw commodities and finished goods, has become a defining
feature of the world economy. In North America and elsewhere, the
proportional growth of trade volumes is expected to exceed the rate
of economic growth (UNCTD, 2007;WTO, 2008). The transportation
corridors that facilitate all of this trade have also become critical
gateways for introductions of alien species: non-indigenous insects,
pathogens, and other organisms are often inadvertently transported
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to novel territories in shipping containers and commercial trans-
ports, where they may become established as ecologically and/or
economically harmful pests (Hulme et al., 2008; Hulme, 2009;
Kaluza et al., 2010; Lounibos, 2002; Westphal et al., 2008).

Increasing levels of trade and complexity of transportation net-
works have been recognized as key drivers of ecological invasions
(Bainetal., 2010;Pyseket al., 2010;Bradleyet al., 2012). Recent studies
have linked the long-distance spread of alien species populations to
anthropogenic transport (Blakeslee et al., 2010), patterns of historical
trade and settlement (Brawley et al., 2009), marine trade (Bain et al.,
2010; Kaluza et al., 2010) and recent economic and demographic
benchmarks (Pysek et al., 2010). Notably, quantitative assessments of
how alien organisms may be carried through a transportation
network and subsequently introduced at various locations remain
limited in scope. In part, this may be attributed to the growing
complexity ofmodern transportation networks aswell as amultitude
of potential socioeconomic factors that influence local and global
trade flows, and thus, the associated movements of alien species
(Pyseket al., 2010). Furthermore, the capacity to realisticallyassess the
invasionpotential of any individual species is usually constrained by a
lack of reliable data about the organism’s biology and behaviour, as
well as time pressures faced by decision makers when attempting to
craft an appropriate response to new (or anticipated) incursions. In
this situation, rapid assessments of the potential origins of new (or
anticipated) species introductions can serve as an important starting
point in identifying possible pest outbreaks and strategizing imme-
diate response and screening measures.

When planning rapid-response activities after the discovery of a
new invader, decision makers often need to identify, at least in
approximate terms, the potential of the species to invade the lo-
cation(s) of interest (Lodge et al., 2006; Muirhead et al., 2008).
These assessments can be undertaken with modeling tools that
trace the movement pathways of an alien organism to locations of
interest from its suspected region(s) of origin (e.g., Carey, 1996;
Muirhead et al., 2006; Wang and Wang, 2006; Pitt et al., 2009).
Since a pest found at a particular destination may have originated
from multiple locations, such estimates of species arrival are rarely
precise, and often have a considerable degree of uncertainty.

In this paper we present a new analytical technique that helps
quantify the potential of an invasive pest to arrive at the location(s) of
interest from elsewhere.We employ a pathwaymodel that traces the
arrivals at the location(s) of interest back tomultiple origin locations,
and thus offers an advantage over typical cellular automata spread
models. Compared to common forward-looking models that predict
spread rateswith a distance-dependent dispersal probabilistic kernel,
the pathway model does not have the same distance constraint. The
predicted arrival rate at a given destination location accounts for the
possibility of spread from all potential origins based on the configu-
ration of the spread pathways, regardless of distance. By being
comprehensivewith respect to origins, themodel has better capacity
to address the contribution of long-distance, human-mediated
dispersal.

We concentrate on predicting human-assisted movements of
bark- and wood-boring insects with commercial freight trans-
portation through the road network in Canada and the U.S. Similar
research in the past suggested that volumes of transported com-
modities and freight that may harbour alien organisms can be used
to predict the likelihoods of unintentional introductions of non-
native organisms across large geographic regions (Drake and
Lodge, 2004; Hlasny and Livingston, 2008; Tatem et al., 2006;
Westphal et al., 2008; Yemshanov et al., 2012b). We performed
our analysis within the setting of a complex network of trans-
portation corridors and used existing data on shipments of com-
modities and cargoes that have been historically associated with
alien forest insects (Table S1.1, Appendix S1) to characterize the
network. With respect to the analytical results, we primarily
focused on municipalities and major border crossings in Canada,
but given the high degree of integration between the U.S. and Ca-
nadian economies, we also traced movements of pest-associated
commodities from and to the U.S.

In terms of systematic groups, we used the same insect families of
bark- andwood-boring forest insects aspresented inKochet al. (2011)
and Yemshanov et al. (2012a). This work relates to our previous
geographic analysis of alien species’ entry potential from major Ca-
nadian ports (Yemshanov et al., 2012a), but instead of focusing on
aspects of alien species arrivals associated with international trade,
our objective was to identify general patterns and critical un-
certainties associated with the potential movement of alien forest
insects through the domestic (i.e., intra-continental) transportation
network inNorthAmericaand to identify importantpathways, “hubs”
(cf. Floerl et al., 2009) and “crossroad” locations in the network.

2. Methods

2.1. The pathway analysis concept

Consider a transportation network that describes the likely
movements of anon-nativeorganismwithina regionof interest based
on the shipment patterns of particular cargoes or commodities known
to harbour the pest. The network consists of a set of n locations, or
nodes. We assume that any node in the network could be either an
originating location for the pest or a site where the pest might be
detected. The nodes in the network are connected by a system of
pathways. Each corridor has an associated volume of pest-associated
commodities that are transported through it during a certain time
period. In the general case, the movement of a pest with commercial
transportation can be described bya systemof ij vectors, each of them
depicting the flow of pest-associated commodities between a pair of
network nodes, i and j.

We conducted the analysis in three major steps. First, we used
existing data on movement of commodities associated with forest
pests (i.e., wood- and bark-boring insects) to build a probabilistic
pathway model of how these organisms may be moved through our
transportationnetwork.Next,weusedthepathwaymodel togenerate
multiple sets of estimates of the pests’ patterns of movement from
each individual network node (i.e., one candidate origin location at a
time) to elsewhere in the network. The pathwaymodel output is a list
of the estimated transmission rate values for all unique “origine
destination” pairs of nodes. We then rearranged this list so each
destination location would have an associated distribution of its po-
tential origin locations and associated transmission rate values. From
this vector we then estimated the average rate at which a species of
interest could be expected to arrive at a given location from the other
nodes in the network. We summarized these location-specific arrival
rate estimates by ranking major Canadian settlements and U.S.e
Canada border crossings by their potential to receive alien forest
species with commercial freight shipments from other regions in
CanadaandtheU.S. through the transportationnetwork.Asa last step,
we tested the sensitivity of the rankings to uncertainty about key
pathway model parameters, such as the basic configuration of the
transportation network and the probability of pest transmission be-
tween network nodes.

2.2. Step 1: developing a probabilistic pathway model of pest
movement through the transportation network

2.2.1. Data on movement of pest-associated commodities
For this study, we made the assumption that the probability of

human-assistedspreadof forestpestswithcommercial transportation
is related to the volume of pest-associated commodities moved
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through particular corridors in the transportation network, as well as
the network’s local configuration (i.e., the number of outgoing routes
from a particular location). For simplicity, we assumed that the like-
lihood of a forest pest being moved from any location i to another
location j depends linearly on the tonnage of pest-associated com-
modities that are transported along the corridor, iej, connecting the
two locations. We did not consider biological aspects pertinent to
particular species or taxonomic groupsduring this analysis, but rather
focused on a generalized pathway assessment based on the flows of
pest-associated commodities and the configuration of the network.

We used a Commercial Vehicle Survey (CVS) database main-
tained by Transport Canada to build the network offlows of relevant
commodities in Canada and the U.S. The CVS database, which was
developed froma2005 to2007 surveyat truckweigh stations across
Canada, consists of records that collectively describe truck-based
freight shipment patterns in our study region (see Yemshanov
et al., 2012a for a description). Each database record summarizes a
single freight shipment route and the transportedvolumesof certain
commodity types that are commonly associated with forest insects
(Table S1.1, Appendix S1). Notably, the CVS data documented only
the primary pickup and destination locations for each route.

Each location specified in the database was assigned geographic
coordinates based on the Canadian Database of Geographic Names
(NRCan, 2010) or a corresponding U.S. database of populated places
(USGS, 2009). Previously, Yemshanov et al. (2012a) used theCVS data
to apportion the entry potential of alien forest species with inter-
national trade from major Canadian ports, but here we did not
consider only the entry potential of the ports. Rather, by treating
every location in the network as a possible origin node,wewere able
to characterize the forest pest movement potential throughout the
entire CanadaeU.S. road network.

The CVS data were then parsed into a set of unique pathway
segments, each connecting two nodes, i and j, in the network. Sub-
sequently, the cumulative tonnages of pest-associated commodities
for each pathway segment ij were used to build a pathway matrix
whereeachelementdefined theprobability,pij, of apestbeingmoved
with commercial truck transport from location i to location j
(Appendix S1). The pathway matrix stored 4380 nodes and 29,900
non-zeropijprobability values forall possiblepairs of (i, j) locations in
the transportation network:

Pt ¼

2
6666666664

0 p12 . p1n 1� Pn
j¼1

p1j

p21 0 . p2n 1� Pn
j¼1

p2j

« « « « «

pn1 pn2 . 0 1� Pn
j¼1

pnj

3
7777777775

(1)

where the elements 1�Pn
j¼1 pij describe the probability of mor-

tality of an alien species leaving node i (see Appendix S1). The time
Table 1
An aggregation of individual pathway simulations into a summary pathway database: (a)
being moved from a given origin location (e.g., “Origin location 1”) to other nodes in the n
table (the 4ij values in the column outlined in bold) show the probabilities of the pest bein
network nodes locations (the origin locations in rows 1, 2, ..., n).

Locations (nodes) in the transportation network

“Origin” location (a starting
point of pathway simulations)

Destination location 1 Destination location 2

Origin location 1 1 (origin) 412

Origin location 2 421 1 (origin)
Origin location 3 431 432

... ... ...
Origin location n 4n1 4n2
transition was recalculated for a one-year period, reflecting a
relatively short-term assessment timeframe. All pathway simula-
tions were assumed to occur within a single year.

We used Pt to generate stochastic realizations of potential
movements of a pest from a given location of interest i throughout
the transportation network. With i set as the point of “origin”, the
model simulated subsequent movements of the pest from i to other
network locations j by extracting the transmission probabilities
from Pt associated with location i. The process continued until a
selected node had no outgoing paths or a terminal state was chosen
based on the elements 1�Pn

j¼1 pij in Pt. Finally, for each location
pair (i, j), an “arrival rate”, 4ij, was estimated from the number of the
times the pest arrived at j from origin location i over K multiple
stochastic model realizations:

4ij ¼ Jij=K (2)

where Jij is the number of individual pathway simulations where a
pest originated at location i and ultimately arrived at location j, and
K is the total number of individual simulations of pathway spread
from i (for this study, K ¼ 2 � 106 for each location pair (i,j)).

In theory, the identification of nodes with the highest potential
to receive a non-native pest could be done directly from the CVS
data without undertaking stochastic pathway simulations. How-
ever, the development and application of the pathway model were
necessary for exploring the effects of uncertainty in the underlying
traffic flow data and the structure of the transportation network.
Moreover, the stochastic model formulation allows us to potentially
incorporate other assumptions associated with the organism’s
survival potential during transit, and to address the possibility of
picking up/unloading infested cargoes in intermediate locations.

2.3. Step 2. Analysis of species arrival rates with the probabilistic
pathway model

The simulations in Step 1 provided, for each location i, a list of
the rates, 4ij, at which a pest was moved from that “origin” location
to n � 1 other locations j (j ¼ 1, ..., n, j s i). Because origin and
destination locations in the network, and possible connections
between them, were fixed, it was possible to recombine the outputs
into an assessment of the total species arrival rate at each “desti-
nation” location j (i.e., based on individual simulations started at
other locations i, i¼ 1, 2,..., n, is j, that ended at j). Essentially, every
node j in the transportation network had a corresponding list of its
potential i source locations, each of which was characterized by the
estimated rate of pest arrival from that node i to j. In practical terms,
this step required assembling a table (Table 1) of the 4ij values in
dimensions of the n origin and n destination locations. Each row in
Table 1 contains the probabilities (4ij) of a pest being moved from
origin location i (marked as “origin” in Table 1) to the other j lo-
cations in the network. Conversely, each column in Table 1
The table’s rows (the 4ij values in the shaded area) denote the probabilities of a pest
etwork (e.g., the destination locations in columns 2, 3, ..., n); (b) The columns in the
g moved to a given destination location (i.e., “Destination location 3”) from the other

Destination location 3 ... Destination location n

4
13 ... 4

1n <—(a)—>

423 ... 42n

1 (origin) ... 43n

... ... ...
4n3 ... 1 (origin)
<—(b)—>
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summarizes the probabilities of a pest arriving at a given “desti-
nation” location j (shown in the column’s head) from the point of
origin i.

Because the arrival rates for each j destination location had to be
estimated from each possible i point of origin, this ultimately
translated to estimation of n(n� 1) arrival rates for all location pairs
(i, j). For large n, these n(n � 1) rates would be difficult to interpret.
However, it was possible to summarize pest movement through the
network when the nodes were considered from the destination
location perspective. For each location j, we summed the arrival
rates 4ij from all other nodes i (i ¼ 1, ..., n; is j) as a measure of the
location’s potential to receive a pest from elsewhere:

4j ¼
Xn;jsi

i¼1

4ij (3)

We then ranked and mapped the resulting 4j values in
geographical space. The nodes with the highest ranks exhibit the
highest potential to receive alien species from elsewhere in the
transportation network, and thus may be considered prime can-
didates for preventive surveillance or other biosecurity activities.
Since the CVS data did not include roadside surveys recorded at U.S.
weigh stations, we have only reported analysis summaries for Ca-
nadian locations and U.S.eCanada border crossings.
2.4. Step 3. Finding uncertainty thresholds in the probabilistic
pathway model

2.4.1. Model aspects tested
Errors and knowledge gaps associated with the model structure

and key parameters propagate to uncertainty in themodel output (Li
and Wu, 2006; Walker et al., 2003). In this study, we estimated the
impact of uncertainty in key pathway model assumptions on the
location-specific 4j values (i.e., the outputted species arrival rate es-
timates).We performed the uncertainty analysis in three basic steps:
(1) generating a probability distribution associatedwith a parameter
of interest; (2) performing multiple simulations of the pathway
model with the parameter values sampled from the distributions;
and (3) summarizing the results from repeated realizations of this
process (Crosetto and Tarantola, 2001; Crosetto et al., 2000; Li and
Wu, 2006; Morgan and Henrion, 1990). Here, we focused on two
key model aspects: uncertainty in the transmission probability
values, pij (Eq. (1)), and uncertainty in the configuration of the
transportation network (i.e., the presenceeabsence of a particular
node and the paths that connect this node with the other locations).

We evaluated uncertainty in the pij values from two different
perspectives. The first scenario added symmetric variation bounds
around the pij values in the Pt matrix calculated from the CVS data
(see Eq. (1)) but did not change their average values. Each pair of
“plus-minus” bounds defined the endpoints for a symmetric uni-
form distribution �[0; z] from which we then sampled the trans-
mission probability values as:

p*ij ¼ pijð1�εÞ; wherep*ij˛½0;1�; ε˛½0; z�andz˛½0;0:6� (4)

and then used the pij* values in a new set of randomized pathway
simulations. This scenario explored the impact of multiplicative
errors on the pij values. In general terms, these errors can be
interpreted as uncertainty associated with estimation of the arrival
rates, but assuming that the general pattern of the commodity
flows within the transportation network is well known (so the
mean pij values across all simulations do not change).

The second scenario estimated the impact of additive errors by
adding a uniform random variate ε (ε ˛ [0; z]) to the pij values
regardless of their expected values and observing the impact on the
location-specific species arrival rate, 4j. This scenario changed the
mean values of pij by adding uniform random variation within
gradually increasing sets of bounds, z:

p*ij ¼ pij þ ε; where ε˛½0; z� and z˛½0; 0:07� (5)

While the first scenario (Eq. (4)) adds uncertainty bounds
around the pij values and does not change the mean values, the
additive scenario (Eq. (5)) shifts all pij values (including the baseline
values pij ¼ 0) towards a uniform random distribution and, in turn,
changes the patterns of commodity flows across the network.

Our third scenario explored the impact of uncertainty associated
with the configuration of the transportation network. This
approach goes beyond traditional sensitivity analysis (cf.
Henderson-Sellers and Henderson-Sellers, 1996; Swartzman and
Kaluzny, 1987) and focuses on changes in the network’s topology
and connectivity (cf. Krammer and Täubig, 2005; Newman, 2003).
To keep the analysis consistent with the abovementioned scenarios,
we used a relatively simple simulation technique in which we
temporarily removed a uniform random proportion of nodes, ε
(ε ˛ [0; z] and z ˛ [0; 0.6]), from the network and observed the
corresponding changes in the species arrival rates 4j.

2.4.2. Sensitivity metric
Our primary goals were to identify the locations where uncer-

tainty had the highest relative impact on the species arrival rate 4j

and also to test the stability of the estimated highest 4j values. For
our probabilistic pathway matrix Pt, we generally expected to see
greater response to added variation at locations with higher 4j

values. However, instead of comparing locations directly in terms of
their 4j values, we examined the impact of uncertainty on the
partial ranks of locations based on these values. We assigned the
location with the highest estimated 4j value an integer rank of 1
and the remaining lower-rated locations with consecutive ranks of
2, 3, ..., n. For each location, we then estimated the difference be-
tween its rank given uncertainty and its rank under the baseline
scenario (with no uncertainty) as Drjz:

Drjz ¼ �
rjz � rj0

��
n (6)

where rj0 is the rank of a location j based on its pest arrival rate 4j in
the baseline scenario (i.e., with no uncertainty assumptions); rjz is
the rank in the scenario that assumes a level of uncertainty, z (i.e.,
an upper bound of a uniform distribution [0; z]); and n is the total
number of ranks equal to the number of nodes in the network.

Since the values rj0 and rjz represent ranks rather than the actual
transmission rate values, the lowest rank value always denotes the
locations with the highest arrival rates, and the highest rank value
(which is equivalent to n, the total number of ranks) denotes the
lowest-rated locations. Hence, if a location’s rjz value increases this
indicates a decrease of the arrival rate value, and thus positive
values of Drjz mean a decrease of the species arrival rate (and vice
versa). A near-zero Drjz value suggests that uncertainty has little
impact on the corresponding 4j value. We then identified the nodes
with the highest positive and lowest negative values of Drjz and
analyzed their geographical distribution.

2.4.3. Finding uncertainty thresholds
The response of the species arrival rate 4j to uncertainty also

depends on the level of variation in z. For example, a low amount of
variation in the pij values may have little impact on the 4j values,
but this impact could increase abruptly once the value of z exceeds
a certain threshold. Therefore, we set a further analytical objective
of stratifying the network’s locations by their responses to different
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levels of uncertainty and finding meaningful geographical patterns
in this stratification.

For each of the three uncertainty scenarios described above, we
performed a series of simulations, starting fromthebaseline scenario
(i.e., with zero uncertainty, z ¼ 0) and then increasing the variation
bounds for z. Then, for each Canadian locationweplotted the average
change in rankDrjz as a function of the uncertainty level z. Since each
geographical location had its own unique curve, we further grouped
the locations’ individual curves into 5e6 compact clusters with
distinct shapes. For this analysis,weusedhierarchical clusteringwith
a Euclidean distance metric and Ward’s agglomeration method
(Ward, 1963), an approach that produces compact spheroid groups
with the lowest possible variance. We then identified the clusters
that exhibited high sensitivity to uncertainty across the broadest
range of z and mapped them in geographical space.

3. Results

3.1. Baseline scenario

The distribution of the pest arrival rates in the baseline scenario
appears to be highly skewed. The skewnesswas 11.1, and themedian
andmeanvaluesof4jwere0.0056and0.027, respectively. Thenodes
with high predicted arrival rates above 0.5 represented approxi-
mately 0.82% of the total population and were predominantly
concentrated in densely populated urban areas (which we have
termed as “hubs”) and at major border crossings (Fig. 1, Table 2,
Appendix S2). In eastern Canada, the locations with the highest
arrival rates (above 0.5) outlined major transportation corridors
betweenDetroit (MI), Toronto (ON) andMontreal (QC), aswell as the
U.S. border city of Sault Ste. Marie (ON) (Fig. 1a). Western Canada
(Fig.1b) had fewerhotspot locations,most prominent ofwhichwere
the U.S.eCanada border crossing near Blaine (WA), White Rock (BC)
and Calgary (AB), a major hub city on the TransCanada Highway 1
transportation corridor. The other locations inwestern Canadawith
arrival rates above 0.2 were typically urban areas or major border
crossings (Fig. 1b, Table 2 and Table S2.1).
Fig. 1. Location-specific species arrival rates (4j) in the base
3.2. Uncertainty analysis

3.2.1. Sensitivity to multiplicative errors in pij values
All nodes that showed high sensitivity to multiplicative errors in

the pij values (with the greatest changes in rank, Drjz) were small
towns and rural settlements on primary and secondary highways
(Table S3.1). In all cases, the change in rank value was positive, indi-
cating that thearrival rate ispredicted todecrease in these locations if
accounting for estimation error in the pij values.Most are in southern
Ontario and southern Quebec, with the exception of one location in
Nova Scotia. Notably, the average changes in rank for the locations
with thehighest arrival rates in thebaseline scenario (Table2, Section
B) show near-zero sensitivities to uncertainty. This indicates that the
arrival rate estimates for large urban areas and major border cross-
ings are fairly robust to multiplicative errors in the pij values.

3.2.2. Sensitivity to additive errors in pij values
The locations with the most extreme changes in rank, Drjz, in

response to additive errors in the pij values (Table S3.2) show both
positive and negative extreme changes in rank. This implies that
additive uncertainty in the pij values has the potential to either
increase or decrease the species arrival rate 4j. Significantly, the
rank changes for major border crossings and large cities (Table 2,
Section C) are at least an order of magnitude lower than the values
presented in Table S3.2. This implies that the estimates of the
species arrival rates for large cities and major border crossings are
moderately robust to additive errors in the pij values, but to a much
lesser degree than in the multiplicative errors scenario.

3.2.3. Sensitivity to uncertainty about the presence/absence of
network nodes

The impact of random node removal on the arrival rate values
appears to be quite uniform: Table S3.3 shows roughly similar
number of locations with positive and negative changes in rank
among the locations with the highest changes in rank, Drjz. This
suggests that the impact of random removal of a portion of the
network’s nodes is fairly symmetric. None of the locations with the
line scenario: (a) Eastern Canada; (b) Western Canada.



Table 2
Locations with the highest species arrival rates (4j) in the baseline scenario (top-20 list).

Location
name

Province/
Statea

Location
typeb

Nearest transportation
corridor/border crossing

A. Baseline
scenario

Uncertainty analysis

B. Multiplicative
errors in pij

C. Additive
errors in pij

D. Random node
removal

Rank, rj0 4j Drjz Cluster
no.c

Drjz Cluster
no.d

Drjz Cluster
no.e

Toronto ON U Hwy 401 corridor, Sf ON 1 2.38g eh 5 0.004 5 e 5
Mississauga ON U Hwy 401 corridor, S ON 2 1.950 e 5 0.009 5 e 5
Montreal QC U TransCanada Hwy 40/20, S QC 3 1.775 e 5 �0.001 5 e 5
Windsor ON UB Hwy 401, SW ON border w/MI 4 1.628 e 5 �0.001 5 e 5
Trafalgar ON U Hwy 401, S ON near Oakville, ON 5 1.574 e 5 0.052 4 e 5
Oakville ON U Hwy 401 corridor, S ON 6 1.270 e 5 0.022 5 e 5
Whitby ON U Hwy 401 corridor, S ON 7 1.230 e 5 0.034 5 e 5
Brampton ON U Hwy 401 corridor, S ON 8 1.210 e 5 �0.002 5 e 5
Sarnia ON UB Hwy 402, SW ON border w/MI 9 1.200 e 5 0.005 5 e 5
Bowmanville ON U Hwy 401 corridor, S ON 10 1.139 e 5 0.028 5 e 5
Gananoque ON UB Hwy 401, S ON border w/NY 11 1.043 e 5 0.037 5 e 5
Fort Erie ON UB Queen Elizabeth Way, S ON border w/NY 12 0.971 e 5 0.048 4 e 5
Quebec QC U TransCanada Hwy 40/20 corridor, S QC 13 0.881 e 5 �0.007 5 e 5
London ON U Hwy 401 corridor, S ON 14 0.799 e 5 0.022 5 e 5
Vineland ON U Hwy 401 corridor, near Mississauga, ON 15 0.752 e 5 0.056 4 e 5
Blaine (US) WA UB I-5, NW WA border w/White Rock, BC 16 0.673 0.001 5 0.065 4 e 5
Niagara Falls ON UB Queen Elizabeth Way, S ON border w/NY 17 0.672 �0.001 5 0.018 5 e 5
Calgary AB U TransCanada Hwy 1/2, S-central AB 18 0.638 0.002 5 0.051 4 e 5
Cambridge ON U Hwy 401 corridor, SW ON 19 0.633 �0.001 5 �0.003 5 0.001 5
Ottawa ON UB Hwy 417 corridor, SE ON border w/QC 20 0.632 �0.001 5 0.003 5 �0.001 5

a Canadian provinces: AB e Alberta; BC e British Columbia; ON e Ontario; QC e Quebec; SK e Saskatchewan; U.S. States: MI e Michigan; NY e New York; WA e

Washington.
b Location type: U e urban area; B e border crossing.
c Cluster profiles (i.e., the average change in rank, Drjz, as a function of the uncertainty level, z) are shown in Fig. 2c.
d Cluster profiles (i.e., the average change in rank, Drjz, as a function of the uncertainty level, z) are shown in Fig. 3c.
e Cluster profiles (i.e., the average change in rank, Drjz, as a function of the uncertainty level, z) are shown in Fig. 4c.
f Directions: S e southern; W e western; E e eastern; N e northern.
g Species arrival rate, 4j is a sum of the arrival rates from individual locations, 4ij, 4ij ˛ [0; 1]. Its highest values can exceed 1.0.
h The difference in rank, Drjz is between �0.001 and 0.001.

D. Yemshanov et al. / Journal of Environmental Management 129 (2013) 173e182178
highest arrival rates in the baseline scenario (Table 2) appear in
Table S3.3. Indeed, all of these locations have extremely low
changes in rank due to uncertainty in the network configuration
(Table 2, Section D). In short, big cities and high-traffic border
crossings with high 4j values have multiple incoming and outgoing
routes, therefore a removal of a random portion of nodes (and thus
linked routes) appears to have less impact on the arrival rates in
these locations compared to more remote locations with low traffic
volumes and very few (or no) alternative connecting routes. The
low sensitivity to random removal of links connecting the network
nodes also suggests that the transportation network may be a
scale-free type (Albert et al., 2000; Jeger et al., 2007; Pautasso and
Jeger, 2008). A scale-free network has a subset of super-connected
hubs that increases the chance of faster-spreading events, while
local connectivity is de-emphasized. Analyses to better understand
the transportation network’s connectivity and topology at multiple
scales will be the focus of future work.

3.2.4. Geographical distribution of critical uncertainty thresholds
We plotted the geographical distribution of point clusters with

the highest sensitivity to uncertainty for each of our uncertainty
scenarios in Figs. 2e4, where each cluster groups the locations with
similar sensitivity profiles (shown in Figs. 2c, 3c and 4c, as the
change in rank, Drjz, vs. the uncertainty level, z). In the multipli-
cative errors scenario (Fig. 2 and Table S3.3), the response to un-
certainty is asymmetric and yields mostly positive changes in rank.
Clusters 1 and 2 (Fig. 2c) show the highest response to the uncer-
tainty level z and include mainly locations in southern Ontario.
Most of the locations with the highest changes in rank in Table S3.1
belong to cluster 1 (Fig. 2c). Cluster 3 shows sensitivity to multi-
plicative errors in pij only when the uncertainty level z exceeds 0.3
(i.e., �30% uniform random variation around the baseline pij
values). The locations in Cluster 3 are typically found in areas with
limited connecting routes or relatively low road density (for
example, highways in northern Ontario or western Canada). As
noted previously, the locations with the highest 4j arrival rates
exhibited only negligible changes in rank due to multiplicative er-
rors; all of these locations were assigned to cluster 5 (Table 2,
Section B).

In the additive errors scenario (Fig. 3), the response to errors in
the pij values is symmetric. Clusters 1 and 2 correspond (Fig. 3c),
respectively, to the locations with the greatest positive and nega-
tive changes in rank (Table S3.2). In this scenario, cluster 1 includes
mainly locations in Ontario and New Brunswick, while cluster 2
largely includes locations across southern and eastern Quebec and
Newfoundland (Fig. 3a). These results suggest that the impact of
additive errors in the pij values may depend on the role a particular
location plays in the flow of pest-associated commodities. Loca-
tions in areas with diverse traffic patterns, such that the locations
can serve as both transit hubs and final destinations, show mostly
positive changes in rank (i.e., in Drjz). Locations in areas with more
localized traffic, where they are less likely to be transit hubs,
typically show negative changes in rank.

In the scenario that tests the impact of random removal of
network nodes (Fig. 4 and Table S3.3), the response to uncertainty
does not depend much on the uncertainty level z. The absence of
obvious geographic clustering of the locations with the most
extreme changes (clusters 1 and 3) suggests that uniform random
changes in the network’s structure do not generally affect locations
with the highest 4j values; indeed, the locations listed in Table 2
(Section D) all belong to cluster 5, which generally exhibits very
low sensitivity to uncertainty.



Fig. 2. The locations with the most pronounced responses to multiplicative errors in the pij values: (a) Eastern Canada; (b) Western Canada; (c) cluster profiles (i.e., curves that
summarize, for each cluster, the average change in location rank, Drjz, versus the level of symmetric random variation z around the pij values). Clusters 4e6, with low sensitivity to
this source of uncertainty, are not shown.
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4. Discussion

As implemented in this study, the pathway analysis concept
provides a relatively simple way of engaging transportation data in
time-critical pest risk assessments and follows approaches
commonlyused inmodeling transportation and tradeflows (De Jong
et al., 2004; LeSage and Polasek, 2006; Porojan, 2001). General
Fig. 3. The locations with the most pronounced responses to additive errors in the pij value
average change in location rank, Drjz, versus the level of uniform random variation z added to
of uncertainty, are not shown.
applications of the network-based modeling approach provide suf-
ficient capacity to uncover possible linkages between the spread of
non-native organisms and transportation (Blakeslee et al., 2010),
trade (Brawley et al., 2009; Bain et al., 2010; Bradley et al., 2012) and
other socioeconomic activities (Pysek et al., 2010). Network-based
modeling tools also help address more general ecological issues,
such as identifying ecological preferences of alien species
s: (a) Eastern Canada; (b) Western Canada; (c) cluster profiles (i.e., for each cluster, the
the baseline pij values). Clusters 3e6, with moderate and low sensitivity to this source



Fig. 4. The locations with the most pronounced responses to uncertainty about the structure of the transportation network: (a) Eastern Canada; (b) Western Canada; (c) clusters’
profiles (i.e., for each cluster, the average change in location rank, Drjz, versus the random percentage of network’s nodes z that were removed from the analysis). The geographical
locations in clusters 4e6 were insensitive to this type of uncertainty and are not shown.
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(Vanderhoeven et al., 2010), persistence of species populations
(Bode et al., 2008; Cumming et al., 2010) or the configuration of
ecological food webs (Chiu and Westveld, 2011).

The pathway model used in the study had sufficient accuracy to
recreate the sequential routes that were recorded in the CVS data
(Fig. S1.1). While the current pathway model does not incorporate
assumptions about biological or climatic constraints on pest spread
and survival, these can easily be added as geographically explicit
modifiers of the transmission probabilities pij in the pathway ma-
trix. For example, geographically explicit environmental niche
models (such as presented in Fischer et al., 2011, Herborg et al.,
2007 and Thuiller et al., 2005) and climatic suitability assess-
ments (Baker et al. 2000; Elith et al., 2010; Elith and Leathwick,
2009; Guisan and Thuiller, 2005; Peterson, 2006) can be used to
adjust the location-specific pij values. The adoption of geographical
modifiers of the pij values would also make the model performance
more similar to the behaviour of gravity models (Haynes and
Fotheringham, 1984; Prasad et al., 2010). It is further possible to
modify the probabilities of pest survival, or select the locations that
aremost likely to receive pests based on background information or
prior pest surveys.

One noteworthy aspect of our sensitivity analyses is that the
individual paths that constitute the network of potential pest
movements may intersect or coincide in geographic space, but do
not interact with one another, so certain connectivity and interac-
tion aspects that have been described for social and communication
networks are not considered here. Potentially, more detailed ana-
lyses of the network’s connectivity can be performed (cf. Newman,
2003; Barthélemy, 2011; Caschili and De Montis, 2013), however
this type of analysis would require data on the configuration of
individual transportation routes. Unfortunately, the Canadian CVS
data did not provide the actual routes taken by truck drivers, and so
could not be matched to individual road network segments.
Therefore, instead of using methods developed for analyzing the
connectivity of social and communication networks we opted for a
more basic solution based on a first-order pathway matrix.
One of the biggest challenges with calibrating pathway-based
models of species movement is to find data that document the
expansion of individual populations through time or can help to
definitively identify the source locations for new infestations so the
model can be run from these locations and calibrated to match
historic expansion rates. In pathway-based models, the physical
distance between nodes in the network is less important than their
level of connectivity (Moslonka-Lefebvre et al., 2011), hence a
calibration of the model by geographical observations of the his-
torical expansion of species’ populations can be problematic.
Alternatively, it may be possible to calibrate the pathway model by
tracing expanding species populations via genetic analysis
(Muirhead et al., 2008). This would help better understand the role
of uncertainty in the pathway-driven process of species movement.
Furthermore, incorporation of biological models (such as stage-
structured population models combined with dispersal models)
could provide even more rigorous estimates of the rate of an or-
ganism’s expansion. However, detailed information about the
behaviour of a non-native species in a new environment is often
scarce or unavailable. Dispersal models require good quality data to
develop the associated dispersal kernel equations and often cannot
provide accurate pathway-specific estimates of spread. In these
situations, our pathway-centered approach, which mostly focuses
on human-assisted long-distance spread, can be considered as a
reasonable starting point to identify likely vectors of the species’
movement and help prioritize locations for future data collection
efforts.

4.1. Critical uncertainty thresholds in the pathway model

The species arrival rates 4j show different sensitivity to key
model assumptions. The overall impact of multiplicative errors in
the pij values appears to be moderate but gradually increases as the
level of uncertainty rises (Fig. 2c, clusters 1e3). Notably, the loca-
tions with the highest arrival rates have near-zero sensitivity to this
type of uncertainty (Fig. 2c, clusters 4e6).
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The impact of additive errors on the pij values was considerably
higher in absolute terms, and more symmetric than observed with
multiplicative errors (Fig. 3c, clusters 1, 2, 3, and 6). Indeed, adding
modest uniform variationwithin a 0e0.07 range yielded changes in
rank of nearly �45%. Thus, a lack of location-specific knowledge
about the pij values appears to be the most limiting constraint on
model performance.

Surprisingly, the scenario that tested the sensitivity to changes
in the structure of the transportation network did not reveal
serious correlations between change in the species arrival rank and
the level of uncertainty z. This suggests that random node removal
may only be critical if the removed locations are associated with
unique corridors that do not have alternative bypass routes. The
low sensitivity to random node removal also indicates that the
arrangement of pathways in the landscape represents a scale-free
network, where the probability that a given node has m connec-
tions follows an inverse power-law distribution (Jeger et al., 2007).
Typically, the movement of an invasive organism in a scale-free
network is facilitated by super-spreading events (Jeger et al.,
2007), in which a few locations (hubs) with high numbers of con-
nections are responsible for the vast majority of infestations
(Barthélemy et al., 2004; Duan et al., 2005; James et al., 2007). In
our case, the geographical distribution of the nodes with the
highest pest arrival rates (Table 2) has helped identify these super-
spreading hubs as the biggest cities and major border crossings.

This study used the species arrival rate as a metric of pathway-
related risk. While the analyses tested relatively simple assump-
tions regarding the uncertainty in the arrival rate estimates, the
sensitivity analysis concept can be applied to other spatial dispersal
models and could potentially help quantify the uncertainty of
propagule pressure estimates (i.e., number of dispersing in-
dividuals; Lockwood et al., 2005). A lack of empirical data about
propagule pressure has been acknowledged as a universal problem
for invasion modeling (see Lockwood et al., 2007), and the sensi-
tivity analysis technique presented here could help assess (at least
in coarse terms, by testing the arrival rate as a proxy of the prop-
agule pressure) the approximate range of propagule pressure es-
timates for a species of interest.

5. Conclusions

Decisions about managing alien species incursions frequently
occur under circumstances of limited knowledge about a newly
detected organism. While acquiring knowledge about the new or-
ganism usually takes time, initial assessments typically need to be
done quickly, and so must rely upon general knowledge about the
species and how it can bemoved across the landscape. The pathway
analysis concept presented here provides an example of a rapid-
response assessment technique that uses transportation-related
data to trace back new (or anticipated) incursions to their likely
sources and can be considered as a viable starting point for plan-
ning further information-gathering efforts or as part of a screening
procedure for new non-native organisms (cf. Daehler et al., 2004;
Tucker and Richardson, 1995).

Despite the fact that the main data inputs in the pathwaymodel
(i.e., the estimates of the commodity flows and the route locations
in the Commercial Vehicle Survey) were recorded from written
reports completed by truck drivers and hence were considered
imprecise, the identification of the arrival hotspots appeared to be
moderately robust to uncertainties in key modeling assumptions.
The roadside survey data appears to be sufficient to delineatemajor
hubs and hotspots where incursions are likely to arrive from other
locations in the network via commercial truck transport. However,
“pass-through” locations with few incoming and outgoing routes
can be identified with considerably lower precision. Nevertheless,
these locations are usually characterized by low-to-moderate
arrival rate values. In practical terms, this means they would be
lower priority for surveillance or any other proactive biosecurity
measures, and would also less likely be the focus of pest response
activities.
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