Journal of Environmental Management 114 (2013) 293—302

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Contents lists available at SciVerse ScienceDirect

A framework for identifying carbon hotspots and forest management drivers

Nilesh Timilsina®*, Francisco J. Escobedo ™!, Wendell P. Cropper Jr.%2, Amr Abd-Elrahman 3,
Thomas J. Brandeis 4, Sonia Delphinf, Samuel Lambert &°

4School of Forest Resources and Conservation, University of Florida, 373 Newins Ziegler Hall, PO Box 110410, Gainesville, FL 32611, USA

b School of Forest Resources and Conservation, University of Florida, 361 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL 32611-0410, USA
€School of Forest Resources and Conservation, University of Florida, 214 Newins-Ziegler, PO Box 110410, Gainesville, FL 32611, USA

dSchool of Forest Resources and Conservation — Geomatics Program, University of Florida, 1200 N. Park Road, Plant City, FL 33563, USA

€ USDA Forest Service, SRS-FIA, 4700 Old Kingston Pike, Knoxville, TN 37919, USA

fSchool of Forest Resources and Conservation, University of Florida, Newins-Ziegler Hall, PO Box 110410, Gainesville, FL 32611-0410, USA
&Spatial Data Services, USDA Forest Service, 4700 Old Kingston Pike, Knoxville, TN 37919, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 3 February 2012

Received in revised form

4 October 2012

Accepted 12 October 2012
Available online 19 November 2012

Keywords:

Hotspot analysis

Forest carbon

Florida

Spatial statistics
Ecosystem service drivers
Forest disturbance

Spatial analyses of ecosystem system services that are directly relevant to both forest management
decision making and conservation in the subtropics are rare. Also, frameworks that identify and map
carbon stocks and corresponding forest management drivers using available regional, national, and
international-level forest inventory datasets could provide insights into key forest structural character-
istics and management practices that are optimal for carbon storage. To address this need we used
publicly available USDA Forest Service Forest Inventory and Analysis data and spatial analyses to develop
a framework for mapping “carbon hotspots” (i.e. areas of significantly high tree and understory above-
ground carbon stocks) across a range of forest types using the state of Florida, USA as an example. We
also analyzed influential forest management variables (e.g. forest types, fire, hurricanes, tenure,
management activities) using generalized linear mixed modeling to identify drivers associated with
these hotspots. Most of the hotspots were located in the northern third of the state some in peri-urban
areas, and there were no identifiable hotspots in South Florida. Forest silvicultural treatments (e.g. site
preparation, thinning, logging, etc) were not significant predictors of hotspots. Forest types, site quality,
and stand age were however significant predictors. Higher site quality and stand age increased the
probability of forests being classified as a hotspot. Disturbance type and time since disturbance were not
significant predictors in our analyses. This framework can use globally available forest inventory datasets
to analyze and map ecosystems service provision areas and bioenergy supplies and identify forest
management practices that optimize these services in forests.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

being (McNulty and Aber, 2001). Since forests and soils sequester
carbon from the atmosphere and incorporate it in their biomass,

Increased atmospheric carbon dioxide (CO,) concentrations due
to emissions from anthropogenic activities is a concern because of
its role in global climate change and its subsequent effects on
ecosystem structure, ecological processes, and overall human well-
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forest management is increasingly being used as a CO, emission
reduction and offset strategy (Canadell and Raupach, 2008;
Luyssaert et al, 2008). Additionally, policy instruments and
emerging carbon markets are providing incentives to forest land-
owners for the carbon sequestered in their forests [e.g. Reducing
Emissions from Deforestation and Forest Degradation (REDD-+;
Mackey et al., 2008), European Emissions Trading Scheme (EU ETS;
Hepburn, 2007)]. Indeed, landowners could potentially receive
monetary payments for the carbon stored in their property and for
not emitting it through deforestation and degradation of their
forests. Because of this, there is an increasing interest in managing
forested landscapes for their carbon sequestration and storage
function in addition to the provision of other ecosystem services
(Houghton, 2001; Tallis and Polasky, 2009).
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Several forest management factors such as disturbance regimes,
stand age, net primary productivity, species diversity, and decom-
position dynamics have been described as drivers influencing carbon
storage and sequestration (Wardle et al.,2003; Luyssaert et al., 2008).
Additionally, net carbon storage and cycling in forest ecosystems
depends on land use and forest management practices (Houghton,
2001; Pregitzer and Euskirchen, 2004). Specific forest management
practices such as reduced impact logging can also substantially
reduce carbon emissions from forest-timber harvesting manage-
ment operations (Pinard and Cropper, 2000; Putz et al., 2008).

Assessments using existing forest inventory and remote sensing
data, as well as spatial statistics, could be used to quantify and map
these carbon stocks for different forest types and regions (Tallis and
Polasky, 2009; Heath et al., 2011). Other methods and analyses that
classify ecosystems, detect and map the occurrence of invasive
species, and identify areas of high biological biodiversity are
increasingly being used (Mittermeier et al., 1998; Balmford et al.,
2002; Drake and Lodge, 2004; Ernst et al., 2006). However, we
know of few frameworks that use these approaches combined with
existing, yet disparate datasets to spatially analyze carbon storage
in warm, temperate and subtropical forests, and to identify their
structural, management and ecological drivers.

Effective management of forests for optimal carbon storage
requires identification and mapping of ecosystem attributes,
including spatially explicit analyses of carbon dynamics and its
drivers (Tallis and Polasky, 2009). While Houghton (2001) and
Pregitzer and Euskirchen (2004) have analyzed carbon stocks and
dynamics at the global scale, Heath et al. (2011) analyzed forest
carbon stocks on lands managed by the USDA Forest Service.
Regional studies such as those of Brown et al. (1999) and Brown and
Schroeder (1999) have analyzed the spatial distribution of forest
biomass in the eastern United States (US). Many of these studies use
forest inventory data and national-scale biomass estimators for
forest-level biomass and carbon stock assessments.

A hotspot analysis is a specific spatial analysis technique that
has been used for identifying areas, or “clusters”, where high values
for a variable of interest occur (Mitchell, 2005). These techniques
have previously been used for determining areas of high biological
diversity (Mittermeier et al., 1998) and for mapping distinct,
localized areas affected by biological invasions (Drake and Lodge,
2004). Several clustering analysis techniques have been devel-
oped to identify and map variables of interest and, in general, can
be categorized into two groups (O’Sullivan and Unwin, 2002). The
first group consists of techniques such as kernel density estimation
and quadrant count analysis that measure the variation in the mean
value of the variable (Xie and Yan, 2008). The second group utilizes
second-order statistics to measure the spatial dependency of the
data, and include for example the Moran I and Getis-Ord G*
statistics (Anselin, 1995). Coulston and Ritters (2003) for example
used forest fragmentation indicators to study spatial clusters rep-
resenting extreme indicator values in the southeastern US and
identified distinct clusters of fragmented forests. Mola-Yudego and
Gritten (2010) used kernel-based hotspot analysis to study forest
management conflict clusters based on the number of reported
conflicts. Other studies have analyzed social—ecological hotspots
(i.e. areas with high human perceived values coinciding with high
ecological productivity or biological diversity), areas of high
malaria occurrence in Kenya (Ernst et al., 2006), and identified
areas for conservation efforts, as well as mapping ecosystem
services such as water supply, soil quality, and carbon in South
Africa (Alessa et al., 2008; Egoh et al., 2008).

Several other modeling studies have determined that ecological
disturbances such as fire, wind, insects, land use change, and
timber harvesting are important drivers of carbon stocks and
sequestration in forest ecosystems (Cropper and Ewel, 1987,

Pregitzer and Euskirchen, 2004; Houghton, 2001; Thornton et al.,
2002; Wardle et al., 2003). Long-term carbon storage in a forest
ecosystem is highly dependent on disturbances, more so than other
factors such as climate and ambient CO, concentrations (Chapin
et al, 2002) since most disturbances leads to the release of
considerable amount of carbon into the atmosphere (Page et al.,
2002). Wind damage and hurricanes are another important distur-
bance in different subtropical forest types (Oswalt and Oswalt,
2008; Thompson et al,, 2011) and can have significant impacts on
regional carbon balances (Mason, 2002; Lindroth et al., 2009).

Forest types, structure, and age also influence carbon dynamics
in forests (Houghton, 2001; Litvak et al., 2003; Pregitzer and
Euskirchen, 2004; Kashian et al., 2006). For example, annual
wood production and higher carbons stocks may vary between
hardwood and softwood forests (Brown et al., 1999). Jonsson and
Wardle (2010) found that plant species composition had a signifi-
cant effect on aboveground C stocks in boreal forests. Forest age has
also been documented as a major driver of carbon stock and
sequestration (Gower et al., 1996) as shown in a Pinus elliottii
plantation in Florida, where net ecosystem exchange (NEE) was
higher and positive (i.e. carbon sequestration) in younger forests
relative to older age ones (Thornton et al., 2002).

Based on this literature, a framework that utilizes existing and
accessible biometric and spatial datasets for identifying areas with
high carbon storage — and the forest management drivers influ-
encing them — could provide insights into more effective forest
management practices, land acquisition options for conservation
areas, and decision making regarding the provision of specific
ecosystem services. However, this kind of spatially explicit infor-
mation for landscape-scale ecosystems with a high carbon storage
capacity and provision of other ecosystem system services is rare
(Balmford et al., 2002). To address this lack of information, we
present a framework that used existing forest inventory data,
generalized linear mixed models, and spatial statistics to identify
carbon hotspots and influencing drivers such as forest management
practices (e.g. management goals, age, and treatments), biophysical
characteristics (e.g. forest structure and composition), and ecolog-
ical disturbances (e.g. wind and wildfire) in warm temperate and
subtropical forests in the state of Florida, US.

Our specific objective was to develop a framework that mines
available and easily accessible USDA Forest Service, Forest Inven-
tory and Analysis (FIA) data to identify areas of high carbon stocks
(i.e. carbon storage hotspots) and influential forest management
drivers. The FIA data is a national-level inventory that is commonly
used for timber volume estimates (Jenkins et al., 2003) and
provides other relevant forest management information such as
forest biomass and other ecological characteristics (Ney et al., 2002;
Woodbury et al., 2007; Chen et al., 2011). For this framework below,
we utilize the local Getis-Ord G* statistic as a local indicator of
spatial association that can be statistically tested and used to
characterize spatial patterns of forest aboveground carbon and to
identify spatial clusters of high (i.e. hotspots) and low (i.e. cold-
spots) carbon storage values. These hotspots can then be analyzed
using plot-level data to determine significant ecological and
management drivers affecting such patterns. We hypothesize that
carbon hotspots will be located in highly forested, less urbanized
northern Florida as compared to the central and the southern parts
of the state (Carter and Jokela, 2003). Also these hotspots should be
comprised of older, dense, more diverse, privately owned forests
with minimal disturbance histories.

A framework such as the one we propose should not only
identify forested landscapes at the mesoscale with high carbon
storage (i.e. hotspots), but also the forest management related
drivers behind them. This type of framework based on publicly
available regional, national, and international forest inventory
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datasets (e.g. United States’ Forest Inventory and Analysis, Canada’s
National Forest Inventory system, European Forest Inventory
Database) and multivariate spatial analysis techniques should
provide policy makers, private and public forest managers and
landowners with useful information for identifying conservation
areas and development of forest management practices that opti-
mize carbon storage and other ecosystem services.

2. Methods
2.1. Study area

The State of Florida is characterized by a warm, temperate and
warm, humid, subtropical climate as well as a warm humid tropical
climate in the extreme southern part of the state. Average annual
precipitation is typically 1000—1600 mm and average annual
temperature ranges from 16—25 °C (McNab and Avers, 1994). The
coastal plains and flatwoods, eastern and western coastal lowlands,
and everglades characterize the four USDA Forest Service Ecor-
egions in the state (Bailey, 1995). There are over 20 forest types
found in the state that range from temperate pine and oak lands to
tropical hardwoods (Woudenberg et al., 2010).

2.2. Data

We used FIA plot-level, vector digital data in a shape file format
from the Florida Geographic Data Library (http://www.fgdl.org).
The data included information on land tenure, forest management,
stand, and ecological disturbance characteristics for the plots from
2002 to 2007. In addition, the data include carbon pool estimates
for: aboveground understory, belowground portion of the under-
story, dead and downed, standing dead, litter, and soil organic
matter for each plot. Smith and Heath (2002, 2008) provide
detailed methods used to estimate these different carbon pools.

Since the plot-level vector digital data did not provide tree-
level carbon values, we used tree-level data from an additional
FIA database available at http://www.fia.fs.fed.us/tools-data/ to
calculate tree-level aboveground and belowground carbon for
each plot. The FIA database (i.e. FL_TREE) provided tree-level
data for all the trees in a plot and on carbon mass per tree in
the aboveground portion (i.e. CARBON_AG) of live trees with
a diameter at breast height (DBH) >2.5 cm and dead trees
>12.5 cm in DBH. Tree-level values were then converted to tons/
acre values using the appropriate expansion factors (i.e. TPA_
UNAD]J) for trees in subplots (Expansion factor of 6.01), and
microplots (Expansion factor of 74.96). For each plot, the tree
aboveground carbon (tons/acre) value was calculated by summing
all the individual tree values on the plot for both live and dead
trees. Similarly, for each plot, the tree belowground carbon (tons/
acre) was calculated using a similar procedure as tree aboveground
carbon. All carbon estimates were converted to Mg C/ha and the
aboveground and belowground tree carbon estimates for each plot
were merged at the plot-level using the digital shape file as
described above. Woudenberg et al. (2010) provide specific field
data collection methods and descriptions of plot and tree-level
data. Using the carbon pool estimates (Table 1); we developed
five carbon pools categories for this analysis: aboveground,
belowground, dead, soil organic carbon, and total carbon (Table 2).

The FIA plot-level data categorized plots according to land
tenure as: private, state and local government, other governmental,
non-governmental conservation and natural resource organiza-
tions, and federal lands. For the purpose of our analysis, we cate-
gorized land tenure as either public (e.g. state and national forests,
conservation forests) or private (e.g. non-industrial private forests,
industrial forests, etc). Management treatments on each plot were

Table 1
Forest carbon pools identified in the USDA Forest Service Forest Inventory and
Analysis data and their description.

Carbon pools Description

Tree aboveground® Carbon in bole, crown, branches, and stump of
live trees >2.5 cm and dead trees >12.5 cm
(excluding foliage biomass)

Carbon in coarse roots (>2.5 mm) for live
(>12.5 cm) and dead (>12.5 cm) trees

Carbon in aboveground portion of seedlings,
shrubs, and bushes

Carbon in belowground portion of seedlings,
shrubs, and bushes

Carbon in woody material (>7.5 cm) and their
stumps and roots >7.5 cm

Carbon in fine woody debris, fine roots, and
organic forest floor above the mineral soil

Soil organic carbon to a depth of 1 m.

Tree belowground®
Understory aboveground?
Understory belowground?®
Carbon down dead?
Carbon litter®

Soil organic carbon®

2 Estimated using models as described in Smith and Heath (2008).
b Estimated using models as described in Smith and Heath (2002).
¢ Described in Woudenberg et al. (2010).

categorized as: no treatment, cutting, site preparation, artificial
regeneration, natural regeneration, and other silvicultural treat-
ment (e.g. fertilization, herbicide application, girdling, and
pruning). Management characteristics on plots were analyzed as
treated (i.e. plots with any kind of treatment described above) and
untreated (i.e. no treatment and natural regeneration).

The various forest types identified in the FIA data were aggre-
gated into six different forest type categories as described in Table 3.
Since site quality was defined in the FIA dataset in terms of annual
wood volume production (m>/ha/year), we defined four categories:
Site quality 1 (>120 m>/ha/year), 2 (85—119 m>/hajyear), 3 (50—
84 m>/hajyear), and 4 (<50 m>/ha/year). Finally, we analyzed four
disturbance types: no disturbance, fire (e.g. ground and crown fire),
animal and anthropogenic (e.g. timber harvest, site preparation,
etc), and windstorm (e.g. tornadoes, hurricanes, flooding).

A single FIA plot was used to characterize approximately
6000 acres or 24 km? and as described by Woudenberg et al.
(2010) and McRoberts et al. (2005), plot coordinates are approxi-
mate but well within the mesoscale used in our hotspot analyses.
We defined mesoscale in this framework as approximately
6400 km?. To protect landowner privacy, the publicly available FIA
dataset provides plot coordinates within 1.6 km of actual field
coordinates. Additionally, up to 20 percent of the private plot
coordinates are manipulated or “swapped” with other private plots
in the same county with similar measured attributes. Manipulating
and additionally exchanging plot attributes will influence the
spatial characteristics of the data and thus the accuracy of spatially
explicit predictive models according to Coulston et al. (2006).
However, according to McRoberts et al. (2005) the swapping
process used in the FIA data only affects coordinates and all other
general plot and tree-level characteristics remain the same.
Therefore, plot coordinate manipulation alone by FIA will not affect
the state-level and mesoscale analyses used in our framework.

Table 2
Aggregated forest carbon pools based on combined categories, from Table 1, iden-
tified in the USDA Forest Service Forest Inventory and Analysis data.

Carbon pools
Aboveground (Mg C/ha)

Description

Sum of tree aboveground and understory
aboveground

Sum of tree belowground and understory
belowground

Sum of down dead, and litter aboveground
Soil organic carbon to a depth of 1 m.

Sum of aboveground, belowground,
carbon dead, and soil organic carbon

Belowground (Mg C/ha)

Carbon dead (Mg C/ha)
Soil organic carbon (Mg C/ha)
Total carbon
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Table 3
Analyzed aggregated forest types for Florida, USA based on USDA Forest Service
Forest Inventory and Analysis forest types.

Forest types analyzed FIA forest types?®

Longleaf pine
Slash pine
Other pine hardwood

Longleaf pine, longleaf pine/oak

Slash pine, slash pine/hardwood

Loblolly pine, sand pine, pond pine, shortleaf pine,
loblolly pine/hardwood, other pine/hardwood
Post oak/black jack oak, white oak/red oak/hickory,
sassafras/persimmon, yellow poplar, southern
scrub oak, red maple/oak

Sweetgum/nuttall oak/willow oak, overcup
oak/water hickory, bald cypress/water tupelo,
sweetbay/swamp tupelo/red maple,

bald cypress/pond cypress.

Mixed upland hardwood Mixed upland hardwood/tropical hardwood/
exotic hardwood

Oak hickory

Oak gum cypress

2 Refer to plants.usda.gov/checklists for scientific names.

2.3. Hotspot analysis

We used the aboveground carbon values in the FIA plot-level
data that were only classified as forested (n = 2160) to identify
spatial clusters (i.e. aggregation of plots with higher or lower values
of aboveground carbon stocks). Specifically, this framework used
the Getis-Ord G;‘ statistic (Getis and Ord, 1992), which is one of the
Local Indicators of Spatial Association (LISA) measures (Mitchell,
2005; Anselin, 1995) to identify clusters of plots with higher or
lower carbon values. One advantages of using LISA measures over
traditional kernel-based methods is their ability to provide statis-
tical significance to identified clusters. We used the Spatial Statis-
tics extension of the ArcGIS 9.2 software to compute the G;
statistics and perform the hotspot analysis. The G;-‘ statistic was
calculated as the sum of the product of weight and the attribute
value (aboveground carbon) of neighbors divided by the sum of the
attribute value of all plots in the dataset:

(1)

where G;f(d) is the statistics calculated for each target plot, d is the
distance that defines the neighbors, wj; is spatial weight, ; is the
aboveground carbon value for all plots in the dataset. In our
framework, the value of w;; was 1 if a plot is within the defined
neighborhood distance or 0 otherwise. Aggregation of plots with
a higher G;f statistic indicates clusters of higher aboveground
carbon values (i.e. hotspots) and lower G? statistic values indicate
clusters of lower aboveground carbon values (i.e. coldspots).

A z-score was used to test the statistical significance of a G;‘
statistic and the score provided the probability of observing high or
low values of the statistic. The expected value of Gi* given a random
distribution was calculated for each plot in the dataset. The z-score
(Equation (2)) was the difference between the calculated G? and the
expected G; [E(G;)] divided by the variance of G; [(VarG;)]:

G —E(¢)

Z(G) = — 12 (2)
( ) (VarG*f)

1

E(G) = =25~ (3)

) - >Wii(d)
n —
where n is the number of plots. A z-score was statistically signifi-
cant at p = 0.05. A high and statistically significant z-score indicates
the clustering of high aboveground carbon storage (i.e. hotspot),

while a low and statistically significant z-score indicates the clus-
tering of low aboveground carbon storage values (i.e. coldspot).

As described above, plots within a specified and fixed distance
are considered neighbors for the calculation of the G;f statistic,
therefore distance values need to be based on a-priori knowledge of
the attribute under consideration or some other quantitative and
objective procedures. To this end, we used the spatial autocorre-
lation tool in ArcGIS to measure the degree of clustering at different
distances. Specifically z-scores were calculated by using the average
nearest neighbor distance between FIA plots (4.6 km based on
n = 2160 plots) and then several clustering distances were used
(4.6—60 km at 5 km increment) until the z-score was maximized at
45 km (km), indicating the strongest clustering of plots within the
distance. Thus, the G;“ statistic was calculated for each plot by using
aboveground carbon values of all the neighbors within a 45 km
radius (6358 km?). The sampling intensity of the FIA is one plot
per 24 km?, so the 45 km distance band used in this framework
increases the actual number of neighbor FIA plots (i.e. at least
eight plots) used to calculate the G:f statistic. Furthermore,
according to McRoberts et al. (2005), using FIA plot distances
greater than 32 km will have negligible effects on design based
estimates of forest characteristics.

2.4. Statistical analyses of drivers

We analyzed tenure (i.e. ownership), forest type, site quality,
stand age, and treatments as drivers of forest carbon storage in our
model. For our statistical analyses, we checked for homoscedas-
ticity by examining plot of residuals vs predicted values and
normality by examining the histogram and QQ plot and with the
Shapiro—Wilks and Kolmogorov—Smirnoff statistics. Aboveground
carbon, belowground carbon, dead carbon, and soil carbon in both
hotspots and coldspots were analyzed for significant differences
using a t-test. We identified drivers related to hotspots using
a generalized linear mixed model and the PROC GLIMMIX proce-
dure (SAS v 9.2). Hotspots (1) and coldspots (0) were considered as
dummy variables. Significant relationships between hotspots and
drivers such as ownership, forest types, treatments, site quality, and
stand age were tested using a generalized linear mixed model with
binary distribution. Multiple comparisons were adjusted using
Tukey'’s test. Similarly, we also related fire and windstorm distur-
bance and years since disturbance to individual hotspots using the
generalized linear mixed model. Forest types and stand age were
included as covariates in the model to control for these same
variables when relating disturbance to hotspots. Aboveground
carbon values between stand age classes, site qualities, and forest
types were compared using ANOVA (PROC MIXED SAS 9.2) and
multiple comparisons were adjusted using Tukey’s test.

Spatial autocorrelation in our hotspot analysis was accounted for
by treating residuals as spatially auto-correlated and we therefore
analyzed several spatial covariance structures (exponential, power,
and spherical) for our residual analyses. We selected the spatial
covariance structure for residuals that gave the lowest Akaike
Information Criterion (AIC) value in linear mixed model analysis
(PROC MIXED procedure; SAS 9.2). In GLIMMIX we looked at the
Pearson chi-square to the degrees of freedom ratio and chose the
spherical structure since it had the ratio closest to 1. A critical value of
a = 0.05 was used to determine statistical significance in all analyses.

3. Results
3.1. Hotspot spatial distribution

Our analysis identified hotspots and mapped forested areas in
Florida (Fig. 1) with high aboveground carbon (C) storage values.
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Fig. 1. Map showing aboveground forest carbon storage hotspots (gray circles) and coldspots (dark circles) in Florida, United States based on USDA Forest Service Forest Inventory

and Analysis data.

Out of a total 2160 FIA plots analyzed, only 729 plots were
identified as being located in either hotspots or coldspots and of
these, 49% were considered hotspots and 51% of the plots were
coldspots. As hypothesized, most of the carbon storage hotspots
were located in northern Florida in the Coastal Plains-Flatwoods
and Costal Lowland ecoregions (Bailey, 1995). Overall, the
northern part of Florida is more forested, has an important forest
industry-based economy, and is less urbanized than the southern
part of the state (McNab and Avers, 1994). The C storage hotspots
were not typically located near major metropolitan urban areas
of South Florida (e.g. Tampa, Orlando, Miami-Fort Lauderdale).
However, some hotspots were immediately adjacent to the north
Florida cities of Tallahassee and Jacksonville. Additional hotspots
were close to the Apalachicola National Forest (northwestern
Florida) and around the Nassau Wildlife Management Area
(Costal northeastern Florida).

3.2. Hotspot characteristics

Mean aboveground carbon storage for forests classified as
hotspots (45.58 Mg C/ha) was significantly greater than mean
aboveground carbon storage in coldspots (27.88 Mg C/ha;
p < 0.0001). Carbon storage between the belowground and dead
pools was also significantly greater in hotspots when compared to
the coldspots (Table 4). Only soil carbon was significantly greater
in coldspots than in hotspots. Soil carbon pools include compo-
nents that may be chemically and physically protected from
decomposition (Sarkhot et al., 2007). Soil carbon components
with long turnover times may reflect past land use history,
disturbance, hydrology, or plant community more than solely just
current forest condition.

3.3. Biophysical drivers of hotspots

We analyzed C hotspots and coldspots and biophysical variables
in a generalized linear mixed model to identify influential drivers
(Table 5). Among the different forest types analyzed, mixed upland
hardwood forest type had the highest probability of being a hotspot
followed by the oak hickory and slash pine forest type (Table 6).
Although the slash pine forest type had a lower probability of being
a hotspot when compared to the mixed upland hardwood and oak
hickory forest types; these differences were not statistically
significant (Table 7). Among all the forest types analyzed, longleaf
pine had the lowest probability of being an aboveground carbon
storage hotspot (Table 6) and comparisons of probability with other
forest types such as Mixed-upland hardwood, Oak hickory, and
Slash pine were significant (Table 7). Comparison of aboveground
carbon storage between different forest types did not show
a significant difference except for Oak gum cypress forest type
(Fig. 4).

Findings indicate that a higher site quality increased the prob-
ability of a plot being located in a carbon hotspot (Tables 6 and 7).
Forests with a site quality category of 1 increased the probability of
being a hotspot when compared to categories 2, 3, and 4 by 16%,
22%, and 29% respectively (Tables 6 and 7); however, other differ-
ences were not statistically significant (Table 7). This result was also
supported by a significant negative correlation (r = —0.27) between
site quality (i.e. higher category indicates lower site quality) and
aboveground carbon. Similarly, productive sites had higher
aboveground carbon storage than less productive sites (Fig. 5).
Ownership, was not a significant predictor although being a public
forests increased the probability of a forest being a hotspot;
however, the difference was not statistically significant. Similarly,
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Table 4
Mean forest carbon pools (Mg C/ha) for C storage hotspots and coldspots in Florida,
USA (<£SE; standard error).

Table 6
Probability by order for different forest types and site qualities identified as carbon
storage hotspot (+SE; standard error).

Carbon pools Hotspots Coldspots P> |t| Probability SE

Aboveground 45.58 (1.76) 27.88 (1.71) <0.0001 Forest types

Belowground 9.33 (0.37) 5.64 (0.36) <0.0001 Mixed upland hardwood forest 0.75 0.05

Dead? 15.87 (0.32) 13.85 (0.31) <0.0001 Oak hickory 0.71 0.06

Soil 106 (2.38) 117 (2.38) 0.001 Slash pine 0.69 0.03

@ Carbon dead includes carbon in down and dead trees, carbon in litter, and Oak um cypress forest 0.63 0.05

bon in standing dead t Other pine hardwood 0.61 0.05

carbon 1n standing dead trees. Longleaf pine 0.43 0.07
Site quality

.. . 1 0.80 0.05

treatment was not a significant predictor (p = 0.12), but managed ) 0.64 0.04

forests had a higher probability of being a hotspot when compared 3 0.58 0.04

to unmanaged forests. Greater stand age increased the probability 4 0.51 0.04

of a forest being a hotspot (Table 7) as demonstrated by older
forests (>60 years) having greater aboveground carbon storage
(Fig. 3), although the difference in carbon storage between age
classes 61—80 years and 81—100 years and 81—100 years and >100
years were not statistically significant. This result was also sup-
ported by a significantly higher correlation between aboveground
carbon storage and stand age (r = 0.50). These results are also
shown by map of hotspots along with forest types, stand age, and
site quality (Fig. S1, Supplementary material).

3.4. Disturbance drivers of carbon hotspots

Disturbance type and years since disturbance were also
analyzed as drivers of aboveground carbon storage hotspots.
However, we found that these two variables were not related to C
hotspots when controlling for forest age and type. Although, we did
not find significant relationships between disturbance and carbon
storage hotspots, visual inspection of post-1990 hurricane landfall
tracks might indicate that carbon storage coldspots are generally
found in areas with a higher hurricane landfall frequency (Fig. 2).
Further analysis comparing aboveground carbon storage values
between different disturbance types — without considering the
hotspots — while controlling for stand age and forest types; resul-
ted in no significant statistical differences.

4. Discussion

This framework used publicly available inventory data to identify
carbon hotspots in Florida at a scale of approximately 6358 km? by
integrating plot-level inventory data and a cluster mapping tech-
nique to identify forested landscapes with high and low carbon
values. It then related the mapped cluster with plot-level forest
management data (i.e. biophysical, ownership, disturbance and
forest management characteristics) to better glean relevant forest
management drivers influencing the carbon hotspots. Although there
are several studies that map forest carbon stocks at regional and
global scales, our framework is unique in that we used G; statistics
and generalized linear mixed models to identify and analyze meso-
scale carbon hotspots and related forest management drivers.

Table 5

Results of the generalized linear mixed model showing the significance of the tested
predictors of the aboveground carbon hotspots in Central and Northern Florida
using USDA Forest Service Forest Inventory and Analysis Data.

Predictors F value Pr>F
Ownership 1.48 0.22
Forest types 3.24 0.006
Site quality 4.44 0.004
Stand age 791 0.005
Treatment 2.40 0.12

As hypothesized, our framework identified C storage hotspots in
north Florida, a region that is less urbanized and more forested,
relative to south Florida (Carter and Jokela, 2003). The mean total
carbon storage in all the carbon pools identified as C hotspots
(177 Mg C/ha) and coldspots (165 Mg C/ha) were close to the re-
ported average (162 Mg C/ha) and range (74—280 Mg C/ha) for
forest carbon storage densities found in the southeastern U.S.
according to Heath et al. (2011). The value is also within the
range reported by Lal (2005) for temperate (60—130 Mg C/ha) and
tropical forests (120—194 Mg C/ha). Our findings also indicate that
forest type, site quality, and stand age were the most significant
drivers of forest C storage hotspots (Table 5).

The hotspots identified in this framework had higher above-
ground, belowground, and dead carbon storage values, but lower
soil carbon storage than coldspots. Thus, the carbon hotspots
identified represent the aboveground forest carbon storage and not
soil C storage hotspots since coldspots had higher soil carbon values
on average than hotspots. Other forest biomass components such as
dead trees, litter, and belowground biomass are related to the

Table 7

Comparison of parameter estimates of a model predicting the probability of a plot
being an aboveground carbon storage hotspots based on forest type, site quality,
stand age, ownership (tenure) and treatment in Central and Northern Florida, USA.

Estimate P value
Forest types
Longleaf pine Mixed-upland hardwood —1.3743 0.005
Longleaf pine Oak gum cypress -0.7999 0.20*
Longleaf pine Oak hickory —1.2029 0.04
Longleaf pine Other pine hardwood —0.7140 0.38*
Longleaf pine Slash pine —1.0647 0.02
Mixed upland hardwood Oak gum cypress 0.5744 0.45*
Mixed upland hardwood Oak hickory 0.1714 0.99*
Mixed upland hardwood Other pine hardwood 0.6603 0.31*
Mixed upland hardwood Slash pine 0.3095 0.90*
Oak gum cypress Oak hickory —0.4030 0.87*
Oak gum cypress Other pine hardwood 0.0859 0.99*
Oak gum cypress Slash pine —0.2648 0.93*
Oak hickory Other pine hardwood 0.4890 0.77*
Oak hickory Slash pine 0.1382 0.99*
Other pine hardwood Slash pine —0.3508 0.73*
Site quality
1 2 0.7792 0.17
1 3 1.0665 0.01
1 4 1.3155 0.003
2 3 0.2874 0.58*
2 4 0.5364 0.15*
3 4 0.2490 0.64*
Stand age 0.011 0.005
Ownership
Private Public —0.2408 0.22*
Treatment
Unmanaged Managed —0.3545 0.12*

*Indicates that these are not significant at p = 0.05.
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Fig. 2. Forest carbon storage hotspots and coldspots in Florida, USA with respect to
recent hurricane tracks during 1998—2008.

existing aboveground components. However, soil organic carbon
storage might not necessarily be the result of the current above-
ground component (Lal, 2005). Soil organic carbon formation and
dynamics are complex and might not necessarily be increased by
increasing the total forest biomass stock, because it is dependent on
multiple interactions between climate, soil biological and physical
properties, forest structure and management, and the chemical
composition of downed tree and litter (Lal, 2005). Further, other
factors such as disturbance regime and historical land use (Lal,
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Fig. 3. Average aboveground carbon storage with standard error bars for different
forest age classes in Florida, USA. Bars with different letters are significantly different
at p = 0.05.

60 - b

50 -
5 a a
":-, 40 ~ a
Y w®
B a 2
3V 30
2w
92
3 20 -
E-3
4

10 -

0 L T T T T

Longleaf =~ Mixed  Oakgum Oak hickory Other pine Slash pine
pine upland cypress hardwood
hardwood Forest types

Fig. 4. Average aboveground carbon storage with standard error bars for different
forest types in Florida, USA. Bars with different letters are significantly different at
p = 0.05.

2005) also affect soil carbon dynamics. Our findings also indicate
that land tenure was not a significant predictor of carbon storage
hotspots. Although the result was not statistically significant, public
lands increased the probability of a forest being a C hotspot (higher
value) than private lands (Table 7). This result is consistent with
that reported by Heath et al. (2011), which found that lands
managed by the USDA Forest Service (including National forests in
the southeastern US) had higher carbon storage densities on
average than private lands.

Results from our framework indicate that mixed upland hard-
wood and oak hickory forests had a greater probability of being
identified as a carbon hotspot relative to a single species pine
forests (Table 6). The difference in forest types takes into account
controlling for the stand age and site quality. When stand age and
site quality are held constant, then on average mixed upland
hardwood and oak hickory forests had a higher probability of being
a hotspot than longleaf pine forests. This finding was consistent
with those of Brown and Schroeder (1999) and Brown et al. (1999)
who found that hardwood forests have higher carbon stocks and
wood production than softwood forests. Stand age and site quality,
as defined in this study, were also important drivers of carbon
storage hotspots. Better quality sites have usually higher moisture
and soil nutrient availability and overall better growing condition
(Linder, 1995). In general, on more productive forests, more carbon
is allocated to stem wood and leaves than to fine root production

70 +

a
b
a b
I I |
1 2 3 4

Site quality

Aboveground Carbon
(Mg C/ha)
5 8 8 8 3

Jury
o
L

o

Fig. 5. Average aboveground carbon storage with standard error bars for different site
quality classes in Florida, USA. Bars with different letters are significantly different at
p = 0.05.
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thus increasing aboveground biomass and subsequent carbon
storage (Nadelhoffer and Raich, 1992). In an experimental study of
pine plantations in North Carolina, sites with moderate to high
nutrient contents were able to increase carbon sequestration under
elevated atmospheric CO, concentration when compared to
nutrient-poor forests (Oren et al., 2001). As a result, nutrient
limitations will often influence carbon sequestration even under
conditions of increased atmospheric CO,.

Stand age has been found to be an important variable for
determining biomass and carbon stocks in forests (Thornton
et al., 2002; Gough et al., 2008; Wang et al., 2011). Our results
show that carbon storage was greater with increasing age, but
there were no statistically significant differences between the
older stand categories (e.g. 60—80, 80—100, and >100 years old;
Fig. 3). Studies have shown that younger forests are carbon sinks
(i.e. higher NEE) relative to older forests (Thornton et al., 2002),
but older forests have usually higher biomass and subsequent
carbon storage than younger sites (Wang et al., 2011). These
younger stands store less carbon due to low photosynthesis to
respiration ratios, since carbon storage peaks as the stand rea-
ches maximum canopy photosynthesis; which subsequently
declines with increasing age (Odum, 1969). Younger forests in
Michigan were considered moderate carbon sinks until six years
after experimental cutting and burning due to higher hetero-
trophic respiration and lower photosynthetic carbon gains,
however this trend disappeared for stands at 50 years old (Gough
et al., 2008). Our results also indicate greater carbon storage for
stands until an age of 60 years. But, no significant differences in
carbon storage were found for older stands. So, overall our
results indicate that carbon storage will be optimal in a stand of
at least 60 years old.

We hypothesized that stands affected by recent fires and
hurricanes would have low carbon storage values and would be
identified as coldspots — as defined in this study — when compared
to undisturbed areas with minimal natural and anthropogenic
disturbances (McNulty, 2002; Hubbard et al., 2004). However, we
did not find any relationship between disturbance types or time
since disturbance with C hotspots. According to Hubbard et al.
(2004) high severity fires reduce carbon stocks due to biomass
combustion. Our analysis did not find any indication that fire was
a significant driver of carbon storage coldspots. Although our
classification of hotspots was based on aboveground tree carbon
values, these data did not include foliage biomass and this could be
one of the reason we did not identify any fire effects on carbon
storage. According to our FIA data, most fires affecting our sample
plots were surface fires, and only one plot was identified as being
affected by a crown fire, and furthermore the most recent fires
occurred only 1 year before sampling. Since surface fires in Florida
generally do not cause tree damage and mortality, and since the
understory might have recovered during the sampling period; no
effect of fire was detected. Low severity fires — using “back fires”
that obtain a mean maximum temperature of 135 °C — have been
reported to have no effect on total live aboveground biomass of oak-
pine forests of Tennessee and Georgia, but they do reduce the
understory biomass by 50% (Hubbard et al., 2004).

Although we did not find any significant effect of windstorm
damage on carbon storage hotspots; areas of high hurricane
landfall frequency in Florida were common in forests identified as
coldspots as seen in Fig. 2. McNulty (2002) found no extensive
damage to forests related to hurricanes below a Saffir-Simpson
Category 3. Although our dataset did not have information on
the type of wind damage, Thompson et al. (2011) found that
subtropical peri-urban forests generated more debris (i.e. downed
biomass) than did urban forests. In addition these authors and
Oswalt and Oswalt (2008) found that tree damage was a result of

forest structure characteristics and not necessarily hurricane
meteorology.

Our main objective was to provide a framework for spatially
analyzing accessible inventory data to map and analyze carbon
storage hotspots in forested landscapes. As such, this study does not
provide an exhaustive analysis of all environmental and biophysical
factors affecting forest ecosystem carbon dynamics. Also, the
carbon estimates used in our analysis were solely based on plot
coordinates and tree carbon-biomass relationships provided by FIA
and Jenkins et al. (2003) methods; some of which are generalized
by species, genus or wood type (hardwood vs. softwood). Similarly,
there are other generalizations used with the calculation of other
carbon pools analyzed in this study that are described in Smith and
Heath (2002, 2008).

An additional limitation of our study was that the FIA plot
locations provided in the vector digital file were within a 1.6 km
from their actual location. However, this did not significantly affect
our state and mesoscale results and plot-level inferences since
significantly distinct C storage hotspots were individual plots
clustered around other plots with similarly high- or low-values.
Although we might have missed individual plots with high C
storage values, these were not identified as significant hotspots
since these were not located in high C storage clusters. Further-
more, since FIA sampling intensity is one plot per 24 km?, the 45 km
distance band used in this framework increases the number of FIA
plots used to make mesoscale inferences and for mapping regional
forest management characteristics.

5. Conclusion

This framework used geostatistical analyses and available forest
inventory data to identify and map carbon hot/coldspots in Florida
and influential forest management drivers. Overall, our findings
indicate the importance of forest type, stand age, and site quality as
better predictors of carbon hotspots, but ecological disturbances
(e.g. fire, hurricanes) and land tenure were not significant drivers of
C storage by forests.

In Florida, management is usually focused on restoration of
longleaf pine forests and management of pine plantations, but our
study identified other mixed species forests, conservation areas,
national forests, and peri-urban forests that are equally interesting
for management and conservation objectives involving carbon
sequestration and provision of other ecosystem services (e.g.
biodiversity, water yield). Additionally, although most studies on
carbon dynamics are from pine flatwoods and cypress wetlands
(e.g. Clark et al., 2004; Powell et al., 2008), our study has identified
other forest types that could also be the basis for future studies on
carbon dynamics. For example, carbon storage hotpots located
adjacent to metropolitan areas in north Florida could be used to
identify areas of interest for the conservation of these peri-urban
forests because of the ecosystem services they provide and
potential risk of forest loss due to urbanization. Also because of the
relationship between site quality and increased carbon sequestra-
tion, efforts to manage forests for carbon storage could be directed
towards better quality sites as defined by USDA FS FIA criteria. That
said, other tradeoffs associated with managing for forest carbon
storage such as biodiversity, recreation, and water yield should be
considered. For example, longleaf pine savannas were character-
ized by relatively low carbon storage values, yet this forest type is
associated with high species diversity (Bond et al., 2005).

Results from our frameworks can be used to promote forest
types and species that are economically viable and at the same time
store more carbon for meeting multiple objectives. For example,
pines species store higher proportions of carbon in the commercial
wood (stem) compared to noncommercial biomass (bark, limbs,
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roots and leaves); however, for CO, emission reduction and offset
strategies, C storage in other noncommercial biomass (e.g. below-
ground and soil) are equally important. Future research is warranted
in the incorporation of regional spatial datasets such as fires regime
condition classes or soil inventories (e.g. USDA State Soil Geographic
Database) with our framework to better identify ecosystem-level
drivers of C storage. Or, the framework could easily integrate
census (e.g. US Census Block Group data), property appraisal, and
land tenure spatial data to also analyze the socio-economic drivers of
carbon storage hotspots. Although this study only analyzed carbon
stocks, similar analyses could be done at the micro- and macro-scale
with carbon sequestration or other ecosystem services. Additionally
by analyzing specific tree species groups and size classes, this
framework could be used to identify appropriate supplies and
available materials for bioenergy utilization and the information
used for decisions regarding the mapping and placement of future
bioenergy plants and wood fuel pellet mills in Florida and elsewhere.
Our methods can also be used to identify other drivers behind the
provision of carbon sequestration and these other ecosystem
services and goods. It is our hope that this framework facilitates
other similar analyses elsewhere around the world by incorporating
existing and available geo-referenced forest inventory data.
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