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Estimating Forestland Area Change from
Inventory Data
Paul C. Van Deusen, Francis A. Roesch, and T. Bently Wigley

Simple methods for estimating the proportion of land changing from forest to nonforest are developed. Variance
estimators are derived to facilitate significance tests. A power analysis indicates that 400 inventory plots are
required to reliably detect small changes in net or gross forest loss. This is an important result because forest
certification programs may require additional precautions when wood from areas where forestland area loss is
occurring is harvested or purchased. Net and gross forest area loss must be clearly differentiated to avoid
confusion. Estimates of gross forest cover loss from satellite data should not be equated with net forest area
loss, which can be better determined from remeasured forest inventory plots. Simultaneous tests of net and gross
forest area loss should use multiple comparison procedures to ensure that overall error rates are correct.
Examples of applications demonstrate how to properly perform these tests. A simulated example is used to verify
that the variance estimators are reliable. An application to USDA Forest Service inventory data indicates that
neither net nor gross forest loss at the state level was statistically significant for states that had sufficient
remeasured plot data publicly available when this analysis was done.
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T he rate of forestland area change
and conversion between forest and
nonforest use is of interest for as-

sessing sustainability, for carbon account-
ing, and for forest certification purposes. For
example, forest products companies that use
the Forest Stewardship Council (FSC) Con-
trolled Wood Standard (FSC 2011) must
consider the rate of forestland conversion in
ecoregions from which they procure wood.
If forest conversion rates exceed certain
thresholds, users of this standard must take
steps to ensure that their practices do not
contribute to forest conversion.

To estimate forest conversion rates,
practitioners may use remotely sensed data,
such as National Land Cover Data (NLCD;

Multi-Resolution Land Characteristic Con-
sortium 2006), or data collected from
ground plots such as those provided by the
USDA Forest Service Forest Inventory and
Analysis Program (FIA). With satellite data,
it is not always possible to differentiate be-
tween pixels that have temporarily lost over-
story trees due to fire or logging and pixels
that have actually moved into a nonforest
use (Reams et al. 2010). FIA data are gath-
ered by ground crews who annually visit a
subset of permanent field plots distributed
across the nation (approximately 1 every
6,000 acres). FIA data probably provide an
unbiased estimate of forestland area change,
because FIA field crews are trained to differ-
entiate sites where overstory trees have been

harvested from those that have moved into a
nonforest use. FIA defines forestland as land
that is at least 10% stocked with trees of any
size or that formerly had such tree cover and
is not currently developed for a nonforest
use. The minimum area for classification of
forestland is 1 acre (USDA Forest Service
2004).

During the late 1990s, FIA began a new
annual inventory system that includes the
measurement of a fixed proportion of field
plots in each state each year. Remeasured
plot data are not yet available from Western
states, which limits where forest conversion
rates can be reliably estimated using FIA
data. However, remeasured FIA data will be-
come available for the entire United States
and all ecoregions over the next few years,
with Wyoming and New Mexico taking
somewhat longer.

Methods for estimating a change in
condition between two times from remea-
sured forest inventory plots have been dis-
cussed previously (Van Deusen and Roesch
2009, Roesch and Van Deusen 2012). Van
Deusen and Roesch (2009) developed a
maximum likelihood method for estimating
the proportion of annual forest inventory
plots that change from one state to another
between remeasurements. An approximate
estimator for standard errors (Van Deusen
and Roesch 2009) was also provided. A sim-
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pler tabular approach for estimating conver-
sion rates was presented (Roesch and Van
Deusen 2012), but no method to estimate
standard errors was provided. This is needed
to perform t-tests to determine whether net
loss estimates exceed zero.

We develop a variance estimator and
demonstrate methods for determining type I
and type II error rates for gross forest loss
that can be applied to FIA or remotely
sensed data. Gross forest loss ignores areas
that gain forest but is important because it
indicates something about forest distur-
bance. However, net forest loss must be eval-
uated to assess forestland area change. In
some cases (FSC 2011), estimates of both
net loss and gross loss may be required,
which alters nominal type I error for a joint
comparison. We suggest handling this with
methods developed for multiple compari-
sons.

Gross and Net Loss
Forestland conversion and cover-

change rates involve two land-use transition
types: land going from forest to nonforest
( f 2n); and land going from nonforest to for-
est (n2f ). Gross loss involves only the f 2n
component, whereas net loss incorporates
f 2n and n2f as follows,

• Gross loss � f 2n
• Net loss � f 2n � n2f
Both gross loss and net loss are typically

expressed as annual percentages. As formu-
lated here in our analysis, a negative net loss
indicates an increase in forest area or cover.

It is important to differentiate between
forest cover loss and forestland change.
Computation of gross forest cover loss from
satellite data is a biased (Reams et al. 2010)
estimate of forestland loss, because of the
inability to consistently distinguish between
temporary loss of overstory trees and actual
land use change. Likewise, the n2f compo-
nent will contain pixels that were previously
misclassified as nonforest, and the regener-
ating trees are now large enough to be iden-
tified from a satellite. The biases in the two
net loss components, as computed from sat-
ellite data, may compensate for each other
over time to result in a less biased estimate of
forestland area change, but this hypothesis is
untested.

Gross forest cover loss as computed
from satellite data might provide informa-
tion about disturbance, but it is not useful as
an estimate of forestland loss. Net loss, also
as computed from satellite data, is a more
meaningful estimate of actual forestland

change. NLCD is a valuable satellite-derived
resource (Multi-Resolution Land Charac-
teristic Consortium 2006), but studies have
shown that forest cover estimates from
NLCD products are significantly less than
forest area estimates from aerial photos
(Nowak and Greenfield 2010, Wickham et
al. 2010).

Tabular Estimates of Forest
Conversion Rates

A simple tabular approach can be used
to obtain forest conversion rate estimates
with both NLCD and forest inventory data.
The following simple example can represent
either pixel counts or forest inventory plot
counts. The counts are summarized in a for-
est (f), nonforest (nf) table for times 1 and 2.
Table 1 gives the number of pixels in each of
four possible categories.

• f 2f � 75 (forest at both times)
• f 2n � 5 (gross loss: forest at time 1,

nonforest at time 2)
• n2f � 12 (gross gain: nonforest at

time 1, forest at time 2)
• n2n � 8 (nonforest at both times)
• Forest at time 1: f 1 � f 2f � f 2n �

75 � 5
• Forest at time 2: f 2 � f 2f � n2f �

75 � 12
• net loss � f 1 � f 2 � f 2n � n2f �

�7
Suppose that Table 1 represents a sam-

ple of 100 pixels or plots from land that
could be either forest or nonforest. Then the
estimates of transition probabilities and net

loss proportion from time 1 to time 2 would
be as follows:

• f 2n � 5/100
• n2f � 12/100
• Net loss � 5/100 � 12/100 � �7/

100
The number of years between time 1

and time 2 can be used to annualize net loss
by assuming a linear relationship over time,
which justifies dividing the result by the
number of years. In situations in which plots
have different remeasurement periods, the
average period can be used.

Variance Estimates
The variances of gross loss, gross gain,

and net loss are derived in Appendix A. The
derivations depend on p1, p2f, and p2n,
which are the proportion of forest at time 1,
the probability of a plot remaining forested
given that it was forested at time 1, and the
probability of a plot changing to forest given
that it was nonforest at time 1.

These probabilities are estimated from
remeasured plot data or from consecutive
satellite images. Their variance estimates fol-
low from binomial random variable theory
and are given in Appendix A. Substitute es-
timated variances for the actual variances in
the true variance equations, as discussed in
Appendix A.

The variance of gross loss (Equation
A4) is derived in Appendix A as �f 2n

2 , the
variance of gross gain (Equation A5) is �n2f

2 ,
and the variance of net loss (Equation A7) is
�f 2n�n2f

2 . The variance estimators have a
number of uses. For example, the variance of
net loss can be used to determine whether
the confidence interval on the net loss esti-
mate overlaps zero.

Type I and Type II Errors for
Gross Loss

In some cases, it may be important to
evaluate trends in gross loss of forest. Gross
loss could be used as a surrogate for forest

Management and Policy Implications

Forest policy decisions at the state level depend on having information about growth, harvest rates, and
land-use conversion. Forest monitoring systems can provide information on each of these items.
Sustainable forest management implies that harvest will not exceed growth for an extended period of
time. However, there is also an implication that the forestland base is stable. Decisions such as those
related to locating new wood-using facilities and managing carbon stocks are informed by this information.
Forest certification systems may also place additional restrictions on wood procured from areas where
forestland is being converted. Thus, methods to reliably assess forestland area change are needed.

Table 1. Possible forest and nonforest
categories over 2 time periods.

Time 1

Time 2

Forest Nonforest Sum

Forest 75 5 80
Nonforest 12 8 20
Sum 87 13 100
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disturbance, and conclusions reached from
some studies that have estimated gross forest
cover loss from satellite imagery (e.g., Han-
sen et al. 2010) have led to concerns about
forest sustainability in areas under active for-
est management, such as the southeastern
United States. In addition, some practitio-
ners have interpreted the FSC Controlled
Wood Standard (FSC 2011) as requiring
gross loss to be less than 0.5% per year. We
demonstrate below that it is important to
consider both type I and type II errors in the
evaluation of gross loss to ensure that the
sample size is large enough to have confi-
dence in test results.

Type I error occurs if the null hypoth-
esis (H0) is rejected when it is true, and type
II error occurs if the null hypothesis is not
rejected when the alternative hypothesis
(Ha) is true. For example, one might want to
guard against failing to reject the null hy-
pothesis that annual gross loss is less than
0.5%, when, in fact, there is a 1.0% annual
gross loss. This requires setting an appropri-
ate type I error and simultaneously control-
ling the type II error by having a sufficient
sample size. Of course, this approach could
also be applied to net loss. Derivation of type
I and type II error is discussed in Appendix B
for binomial random variables.

Multiple Comparisons
For scientific comparisons, the type I

error is often set to reject if P � 0.05. This
error rate applies to a single comparison and
allows for the possibility that H0 will be
wrongly rejected 1 of 20 times (Curran-Ev-
erett 2000). If 20 comparisons are being
made, there is a very large probability that at
least one comparison will be rejected even if
all are, in fact, true unless the P value is ad-
justed. Because P values are so well estab-
lished in practice, we will not discuss
arguments that they should be eschewed
(Goodman 1999).

We will use the Bonferroni method
(Holm 1979), which amounts to making

each of the n comparisons using the error
rate, � � �� /n where �� is the desired family-
wise error rate (FWER). There have been
numerous modifications to the Bonferroni
method (Dunnett 1955, Sidak 1967, Holm
1979, Hochberg 1988), but we are avoiding
those for the purpose of simplicity. Further-
more, only two comparisons are involved
here, i.e., testing H1: net loss � 0 and H2:
gross loss � 0.5%. The Bonferroni method
ensures that FWER � �� . We demonstrate
this approach in the simulated application
below.

Simulated Application
We test the variance estimators (Appen-

dix A) with a simulation. The simulation
draws samples of size n � 200 from a forest
where the proportion of forest at time 1 is
p1 � 0.7. The proportion of time 1 forest
that remains forest at time 2 is p2f � 0.87.
The proportion of time 1 nonforest area that
goes to forest at time 2 is p2n � 0.2. The
simulation is repeated 10,000 times. The re-
sults are presented in Table 2.

The actual variance found in the simu-
lation is closely approximated by the equa-
tions in Appendix A (Table 2). In general, it
would be useful to perform a t-test where the
null hypothesis is H0: net loss � 0. This is an
upper one-tailed test where the critical t
value for 199 df and � � 0.05 is 2.26. The
test using the �variance from Table 2 is
0.031/0.0276 � 1.12, and we cannot reject
the null hypothesis.

To test annual gross loss, it is important
to know the remeasurement period (REM),
i.e., the number of years between measure-
ments. If we want gross loss to be less than
0.5% per year, then by the compound inter-
est formula the null hypothesis should test
that the total gross loss between remeasure-
ments is less than (1.005)REM � 1. For ex-
ample, gross loss should be no more than
4.1% over an 8-year REM. The t-test for H0:
gross loss � 0.041 also has a critical t value of
2.26. The test using the variance from Table

2 is (0.091 � 0.041)/0.0204 � 2.47, and we
reject the gross loss null hypothesis. This is
where the Bonferroni method becomes im-
portant. To maintain the FWER of �� �
0.05, we should be using � � �� /2 � 0.025
for the individual hypothesis tests. Because
these are one-sided tests we get a FWER crit-
ical t value of 2.52. Now the gross loss hy-
pothesis cannot be rejected, although it is
very close to the critical value.

Gross Loss Power Comparison
Gross forest cover loss as estimated

from satellite data has been used to raise con-
cerns about forest sustainability in areas un-
der active forest management, such as the
southeastern United States (Hansen 2010).
When hypotheses about gross loss (e.g., H0:
gross loss � 0.5%) are tested, it could be
important to protect against an alternative
hypothesis, Ha, by controlling the type II
error.

Using the approach described in Ap-
pendix B, we need to select a critical value,
nc, for the number of plots that can change
from forest at time 1 to nonforest at time 2.
If nc or more plots are converted, then the
null hypothesis is rejected. The type I and
type II errors and power for a range of criti-
cal values are shown (Table 3) for n � 200
and n � 400. The null hypothesis is H0: pb

� 0.025, and the alternative for power com-
putations is Ha: pb � 0.05, where pb is the
binomial probability. The null value of pb �
0.025 was selected to simulate the situation
in which forest inventory plots are remea-
sured every 5 years. This would roughly cor-
respond to an annual rate of 0.5%, because
(1.005)5 � 1 � 0.025. The alternative cor-
responds to a 1% annual conversion rate,
which is protecting against failing to reject
the null hypothesis when the conversion rate
is actually twice the 0.5% desired maximum
level.

Consider the columns in Table 3 for
n � 200. The first critical value that has type
I error � � 0.05 is nc � 10. Recall that nc

corresponds to the number of plots out of
200 that go from forest to nonforest. The
expected number of converted plots under
the null hypothesis would be 200 �
0.025 � 5, so it takes double that number
with a small sample size to have a sufficiently
small type I error. The power corresponding
to nc � 10 is only 0.5453. As discussed in
Appendix B, the power column (Table 3)
gives the probability of having less than nc

converted plots if the alternative hypothesis
is true. This power result shows that there

Table 2. Simulation results for 10,000 replications of a sample of size 200.

Mean

Variance

Variance ratioEquation Simulation

Gross loss 0.091 0.000413 0.000416 1.01
Gross gain 0.06 0.000282 0.000285 1.01
Net loss 0.031 0.000750 0.000759 1.01

Samples are drawn from a simulated population that is 70% forested at time 1. Forested plots have an 87% chance of remaining
forested at time 2. Nonforest plots have a 20% chance of being forested at time 2. The variance is presented as computed from the
Appendix A equations and from the 10,000 simulation replications. The ratio of the simulation over the equation variance is also
shown.
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would be a good chance of failing to reject
the null hypothesis when it is false with n �
200. We conclude that it is difficult to dif-
ferentiate between forest conversion rates of
0.5 and 1.0% per year with sample sizes of
200 or less.

Now look at the columns for n � 400.
The expected number of plots going from
forest to nonforest under the null hypothesis
would be 400 � 0.025 � 10. The first crit-
ical value in Table 3 for which � � 0.05 is
nc � 16. In this case, the power is 0.8501,
which is much higher than for n � 200.
Thus, a sample size of 400 will usually lead
to correctly rejecting the null hypothesis that
annual gross loss is less than 0.5% when it is
actually 1% or more, but a sample size of
200 or less would give unreliable results.

Forest Conversion Estimates for
Selected States

We used the most recently available
evaluation group for growth, removals, and
mortality for FIA data in states that have

Table 3. Binomial type I and type II errors for n � 200 and n � 400, where H0: P �
0.025 and Ha: P � 0.05.

nc

n � 200 n � 400

Type I Type II Power Type I Type II Power

1.0000 0.9937 0.0000 1.0000 1.0000 0.0000 1.0000
2.0000 0.9613 0.0004 0.9996 0.9995 0.0000 1.0000
3.0000 0.8785 0.0023 0.9977 0.9975 0.0000 1.0000
4.0000 0.7385 0.0090 0.9910 0.9903 0.0000 1.0000
5.0000 0.5617 0.0264 0.9736 0.9722 0.0000 1.0000
6.0000 0.3840 0.0623 0.9377 0.9353 0.0001 0.9999
7.0000 0.2359 0.1237 0.8763 0.8730 0.0002 0.9998
8.0000 0.1307 0.2133 0.7867 0.7832 0.0006 0.9994
9.0000 0.0656 0.3270 0.6730 0.6700 0.0017 0.9983
10.0000 0.0300 0.4547 0.5453 0.5437 0.0042 0.9958
11.0000 0.0126 0.5831 0.4169 0.4170 0.0094 0.9906
12.0000 0.0048 0.6998 0.3002 0.3018 0.0190 0.9810
13.0000 0.0017 0.7965 0.2035 0.2060 0.0355 0.9645
14.0000 0.0006 0.8701 0.1299 0.1328 0.0614 0.9386
15.0000 0.0002 0.9219 0.0781 0.0808 0.0990 0.9010
16.0000 0.0001 0.9556 0.0444 0.0466 0.1499 0.8501
17.0000 0.0000 0.9762 0.0238 0.0254 0.2145 0.7855
18.0000 0.0000 0.9879 0.0121 0.0132 0.2912 0.7088
19.0000 0.0000 0.9942 0.0058 0.0065 0.3771 0.6229
20.0000 0.0000 0.9973 0.0027 0.0030 0.4680 0.5320

The type I and II error columns are derived from Equation B2 and Equation B3. The critical value, nc, is the number of plots going
from forest to nonforest.

Table 4. Conversion statistics and significance tests by state.

ST f2f f2n n2f n REM net loss gross loss t0.025 t net t gross signif

AL 3,382.19 62.26 86.47 4,916.20 5.5 �0.005 0.013 1.96 �2.02 �9.30 0
AR 2,860.71 46.85 117.77 5,273.18 5.2 �0.013 0.009 1.96 �5.62 �13.24 0
CT 193.19 1.87 5.61 354.71 5.1 �0.011 0.005 1.97 �1.38 �5.25 0
DE 40.48 1.25 0.75 146.43 6.2 0.003 0.009 1.98 0.35 �2.93 0
FL 976.82 29.90 76.42 2,065.56 9.3 �0.023 0.014 1.96 �4.63 �12.18 0
GA 3,874.78 94.61 71.50 5,869.46 5.5 0.004 0.016 1.96 1.82 �6.92 0
IL 649.35 19.74 49.56 5,755.39 5.1 �0.005 0.003 1.96 �3.60 �28.62 0
IN 722.17 7.28 28.15 3,722.55 5.2 �0.006 0.002 1.96 �3.52 �33.19 0
IA 412.77 21.17 29.62 5,900.63 5.2 �0.001 0.004 1.96 �1.19 �28.76 0
KS 278.21 15.22 81.73 8,626.59 5.2 �0.008 0.002 1.96 �6.79 �53.55 0
KY 1,875.37 52.79 89.81 4,057.01 6.0 �0.009 0.013 1.96 �3.16 �9.55 0
LA 580.97 10.37 49.12 1,180.33 10.8 �0.033 0.009 1.96 �5.15 �16.64 0
ME 2,905.63 11.62 22.39 3,217.48 5.0 �0.003 0.004 1.96 �1.85 �20.22 0
MD 139.71 2.54 5.78 368.52 6.4 �0.009 0.007 1.97 �1.13 �5.81 0
MA 333.12 5.80 11.05 564.82 5.1 �0.009 0.010 1.96 �1.30 �3.59 0
MI 4,267.25 39.81 146.13 7,967.55 4.9 �0.013 0.005 1.96 �7.89 �24.69 0
MN 4,814.00 60.72 361.01 16,245.15 5.1 �0.018 0.004 1.96 �14.82 �45.45 0
MS 1,339.46 30.84 28.01 2,108.50 8.6 0.001 0.015 1.96 0.37 �10.85 0
MO 2,365.47 57.03 109.97 7,110.93 5.0 �0.007 0.008 1.96 �4.15 �16.05 0
NH 576.79 4.73 7.16 685.06 5.9 �0.004 0.007 1.96 �0.71 �7.14 0
NJ 117.71 2.95 2.92 279.43 6.3 0.000 0.011 1.97 0.01 �3.42 0
NY 1,572.68 26.20 40.96 2,630.10 7.9 �0.006 0.010 1.96 �1.82 �15.25 0
NC 2,598.05 74.20 66.26 4,446.69 5.0 0.002 0.017 1.96 0.68 �4.33 0
OH 1,173.85 31.75 57.31 4,102.05 4.8 �0.006 0.008 1.96 �2.74 �11.88 0
OK 358.38 6.18 17.90 645.34 10.2 �0.018 0.010 1.96 �2.43 �10.80 0
PA 2,298.69 33.91 74.18 4,174.97 5.0 �0.010 0.008 1.96 �3.92 �12.15 0
RI 63.56 0.51 2.14 132.88 4.9 �0.012 0.004 1.98 �1.01 �3.84 0
SC 2,083.92 42.18 59.26 3,144.11 4.8 �0.005 0.013 1.96 �1.72 �5.16 0
TN 2,129.00 56.06 61.17 4,162.97 4.7 �0.001 0.013 1.96 �0.48 �5.62 0
TX 2,201.07 71.41 84.77 4,074.53 4.8 �0.003 0.018 1.96 �1.09 �3.15 0
VT 553.81 3.19 8.94 735.07 5.2 �0.008 0.004 1.96 �1.66 �8.93 0
VA 2,572.76 37.42 56.16 4,201.10 4.8 �0.004 0.009 1.96 �1.96 �10.41 0
WV 946.13 11.21 28.90 1,248.36 5.6 �0.014 0.009 1.96 �2.84 �7.12 0
WI 4,965.38 54.19 231.42 10,895.41 5.1 �0.016 0.005 1.96 �10.63 �30.45 0

The columns are as follows: ST, state abbreviation; f2f, number of plots that were forest at both times; f2n, number of plots that went from forest to nonforest; n2f, number of plots that went from
nonforest to forest; n, total number of plots; REM, remeasurement period; t0.025, one-sided t value; t net, t statistic for net loss test; t gross, t statistic for gross loss test; signif, 0 means joint t-test
notsignificant. Net and gross loss are annual percentages. A negative net loss implies an increase in forest area.
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good coverage with respect to remeasured
plots. All FIA plots were included if they had
a condition that was forested at either the
current or previous measurement. We com-
puted the total number of recently remea-
sured plots (n) for each state along with the
number of plots that went from forest to
forest (f 2f ) and nonforest to forest (n2f ) be-
tween remeasurements. In addition, the av-
erage number of years between remeasure-
ments (REM) is required to perform the
necessary computations (Table 4). The con-
dition mapping used by FIA can result in
only a portion of a plot being forest, which
explains the noninteger sample sizes. The re-
sults in Table 4 should not be viewed as of-
ficial FIA estimates, because rigorous data
screening was not attempted.

Net loss and gross loss were computed
(Table 4) along with their estimated vari-
ances using the methods described in Ap-
pendix A. Net and gross loss one-sided t sta-
tistics (t net and t gross) were compared with
the critical t value for one-sided 0.025 type I
error. The signif column (Table 4) indicates
that none of the states with sufficient FIA
remeasured plots had annualized net loss
� 0 or gross loss � 0.5%. The net loss and
gross loss columns (Table 4) were annual-
ized by dividing the total loss for the remea-
surement period by the average remeasure-
ment period length (REM). The t value for a
one-sided 0.025 level test results in a FWER
of at most 0.05 as discussed above.

We did not compute the power � (1 �
type II error) for each state, but states with
fewer than 200 plots would have little
power, i.e., Delaware, New Jersey, and
Rhode Island.

Conclusions
There is considerable interest in general

land-use change trends. Here, we focused on
changes between forest and nonforest use.
The methods we present can also be applied
to forest cover loss, but it should be clear that
forest cover change does not necessarily
mean that the land is no longer in a forest
use. In general, satellite imagery can provide
data to assess forest cover trends, but forest
inventory data should be preferred for as-
sessing forestland-use trends.

The simulations and examples of appli-
cations presented here suggest that small
changes in net or gross forest area loss re-
quire large sample sizes (perhaps 400 or
more) to be reliably detected. A power anal-
ysis for binomial data was presented to sup-
port this contention. This implies that only

fairly large areas could be reliably assessed for
forest area change with FIA data, because
there is one FIA plot for (approximately)
6,000 acres. It follows that areas less than
400 � 6,000 � 2.4 million acres should
probably not be considered if the objective is
to detect small changes in net or gross forest
loss with FIA data.

These methods were applied to states
with remeasured FIA plots, which allow for
change assessment. Our analysis found no
states with sufficient FIA remeasured plot
data that had recently experienced statisti-
cally significant net forest area loss or annual
gross forest area loss � 0.5%. This does not
preclude the possibility that there are zones
that overlap state boundaries where signifi-
cant forest area (net or gross) change is oc-
curring.
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Appendix A: Computing the
Variance of Gross Loss, Gross
Gain, and Net Loss Estimates

Net loss is the difference in forest area
or cover between times 1 and 2, which re-
quires knowledge of the proportion of land
going from forest to nonforest (f 2n) and the
proportion going from nonforest to forest
(n2f ). Therefore, net loss is f1 � f2 � f 2n �
n2f. The components of net loss, gross loss
( f 2n), and gross gain (n2f ) are of stand
alone interest as well. These estimates de-
pend on recording the forest/nonforest sta-
tus of each inventory plot or pixel at two
times.

Suppose these data are recorded in vec-
tors X1 and X2, where 0 indicates nonforest
and 1 indicates forest. The proportion of
forest at time 1 is estimated from p1 �
�i�1

n X1i/n where n is the number of plots or
pixels measured at both times. To estimate
the components of net loss, split X2 into two
parts, X2f and X2n, where X2f contains plots
that were forested at time 1 and X2n contains
plots that were nonforested at time 1. The
means of X2f and X2n are denoted as p2f and
p2n and estimate the conditional probabili-
ties of being forest at time 2 given the forest-
land use status at time 1.

Net loss is the unconditional probabil-
ity of change and is estimated from the fol-
lowing components:

gross loss: f 2n � p1�	1 � p2f
 (A.1)

gross gain: n2f � 	1 � p1
 � p2n (A.2)

The estimates of p1, p2f, and p2n are in-
dependent, and they are all means of bino-
mial random variables. Independence fol-
lows from the fact that p2f and p2n are
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derived from distinct sets of plots. In addi-
tion, p2f and p2n are not correlated with p1,
because their time 1 measurements were ei-
ther all 0s or all 1s; i.e., their time 1 measure-
ments were constants. Their variance esti-
mates follow from binomial random
variable theory: s1

2 � p1 � (1 � p1)/n, s2f
2 �

p2f � (1 � p2f)/n1, and s2n
2 � p2n � (1 � p2n)/

n0, where n1 is the number of 1s in X1, n0 is
the number of 0s in X1, and n � n0 � n1.

The variance of gross loss and gross gain
estimates follows from the formula for the
product of independent random variables
(Goodman 1960), say u and v,

�uv
2 � �u

2�v
2 � v� 2�u

2 � u� 2�v
2 (A.3)

The variance of gross loss is then

� f 2n
2 � �1

2�2f
2 � p1

2�2f
2 � p2f

2 �1
2

� �1
2	1 � 2p2f
 (A.4)

where the last term is the variance of p1 mi-
nus twice the covariance of p1 and p1 � p2f.
Evaluate Equation A.4 by substituting esti-
mates for the variances; e.g., substitute s1

2 for
�1

2. Likewise, the variance of gross gain is

�n2f
2 � �1

2�2n
2 � p1

2�2n
2 � p2n

2 �1
2

� �2n
2 	1 � 2p1
 (A.5)

The variance of net loss is easy to derive if we
write it in a somewhat simpler form:

net loss: f 2n � n2f � p1b � p2n (A.6)

where b � (1 � p2f � p2n). Then the vari-
ance of net loss is written as

� f 2n�n2f
2 � �1

2�b
2 � b2�1

2 � p1
2�b

2

� �2n
2 	1 � 2p1
 (A.7)

where �b
2 � �2f

2 � �2n
2 .

Appendix B: Controlling Type I
and Type II Errors for Gross
Loss Estimates

Gross forestland area loss not only is a
component of net loss but also may be of
interest in some forest certification standards
such as the FSC Controlled Wood Standard
(FSC 2011), which requires that there be no
significant rate of loss (�0.5% per year). If
loss is interpreted as gross loss, the FSC stan-
dard makes the null hypothesis H0: pg �
0.025 relevant for an inventory system
where plots are remeasured every 5 years,
because pg � 0.025 roughly corresponds to a
0.5% annual gross loss. The relevant alter-
nate hypothesis is H1: pg 0.025.

Consider a binomial vector, Z, where 1
indicates that the plot was forest at time 1
and nonforest at time 2; otherwise the plot
gets a 0. Suppose the sample size is n � 200;
then E(Z) � npg � 5 when pg � 0.025. For
a particular sample, we determine the num-
ber of 1s in Z, say ns, and decide if we should
reject H0. This decision should be based on
consideration of type I and II errors. Table 5
shows the relationship between the two
types of errors and correct decisions.

Type I Error
The binomial probability of getting ns

1s from a sample of size n for a given bino-
mial probability, p, is

P	ns�n, p
 � � n
ns
� pns	1 � p
n�ns

(B.1)

Suppose H0 is rejected if ns � nc, and we
want to select a critical value, nc, that has a
particular type I error. The formula for the
type I error conditional on n and pg is

� � �
ns�nc

n

P	ns�n, pg
 (B.2)

In practice, the critical value will be the first
nc where � � 0.05 if the user preferred type
I error rate is 0.05.

Type II Error
Typically, the type I error rate is re-

ferred to as � and the type II rate is �. Type
II error protects against failing to reject H0

when it is false, but it is necessary to specify
the alternate hypothesis, Ha, that we want to
protect against. In keeping with the FSC-
motivated example, we might want to guard
against Ha � 0.05, which is approximately
twice the FSC allowed limit on gross loss for
5-year remeasurements.

The type II error conditional on n and
pa is

� � �
ns�0

nc�1

P	ns�n, pa
 (B.3)

which could be written as P(ns � (nc �
1)�pa). Type II error can be reduced by in-
creasing n, whereas type I error is selected by
the user and is often set to 0.05.

The power of a test is the probability
that H0 will be rejected when Ha is true. It is
easily computed as power � 1 � �. In fact,
power is redundant, because power ap-
proaches 1 as � approaches 0.

Table 5. Type I and type II error.

Decision

Status of H0

True False

Fail to reject Correct Type II
Reject Type I Correct
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