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ABSTRACT: Commonly used methods to predict streamflow at ungauged watersheds implicitly predict stream-
flow magnitude and temporal sequence concurrently. An alternative approach that has not been fully explored
is the conceptualization of streamflow as a composite of two separable components of magnitude and sequence,
where each component is estimated separately and then combined. Magnitude is modeled using the flow dura-
tion curve (FDC), whereas sequence is modeled by transferring streamflow sequence of gauged watershed(s).
This study tests the applicability of the approach on watersheds ranging in size from about 25-7,226 km2 in
Southeastern Coastal Plain (U.S.) with substantial surface storage of wetlands. A 19-point regionalized FDC is
developed to estimate streamflow magnitude using the three most selected variables (drainage area, hydrologic
soil index, and maximum 24-h precipitation with a recurrence interval of 100 years) by a greedy-heuristic search
process. The results of validation on four watersheds (Trent River, North Carolina: 02092500; Satilla River,
Georgia: 02226500; Black River, South Carolina: 02136000; and Coosawhatchie River, South Carolina:
02176500) yielded Nash-Sutcliffe efficiency values of 0.86-0.98 for the predicted magnitude and 0.09-0.84 for the
predicted daily streamflow over a simulation period of 1960-2010. The prediction accuracy of the method on two
headwater watersheds at Santee Experimental Forest in coastal South Carolina was weak, but comparable to
simulations by MIKE-SHE.
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watershed variables.)
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INTRODUCTION

Hydrologic modeling at a watershed scale is a sci-
entific practice that aids decision making in water
resource planning, flood forecasts, management of
surface runoff, sediment, nutrient leaching, and pol-

lutant transport processes. However, the modeling
process is complicated by limited understanding of
how physical processes scale from point and hillslope
observations to integrated complex watershed inter-
actions (Sivapalan et al., 2003; Wagener and Monta-
nari, 2011). Even with limited understanding of
physical processes that drive hydrological processes
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at a watershed scale, there are several watershed
hydrological models with different model structures,
process conceptualization, and required data input
and resolution. Singh and Frevert (2002a, b; 2006),
and USEPA (2008) discuss over 40 watershed models
commonly used by water resource managers, engi-
neers, and hydrologists. Regardless of the complexity
of physically based and conceptual models, they may
fail to model physical processes at watershed scale
because of heterogeneity of watershed descriptors
and complex flow dynamics (He et al., 2011). This
challenge is minimized at gauged watersheds by cali-
bration of the models. Calibration determines model
parameters using historical observations at a speci-
fied watershed location such that future predictions
of system response can be inferred. The concept of
model calibration is based on the assumption that
past observations and watershed responses are strong
predictors of future system response (Gupta et al.,
2003). These modeling challenges are compounded in
ungauged and poorly gauged watersheds, in water-
sheds where monitoring has been discontinued, and
in watersheds with few years of observations.

Some of the approaches for simulating streamflow
time series at ungauged and poorly gauged water-
sheds include: (1) use of parameterized rainfall-runoff
models (e.g., B�ardossy, 2007; G€otzinger and B�ardossy,
2007; Bastola et al., 2008; Hughes et al., 2010), where
hydrologic properties of ungauged watersheds are
inferred from calibrated rainfall-runoff model param-
eters of nearby gauged watersheds or use of regional-
ized model parameters; and (2) statistical
regionalization (e.g., Engeland and Hisdal, 2009; Zhu
and Day, 2009), where regression analysis is used to
correlate hydrological responses of watersheds to
physical and climatic attributes at a regional scale.
The regionalization may be based on regional frame-
works such as hydrologic landscape regions (Wolock
et al., 2004) and ecoregions (Omernik and Bailey,
1997), or on watersheds classified as hydrologically
similar using cluster analysis. According to Rao and
Srinivas (2008), other methods of regionalization
include: (1) method of residuals; (2) canonical correla-
tion analysis; and (3) region of influence. He et al.
(2011) review and generalize approaches for continu-
ous flow predictions in ungauged watersheds using
rainfall-runoff models in two groups: one generaliza-
tion is the distance-based regional analysis that uses
geographic proximity or some functional distance and
spatial interpolation (e.g., McIntyre et al., 2005), and
the second is the regression-based regional analysis
that uses multiregression analysis (e.g., Fernandez
et al., 2000; Pechlivanidis et al., 2010). The downside
of rainfall-runoff models is their relatively higher
learning curve with respect to large number of
parameters, their estimation, and higher computation

time in contrast to regionalized empirical models
(e.g., Guimares and Bohan, 1992; U.S. Geological
Survey, U.S. Dept. of Interior, 2000; Grover et al.,
2002; Kroll et al., 2004; Schilling and Wolter, 2005;
Castellarin et al., 2007; Verdin and Worstell, 2008;
Feaster et al., 2009; Zhu and Day, 2009).

One modeling approach that has not yet been fully
explored is the conceptualization of daily streamflow
as a composite of magnitude and sequence, such that
each component (magnitude and sequence) can be
modeled independently. This approach is referred
to as the streamflow separation (SFS) technique
(Mohamoud, 2008; Ssegane, 2011). The magnitude is
modeled using the flow duration curve (FDC)
whereas the streamflow sequence is modeled by
transferring hydrological sequence of one or more
neighboring gauged (donor) watersheds to the unga-
uged (target) watershed. Vogel and Fennessey (1994)
describe the FDC as a complement of the cumulative
distribution of streamflow that relates streamflow
magnitude and frequency on a daily or weekly or
monthly or annual basis. Therefore, this study inter-
changeably uses FDC to refer to streamflow magni-
tude and magnitude to refer to FDC. The streamflow
sequence is defined as the timing or the temporal
occurrence of specific streamflow magnitudes and
therefore determines the date or the Julian day num-
ber when a specific magnitude occurred during the
period of interest. The magnitude and sequence are
then combined to form daily streamflow series by
sorting the estimated magnitude by date associated
with the same frequency of exceedence of the donor
watershed. The assumption behind transfer of
streamflow sequence between neighboring watersheds
is that geographic proximity may infer similarity of
climate, hydrology, watershed form, and geology such
that timing of different flow regimes of neighboring
watersheds is similar. Earlier work by Fennessey
(1994) referred to the approach as QPPQ transform
method whereas Hughes and Smakhtin (1996) and
Smakhtin and Masse (2000) referred to the approach
as spatial interpolation. However, Smakhtin and
Masse (2000) used an index derived from daily pre-
cipitation to predict sequence. The use of the term
SFS in this study is to emphasize the compartmental-
ization of daily streamflow into two independent com-
ponents, such that each component is independently
optimized for streamflow predictions at ungauged
sites. The above studies use a parameter-based
regression to estimate streamflow percentiles and a
single neighboring gauged watershed to translate
FDC to time series. Work by Archfield et al. (2010)
and Mohamoud (2008) directly regressed watershed
variables against streamflow percentiles instead of
parameter-based regression. However, they still use a
single neighboring gauged watershed. Shu and
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Ouarda (2012) and Ssegane (2011) used more than
one neighboring gauged watershed to estimate
streamflow sequence. Shu and Ouarda (2012) used
regression-based logarithmic interpolation to predict
regional flow duration curve (RFDC) at ungauged
sites and spatial interpolation to transfer streamflow
sequence at 109 catchments in Quebec, Canada.
Their approach is similar to work by Hughes and
Smakhtin (1996), Smakhtin et al. (1997), and Smakh-
tin (1999). However, they used sequential stepwise
regression to generate RFDC and multiple nearby
gauges to transfer sequence from donor to target
watersheds. Their results showed better performance
of RFDC than use of the ratio of drainage areas. The
results also showed an improvement in 79% of water-
sheds when using multiple sites compared with using
a single site for spatial interpolation. Patil and Stie-
glitz (2012) assessed the regional influence on the
ability to transfer hydrologic information between
neighboring watersheds using 756 watersheds across
the continental United States (U.S.). They showed
high transferability of hydrologic information for the
Appalachian Mountains (Eastern U.S.), the Rocky
Mountains, and Cascade Mountains (Pacific North-
west). However, they found lower transferability of
hydrologic information between watersheds domi-
nated by evapotranspiration (ET) than those domi-
nated by runoff (e.g., below the Mississipi River).
Ssegane (2011) showed that the improvement in
transferability of hydrologic information between
watersheds in three Mid-Atlantic ecoregions using
multiple neighboring gauged watersheds compared
with the use of a single closest watershed varied
between physiographic provinces. The improvement
was consistent with the level of hydrological homoge-
neity of watersheds in each physiographic province.
Their results showed improvement in 57% of the
watersheds in Appalachian Plateaus, 81% of water-
sheds in Piedmont, and 55% of watersheds in Ridge
and Valley. The differences in the improvements
were also attributed to gauge density of the study
areas because more nearby donor watersheds pro-
vided better sequence prediction.

Above-mentioned works show that transferability
of hydrologic information between neighboring water-
sheds varies across regions and physiographic prov-
inces. Therefore, the main objective of this study was
to assess the capability of the SFS method to predict
daily streamflow of watersheds in the Southeastern
Coastal Plain, U.S., which are dominated by low gra-
dient topography, higher ET, and high percent of sur-
face storage (percent areal coverage under wetlands
and open water surfaces). The method showed satis-
factory performance when applied to watersheds in
Mid-Atlantic physiographic provinces of Appalachian
Plateaus, Piedmont, and Ridge and Valley (Moham-

oud, 2008; Ssegane, 2011). This study is different
from the above studies in that it directly regresses
three watershed variables and 19 streamflow percen-
tiles, and uses linear interpolation as opposed to the
stepwise regression, weighted least squares regres-
sion, sequential stepwise regression (sequential for-
ward or backward variable selection), and log
interpolation used by the above authors to develop
RFDC. The three variables were selected using a
greedy-heuristic search process (Atallah, 1998) that
searches for a local optimal at each streamflow per-
centile with the assumption that this will generate a
global optimal across the entire FDC. Prediction per-
formance is validated using four randomly selected
watersheds not used in the development of the
RFDC. Also, the developed RFDC is then used to esti-
mate long-term FDC of two first-order streams in the
coastal region.

METHODS

Study Area

The study area comprises the U.S. EPA Level III
ecoregions of the Southeastern Plains, the Southern
Coastal Plain, the Middle Atlantic Coastal Plain, and
the Southern Florida Coastal Plains covering the
states of North Carolina, South Carolina, Georgia,
and Florida (Figure 1; cyan region on the map).
Although the area excludes the states of Alabama,
Kentucky, Louisiana, Mississippi, Tennessee, Texas,
and Virginia, for this analysis, the study area is
referred to as the Southeastern Coastal Plains (U.S.).
According to Henderson and Grissino-Mayer (2009),
the Southeastern Coastal Plain spreads from the Gulf
and Atlantic coasts to eastern Texas characterized by
low relief ranging from the sea level to about 90 m in
elevation. The dominant land use and land cover is
the Southeastern pine forest, whereas the climate is
classified as a humid subtropical that supports an
annual rainfall of 1,170-1,650 mm with mean annual
temperatures of 16-23°C (Henderson and Grissino-
Mayer, 2009). The mean annual precipitation is gen-
erally higher than the mean annual potential evapo-
transpiration, giving rise to excess soil moisture. The
region has many swamps, marshes, and poorly
drained soils (Feaster et al., 2009).

Selection of Gauged Sites

The gauged station data was selected from a data-
set of 943 stream gauges compiled by Feaster et al.
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(2009) for the Southeastern U.S. Two criteria were
used to select the gauged sites for regionalization.
The first criterion ensured that at least 90% of the
selected watershed drained the Southeastern Coastal
Plain. Thus, greater than 90% of the drainage area of
each selected watershed drained the Coastal Plain
compared to draining the Piedmont or Blue Ridge or
Ridge and Valley (Figure 1). This reduced the dataset
to 214 gauges, of which 206 gauges totally (100%)
drained the Southeastern Coastal Plain. The second
criterion selected watersheds with long-term data of
at least 20 years (20-84 years). This reduced the total
number of gauged watersheds to 51, of which 51%
had a record period of at least 40 years. The average
record period of selected watersheds was 46 years
and the range of the respective drainage areas varied
from 24.8 to 7,226.1 km2 (Tables 1 and 2). The prefer-
ence of such long-term data is because at least
28 years of daily data are required to calculate excee-
dence probabilities of 0.01 and 99.9% using the Wei-
bull plotting position (Cunnane, 1978). Shu and
Ouarda (2012) used a minimum of 10 years whereas
Archfield et al. (2010) used a minimum of 20 years.
Table 1 describes the watersheds used to develop the

daily RFDC for the Southeastern Coastal Plain and
Figure 1 depicts the geographical location of cent-
roids of each watershed. The majority of selected
watersheds are located in North Carolina and Geor-
gia with only three in South Carolina. Of the three
watersheds in South Carolina, two were among those
randomly selected to validate the accuracy of RFDC
and the SFS method. The average of the mean
annual precipitation (MAP) (1,263 mm) for the water-
sheds falls within the long-term range for the region
(1,170-1,650 mm).

Watershed Descriptors

Table 2 defines the climatic and physical
watershed characteristics used in this study. The
selected variables were based on readily available
data compiled by Feaster et al. (2009) for the South-
eastern U.S. The 20 variables are: 10 topographic
variables (drainage area, main channel length,
watershed perimeter, main channel slope, mean
watershed slope, watershed shape factor, mean
watershed elevation, maximum watershed elevation,

FIGURE 1. States of the Southeastern Coastal Plains and Gauge Locations. The “Regression,” “Regression & sequence,” “Sequence,” and
“Validation” gauge numbers correspond to the U.S. Geological Survey (USGS) gauges in Tables 1 and 3 without the leading zero digit.
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minimum watershed elevation, and drainage density);
two land cover variables (% impervious and % forest);
six climatic variables (mean annual precipitation and

maximum 24-h precipitation at five probabilities of
exceedence [50, 10, 4, 2, and 1%]); and two soil vari-
ables (soil drainage index and hydrologic soil index).

TABLE 1. Description of Watersheds Used in the Development and Validation of Regional Flow Duration Curve (RFDC).

# USGSID Station Name DA (km2)

Watershed Centroid

Record Years MAP1 (mm)LAT (DD) LONG (DD)

1 2053200 Potecasi Creek near Union, North Carolina 582.7 36.36051 �77.24474 52 1,197
2 2053500 Ahoskie Creek at Ahoskie, North Carolina 163.9 36.26039 �77.13303 60 1,205
3 2083800 Conetoe Creek near Bethel, North Carolina 202.3 35.87000 �77.39311 45 1,205
4 2084500 Herring Run near Washington, North Carolina 24.8 35.58708 �76.99246 29 1,270
5 2084557 Van Swamp near Hoke, North Carolina 59.6 35.71655 �76.80142 33 1,270
6 2091000 Nahunta Swamp near Shine, North Carolina 208.2 35.49399 �77.93544 56 1,240
7 2092000 Swift Creek near Vanceboro, North Carolina 471.4 35.45134 �77.30809 38 1,269
8 20925002 Trent River near Trenton, North Carolina 435.1 35.04093 �77.59321 60 1,323
9 2093000 New River near Gum Branch, North Carolina 243.5 34.90944 �77.55496 23 1,361
10 2106000 Little Coharie Creek, North Carolina 240.4 35.09660 �78.50505 41 1,234
11 2106500 Black River near Tomahawk, North Carolina 1,750.8 35.01365 �78.33317 59 1,257
12 2107000 South River near Parkersburg, North Carolina 981.6 35.12884 �78.60815 34 1,225
13 2107500 Colly Creek near Kelly, North Carolina 279.7 34.61893 �78.41884 20 1,273
14 2108000 N.E. Cape Fear River, North Carolina 1,551.4 35.03035 �77.93131 70 1,306
15 2108500 Rockfish Creek near Wallace, North Carolina 179.5 34.81220 �78.10263 25 1,324
16 2109500 Waccamaw River at Freeland, North Carolina 1,761.2 34.30207 �78.54694 71 1,314
17 2134480 Big Swamp near Tarheel, North Carolina 593.1 34.81934 �78.99461 25 1,226
18 21360002 Black River at Kingstree, South Carolina 3,242.7 33.90164 �80.20200 80 1,226
19 2175500 Salkehatchie River near Miley, South Carolina 883.2 33.20536 �81.27669 59 1,219
20 21765002 Coosawhatchie River, South Carolina 525.8 32.87244 �81.24770 59 1,227
21 2197600 Brushy Creek near Wrens, Georgia 72.5 33.20322 �82.37816 46 1,198
22 2198100 Beaverdam Creek near Sardis, Georgia 79.8 32.96424 �81.87424 24 1,080
23 2198690 Ebenezer Creek at Springfield, Georgia 419.6 32.47279 �81.36640 20 1,080
24 2201000 Williamson Swamp Creek, Georgia 282.3 33.00976 �82.72879 30 1,204
25 2202600 Black Creek near Blitchton, Georgia 600.9 32.28188 �81.64072 30 1,225
26 2203000 Canoochee River near Claxton, Georgia 1,437.4 32.44832 �82.11052 73 1,207
27 2214500 Big Indian Creek at Perry, Georgia 264.2 32.49651 �83.85260 27 1,189
28 2215100 Tucsawhatchee Creek, Georgia 422.2 32.28676 �83.68362 24 1,080
29 2216180 Turnpike Creek near Mcrae, Georgia 127.4 32.03298 �83.02423 27 1,080
30 2224000 Rocky Creek near Dudley, Georgia 162.9 32.54132 �83.21904 24 1,198
31 2225500 Ohoopee River near Reidsville, Georgia 2,874.9 32.51580 �82.47134 73 1,197
32 2226100 Penholoway Creek near Jesup, Georgia 466.2 31.50159 �81.88718 42 1,266
33 22265002 Satilla River near Waycross, Georgia 3,108.0 31.43172 �82.78063 73 1,277
34 2227500 Little Satilla River, Georgia 1,673.1 31.65065 �82.26078 59 1,228
35 2228000 Satilla River at Atkinson, Georgia 7,226.1 31.47670 �82.49819 80 1,264
36 2229000 Middle Prong St. Marys River, Florida 323.7 30.33038 �82.39226 24 1,397
37 2230500 S. Prong St. Marys River, Florida 404.0 30.20386 �82.24248 20 1,397
38 2231000 St. Marys River, Florida 1,813.0 30.36981 �82.27204 84 1,397
39 2231268 Alligator Creek at Callahan, Florida 36.3 30.57661 �81.90391 22 1,397
40 2231280 Thomas Creek near Crawford, Florida 77.4 30.45556 �81.89385 38 1,397
41 2246300 Ortega River at Jacksonville, Florida 80.0 30.30587 �81.84995 37 1,397
42 2314500 Suwannee River at U.S. 441, Florida 2,926.7 30.95954 �82.47591 73 1,300
43 2315500 Suwannee River, Florida 6,293.7 30.80950 �82.57314 83 1,380
44 2316000 Alapaha River near Alapaha, Georgia 1,717.2 31.73860 �83.50924 38 1,228
45 2317500 Alapaha River at Statenville, Georgia 3,626.0 31.48872 �83.30934 79 1,251
46 2318000 Little River near Adel, Georgia 1,494.4 31.44243 �83.66545 30 1,268
47 2349900 Turkey Creek at Byromville, Georgia 116.5 32.24096 �83.83901 52 1,204
48 2353400 Pachitla Creek near Edison, Georgia 486.9 31.68627 �84.74378 22 1,341
49 2353500 Ichawaynochaway Creek, Georgia 1,605.8 31.68175 �84.64807 71 1,329
50 2357000 Spring Creek near Iron City, Georgia 1,364.9 31.29253 �84.79395 28 1,385
51 2359000 Chipola River near Altha, Florida 2,022.8 30.88588 �85.27911 67 1,397

Notes: Four watersheds were randomly selected to validate the RFDC and predicted daily streamflow (Table 3). The remaining 47 water-
sheds were used for development of RFDC. The actual U.S. Geological Survey gauge number (USGSID) is preceded with a zero.
1MAP refers to mean annual precipitation.
2Watersheds used for validation of RFDCs and validation of estimated daily and monthly streamflow.
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For a detailed description and calculation methods
for each variable, refer to Feaster et al. (2009).
Table 2 also depicts the 20 watershed descriptors of
two first-order coastal streams (WS77 and WS80) at
Santee Experimental Forest in Cordesville, South
Carolina. These watersheds were included to assess
the applicability of RFDC for the estimation of long-
term streamflow magnitudes of first-order streams.

Streamflow Magnitude

The SFS method conceptualizes the FDC as
streamflow magnitude because the FDC is a graphi-
cal representation of magnitude and corresponding
frequency. No sequence information (timing of spe-
cific magnitudes) is contained in the FDC. Nineteen
streamflow percentiles representing high, medium,
and low streamflow regimes are used to regionalize
the flow duration curve. The 19 streamflow percen-
tiles used in this study ranged from high flows (Q0.01-
Q10), medium flows (Q20-Q70), to low flows (Q80 to
Q99.9). Where, Qp represents the flow magnitude
equaled or exceeded p percent of the daily flow
record. Long-term daily streamflow data for 22
gauged watersheds with over 42 years of record were

used to generate streamflow percentiles at the
extremes of the FDC (Q0.01 and Q99.9) whereas daily
streamflow for all 51 watersheds (Table 1) was used
to generate the other streamflow percentiles for
regionalization. Although, only 28 years of daily
streamflow data are required to estimate probabilities
of exceedence at the extremes (Q0.01 and Q99.9) using
the Weibull plotting position, 42 years were used to
minimize the effect of the record length on estimates
of the streamflow percentiles at the extremes.

Regionalization of Flow Duration Curves

Four watersheds were randomly selected from the
pool of 51 (Figure 1) to validate the SFS method. The
remaining 47 watersheds were used to regionalize
the flow duration curve. Twenty watershed variables
were regressed against each streamflow percentile
using a greedy-heuristic search process. The greedy-
heuristic search process selected a combination of
three variables that gave the highest Nash-Sutcliffe
coefficient of efficiency, NSE (Nash and Sutcliffe,
1970) from all possible combinations of three vari-
ables out of the given 20 variables. A total of 1,140
possible combinations were evaluated for each of the

TABLE 2. Watershed Descriptors (variables).

Variable1 Units Description Minimum Maximum

Santee Experimental
Forest

WS772 WS802

DA km2 Drainage area 24.8 7,226.1 1.55 2.06
MCL km Main channel length 12.6 262.7 1.34 1.55
MCS m/km Main channel slope 0.095 1.97 1.137 2.468
BP km Basin perimeter 41.9 707.4 5.394 6.239
BSF - Basin shape factor 2.68 19.03 1.158 1.166
EMEAN m Mean elevation 10.4 133.4 8.58 8.44
EMAX m Maximum elevation 16.4 176.8 11.04 10.41
EMIN m Minimum elevation 1.4 94.2 4.97 3.55
SMEAN % Mean slope 0.211 3.665 2.39 2.15
IMPERV % Impervious surfaces 0.19 4.54 0.1 0.0
FOREST % Forest cover 18.9 56.9 89 69.8
SDI3 - Soil drainage index 3.24 6.21 4.90 5.12
HSI4 - Hydrologic soil index 2.12 3.93 3.50 3.47
MAP mm Mean annual precipitation 1,080 1,397 1,370 1,370
RF505 mm Rain exceeded 50% 88 124 98.7 98.7
RF10 mm Rain exceeded 10% 136 194 145.6 145.6
RF4 mm Rain exceeded 4% 168 227 170.0 170.0
RF2 mm Rain exceeded 2% 188 256 185.8 185.8
RF1 mm Rain exceeded 1% 205 283 203.2 203.2
DD km/km2 Drainage density 0.0 1.6 3.4 2.2

Notes: The minimum and maximum are based on watershed descriptors of 47 watersheds used to develop the regional equations.
1Watershed variables are based on work by Feaster et al. (2009).
2First-order stream watersheds at Santee Experimental Forest, Cordesville, South Carolina.
3Mean soil drainage index for the basin (range is 1-7, with 1 denoting excessively drained soils).
4Mean hydrologic soil index for the basin (range is 1-4, based on hydrologic soil group, A = 1 and D = 4).
5RFp, Maximum 24-h precipitation with a recurrence interval of (1/p 9 100) years.
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19 streamflow percentiles. This was achieved by fit-
ting Equation (1) for every possible three-variable
combination at each streamflow percentile, where a,
b, c, d, and e are regional coefficients, whereas X1,
X2, and X3 are three selected watershed variables.
For each three-variable combination, Equation (1)
was optimized by minimizing the largest singular
value of the prediction error vector using an uncon-
strained nonlinear optimization algorithm based on
Nelder-Mead Simplex method (Lagarias et al., 1998).
The approach is referred to as a greedy-heuristic
search because it finds a local optimum at each
streamflow percentile (optimal combination of three
selected variables) in search of a global solution to
the entire FDC (Atallah, 1998). This process selected
a total of 13 unique variables across the 19 stream-
flow percentiles. To guarantee model parsimony and
field application of the developed equations, the final
RFDC (Table 4) equations were developed using only
the three most frequently selected variables across
the 19 streamflow percentiles. These included drain-
age area (DA; selected for all 19 percentiles), hydro-
logic soil index (HSI; selected for 10 percentiles), and
maximum 24-h precipitation with a recurrence inter-
val of 100 years (RF1; selected for 7 percentiles). Use
of only drainage area did not yield satisfactory
results especially for the low flows (NSE less than
0.30 for Qp < Q60).

Qp ¼ a10bXc
1X

d
2X

d
3 ð1Þ

The above described procedure only generates 19
points on a flow duration curve with probabilities
ranging from 0.01 to 99.9% and corresponding flow
percentiles of Q0.01-Q99.9. However, the simulation
duration of interest is 51 years (1960-2010) of daily
streamflow, a total of 18,627 points (18,627 days) on
the FDC with corresponding probabilities ranging
from 0.005 to 99.995%. This study used linear inter-
polation and extrapolation to generate all points of
the FDC for the period under consideration. There-
fore, the total points of the FDC generated by linear
interpolation and extrapolation depend on the period
of interest.

Regionalized Flow Duration Curve of Two First-Order
Streams

Twenty watershed variables (Table 2) of two
first-order streams at U.S. Forest Service Santee
Experimental Forest (Figure 1; SEF, which is part of
Francis Marion National Forest near Charleston,
South Carolina) were used to estimate their respec-
tive long-term FDC. The two watersheds are WS77
with a drainage area of 1.55 km2 and WS80 with a

drainage area of 2.06 km2. The watersheds are adja-
cent to each other with a distance of 2.0 km between
their centroids. The watersheds have low relief and
are dominated by forest species of loblolly pine, long-
leaf pine, cypress, and sweet gum. Earlier work on
the SEF showed that such first-order watersheds had
short retention time of drainage outflow than other
watersheds in Southeast U.S. (Young, 1967). Histori-
cal records show a higher percentage of flow (drain-
age/rainfall) from WS77 (27%) compared with WS80
(20%) during the pre-Hurricane Hugo period of 1965-
1981 (Richter, 1980; Amatya et al., 2006). As both
watersheds were under similar land use, topography,
climate, and soils, the observed difference is attrib-
uted to difference in hypsometry of the two water-
sheds. Therefore, this analysis assesses the
applicability of regional equations (RFDC) on these
two small first-order streams in the region. The
results are compared to simulations of daily flow by
process-based distributed hydrological model, MIKE-
SHE (Dai et al., 2010, 2011) and observed data
between 1969 and 1980 (pre-Hurricane Hugo) (Ama-
tya et al., 2006).

Streamflow Sequence

The SFS method defines streamflow sequence as
the timing or the temporal occurrence of streamflow
magnitudes over a period of interest. Therefore,
streamflow sequence determines the date or the Julian
day number when a specific magnitude occurred for
the period under consideration. This study adopts an
approach outlined by Ssegane (2011) for the prediction
of streamflow sequence. The approach uses the
sequence of nearest gauged watershed (Figure 2), if
the difference in distances of the nearest and second
nearest donor watersheds from the target watershed
is greater than 20 km. For neighboring watersheds
where the difference in distances is less than or about
20 km, the approach generates the sequence from
aggregated daily streamflows of the two or three clos-
est watersheds. The aggregation is achieved using
ensemble techniques such as Pythagorean means
(arithmetic and geometric) and bootstrap resampling.
Bootstrap resampling (Dixon, 2001) involves generat-
ing a new sample (bootstrap sample) by randomly
drawing values from the initial sample with replace-
ment and taking the arithmetic mean. This is per-
formed a predefined number of times. For this study,
ensemble techniques of geometric mean and bootstrap
resampling were implemented for each Julian day.

An arbitrary period of interest for simulation of
daily streamflow was chosen as 1960-2010; therefore
only calibration watersheds whose period of record
covered 1960-2010 were considered for sequence pre-
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diction (Figure 1). For each validation watershed, the
nearest watersheds that met the above criteria, and
whose Euclidean distance between centroids of target
and donor was less than 75 km, were selected
(Table 3). The term “nearest” is restricted to only the
dataset used in this study and to watersheds that met
the above criteria. Daily streamflow was estimated by
assigning a date at a donor watershed when a specific
flow magnitude at a given probability of exceedence
occurred, to the predicted magnitude (RFDC) at the
target watershed with the same exact probability of
exceedence. Thus, only sequence not the magnitude is
transferred from donor to the target watershed.

Performance Criteria

Accuracy of estimated magnitude and estimated
daily streamflow during the validation period was
evaluated using NSE, NSE based on log-transformed
data (logE), root mean square error (RMSE), and
mean absolute error (MAE). These performance indi-
ces are defined by Equations (2)-(5) below (e.g., Per-
rin et al., 2003; Krause et al., 2005; Reusser et al.,
2009). For NSE and logE, a value of 1.0 is optimum
whereas a value less than zero is indicative of poor
model performance because the average of the
observed data is a better predictor than the model.
For RMSE and MAE, the smaller the value, the bet-
ter the model estimates.

NSE ¼ 1�
Pn
i¼1

Qo
i �Qm

i

� �2
Pn
i¼1

Qo
i �Qo

� �2 ð2Þ

logE ¼ 1�
Pn
i¼1

log Qo
i þ 1

� �� log Qm
i þ 1

� �� �2
Pn
i¼1

log Qo
i þ 1

� �� log Qo
� �� �2 ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Qo
i �Qm

i

� �2s
ð4Þ

MAE ¼ 1

n

Xn
i¼1

Qo
i �Qm

i

�� �� ð5Þ

where Qi
o is the ith observed flow (magnitude or time

series), Qi
m is the ith modeled or predicted flow; Q0 is

FIGURE 2. Geographic Proximity and Orientation of Two Closest
Watersheds to trent River Near Trenton, North Carolina (USGS
No. 02092500) and the Respective Euclidean Distances Between
Watershed Centroids. Geographic proximity is based on only the
sample data used in this study.

TABLE 3. U.S. Geological Survey (USGS) Stream Gauges to Validate the Streamflow Separation (SFS)
Method and the Corresponding Nearest Donor Watersheds.

Validation USGS No.

Neighboring Donor Stations

Nearest Second Nearest Third Nearest

USGS No. Distance1 (km) USGS No. Distance1 (km) USGS no. Distance1 (km)

02226500 02228000 27.3 02317500 50.6 02227500 55.0
02092500 02108000 30.9 02091000 59.2 - -
02136000 02135500 3.4 02132000 44.6 - -
02176500 02175500 37.0 - - - -

Note: Nearest watersheds were selected based on geographic proximity and availability of observed streamflow for the period under consider-
ation (1960-2010).
1Euclidean distance (km) between centroids of donor and target watersheds. Euclidean distances greater than 75 km were not used.
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the mean of the observed flow; and n is the total
number of observations.

RESULTS AND DISCUSSION

Regionalized Flow Duration Curve

Table 4 depicts equations of the RFDC for the
Southeastern Coastal Plain (U.S.) based on daily
streamflow data of 47 USGS gauged watersheds
with a record period spanning 20-84 years. The
RFDC is based on only three most selected variables
of drainage area (DA), hydrologic soil index (HSI),
and maximum 24-h precipitation with a return per-
iod of 100 years (RF1), which are generally indepen-
dent. The selection was achieved using a greedy-
heuristic search process, which searches for a global
optimal solution by finding locally optimal solutions.
Therefore, the three most selected variables from a
pool of variables selected at each percentile were
used to generate models for the entire FDC
(Table 4). The drainage area, which controls the
scale of exchange and interaction between climatic
and watershed processes, was selected for all 19
percentiles; the HSI, which is a measure of the con-
trol of water movement through the soil matrix
(drainage potential), was selected for 10 of the 19

percentiles; and the RF1, which is a measure of
extreme climatic events, was selected for 7 of the 19
percentiles. Variables of BP, MCL, BSF, SMEAN,
FOREST, RF50, and RF10 (refer to Table 2) were
not selected for any of the 19 percentiles. This was
attributed to their intracorrelation with selected
variables and the low information gain (Schroedl,
2010) between the variables and the respective
streamflow percentiles. Other selected variables were
not used to guarantee a parsimonious model of only
three unique independent variables across all 19 per-
centiles. The selection of DA is consistent with
results of other studies that demonstrated the rele-
vance of DA as a major hydrologic scaling parameter,
especially for peak and annual flows (e.g., Gupta
et al., 1994; Vogel and Sankarasubramanian, 2000;
Ogden and Dawdy, 2003; Furey and Gupta, 2005; Se-
gura and Pitlick, 2010). Selection of HSI is supported
by the work of Brandes et al. (2005), who selected
HSI as a significant predictor of recession rates of
low flows. Also, the HSI index is used by hydrologic
models such as soil and water assessment tool
(SWAT) that implement the Curve Number method
for flow generation (Borah and Bera, 2004).

The NSE at each estimated streamflow percentile
during regionalization is greater than 0.80 (Table 4)
therefore the functional form (Equation 1) and
selected variables adequately represent flow dynam-
ics. Both the NSE and logE for high and medium
flows (Q0.01-Q70) are greater than 0.80. However, the

TABLE 4. RFDC for the Coastal Plain of the Southeastern Region of U.S.

Probability
of
Exceedence
(%) Regional Equation (L/s)

Prediction Performance

NSE logE

0.01 Q0.01 = 1.68 9 100.88DA0.78HSI�0.28RF10.94 0.81 0.81
0.05 Q0.05 = 0.86 9 100.81DA0.81HSI�0.11RF10.88 0.94 0.92
0.1 Q0.1 = 1.95 9 100.87DA0.86HSI�0.03RF10.63 0.95 0.93
0.5 Q0.5 = 1.84 9 101.06DA0.89HSI�0.18RF10.46 0.97 0.97
1 Q1 = 2.25 9 100.82DA0.89HSI�0.17RF10.47 0.98 0.97
5 Q5 = 5.72 9 10�1.23DA0.99HSI�0.27RF10.93 0.99 0.99
10 Q10 = 4.48e�9 9 106.58DA1.01HSI�0.40RF11.41 0.99 0.99
20 Q20 = 5.69e�8 9 103.63DAHSI�0.63RF12.15 0.99 0.99
30 Q30 = 1.04e�6 9 102.74DA1.02HSI�1.30RF12.01 0.98 0.98
40 Q40 = 8.99e�7 9 10�1.27DA1.01HSI�1.24RF13.67 0.97 0.96
50 Q50 = 3.58e�13 9 102.52DA0.94HSI�1.19RF14.78 0.94 0.91
60 Q60 = 1.07 9 10�10.47DA0.98HSI�2.08RF15.03 0.92 0.87
70 Q70 = 8.86e�18 9 106.33DA1.02HSI�3.11RF15.21 0.91 0.78
80 Q80 = 2.42e�16 9 104.19DA1.10HSI�4.30RF15.53 0.92 0.75
90 Q90 = 34.41 9 10�10.50DA1.42HSI�7.23RF14.48 0.95 0.62
95 Q95 = 3.28e�16 9 106.12DA1.64HSI�8.79RF14.52 0.97 0.55
99 Q99 = 75.07 9 10�18.17DA2.20HSI�9.87RF16.70 0.98 0.46
99.5 Q99.5 = 5.10e�13 9 10�2.92DA3.17HSI�13.14RF15.39 0.98 0.43
99.9 Q99.9 = 34.61 9 10�27.59DA2.73HSI�10.39RF110 0.99 0.59

Note: The Coastal Plain comprises U.S. EPA Level III ecoregions: (1) Middle Atlantic Coastal Plain, (2) Southeastern Plain, (3) Southern
Coastal Plain, and (4) Southern Florida Coastal Plain.
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logE for low flows (Q80-Q99.9) is less than 0.80 with
logE of Q99 and Q99.5 less than 0.50. Thus, on aver-
age, the developed RFDC adequately estimates long-
term high flows (NSE > 0.80), but gives poor to mod-
erate estimates of long-term low flows (logE < 0.80)
on watersheds used to generate the RFDC. The poor
to moderate performance of the RFDC on low flows is
because some watersheds had zero-flow during low-
flow regimes. For example, Turnpike Creek near
Mcrae, Georgia (02216180) had zero flows for Q70-
Q99.9 and Van Swamp near Hoke, North Carolina
(02084557) had zero flows for Q90-Q99.9. Overall,
27.7% (13 of the 47 calibration watersheds) had zero
flows during some low-flow regimes.

Figure 3 compares the observed FDC and esti-
mated FDC based on regional equations (RFDC;
Table 4) for four USGS gauged watersheds not used
in development of the RFDC. NSE values for valida-
tion watersheds are greater than 0.85. Estimates of

low-flow magnitudes for all validation watersheds are
adequate because logE values are greater or equal to
0.94 (Figure 3). Although the overall performance of
the RFDC is strong (NSE > 0.85), it overpredicted
high flows at 02136000 and 02176500 and underpre-
dicted high flows at 02226500 and 02092500. The
overprediction of high-flow magnitudes at 02176500
may be attributed to incidences of zero flow for inter-
mittent type of streams because the RFDC is most
suited for watersheds with minimal occurrences of
zero flow such as perennial streams (Mohamoud,
2008). The overprediction and underprediction at
other validation watersheds does not follow any dis-
cernible relationship with watershed size as the
drainage areas are comparable for both cases (similar
drainage areas for under- and overprediction). The
above observations highlight the influence (although
secondary) of other watershed descriptors not consid-
ered in the RFDC and in this study.

FIGURE 3. Observed and Estimated Daily Flow Duration Curves (FDC) for USGS Stream Gauges:
(a) Satilla River Near Waycross, Georgia (02226500), (b) Trent River Near Trenton, North Carolina (02092500),

(c) Black River at Kingstree, South Carolina (02136000), and (d) Coosawhatchie River Near Hampton, South Carolina (02176500).
Observed and predicted values cover the period 1960-2010.
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Performance of Regional Flow Duration Curve at Two
First-Order Watersheds

Figure 5 compares estimates of flow duration curve
by the RFDC to simulations by MIKE-SHE distrib-
uted model on two first-order watersheds (WS77 and
WS80) at SEF with drainage areas less than 5.0 km2.
Examination of only the NSE and logE model perfor-
mance metrics for simulations by MIKE-SHE and
RFDC for the period 1969-1980 gives a mendacious
impression of strong prediction performance by the
two models (NSE > 0.70 for MIKE-SHE and
NSE > 0.95 for RFDC). The better performance by
the RFDC compared with MIKE-SHE is due to better
agreement between simulated and observed flows at
very high flows (refer to Figure 4; Q0.01-Q0.1). How-
ever, examination of the MAE shows greater errors
(MAE > 2.0 mm/day) for both MIKE-SHE and RFDC
compared with similar errors for the validation
watersheds (Figure 4; MAE < 1.0 mm/day). Thus, by
visual inspection (Figure 5) and on basis of the MAE,
both models poorly simulated daily streamflow for
the period 1969-1980. The high NSE and logE values
for both models are due to high incidence of zero-flow
periods for both watersheds (Q60-Q99.9 for WS77 and
Q55-Q99.9 for WS80) that minimize influence of errors
at high flows. The poor prediction performance by the
RFDC on the two headwater watersheds was most
likely because the DA and the RF1 variables were
outside the range of values used to develop the RFDC
(e.g., DA: 24.8 to 7,226.1 km2 compared to 1.55 and
2.06 km2; Table 2). The poor performance of the
RFDC at the two watersheds is in accordance with
observations by Niadas (2005), who highlighted fail-
ure of regionalized flow prediction methods to satis-
factorily represent streamflow variability at small
watersheds (<50 km2).

Daily Streamflow

The accuracy of the SFS method significantly
depends on accuracy of the estimated magnitudes
(RFDC). Therefore, the accuracy of the daily stream-
flow is equal to the accuracy of estimated magni-
tudes, if the exact sequence (true streamflow
sequence) is used (refer to Figure 3 and Table 5).
Thereafter, the accuracy deteriorates based on the
accuracy of the sequence. Table 5 shows difference in
accuracy of estimated daily streamflows using differ-
ent sequences to transform magnitude (RFDC) into
daily streamflow. The sequences from the nearest
and second nearest are based on streamflow per unit
watershed area (mm/day). The results, on average,
show a decrease in accuracy of estimated streamflow
as the Euclidean distance between centroids of target

and donor watersheds increases, (Figure 2, Table 3,
and Table 5) indicating that this distance has more
control on transferability of streamflow sequence
than ratio of donor to target drainage area. This
observation may be attributed to the fact that factors
other than drainage area, such as drainage density,
shape, and topography, also affect time of concentra-
tion. In addition, geographic proximity gives high
probability for both target and donor watersheds to
undergo similar flow regimes under similar hydro-

FIGURE 4. Comparison of Estimates by Regional FDC (RFDC)
and MIKE-SHE Distributed Model at Two First-Order Streams at
Santee Experimental Forest. Observed data and MIKE-SHE simu-
lations cover the period January 1, 1969 and October 31, 1981:
WS77 (top graph; DA = 1.55 km2) and WS80 (bottom graph;
DA = 2.06 km2). The Nash-Sutcliffe efficiency value for MIKE-SHE
estimates is greater than 0.90 compared to less than 0.30 for the
RFDC.
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climatic conditions, which are the main drivers for
hydrologic response. The use of the nearest donor
watershed is the simplest form of transferring hydro-
logical information between watersheds (e.g., Moham-
oud, 2008). However, as illustrated by Tables 3 and
5, the nearest donor watershed does not always pro-
vide the best streamflow sequence for the target
watershed. For example, both 02226500 (target
watershed) and 02228000 (nearest donor watershed)
are in the same hydrologic unit code (HUC03070201;
Satilla watershed-not shown in any figure) whereas
02227500 (third nearest donor watershed) is in a dif-
ferent hydrologic unit code (HUC03070202; Little Sa-
tilla watershed-not shown in any figure), yet
02227500 gave comparable estimates of streamflow
sequence demonstrated by accuracy of predicted daily
streamflow (Table 5; 0.68 for 02228000 vs. 0.71 for
02227500). Archfield and Vogel (2010) showed that
use of the nearest donor watershed was the best
choice on 79% of watersheds in their study. They also
showed that by kriging (spatial interpolation) of cor-
relation coefficients of log-transformed daily stream-
flows of predefined index watersheds, the accuracy of

the best donor watershed improved from 79 to 90%.
Use of donor watersheds for predicting sequence with
prolonged periods of missing data was a major con-
tributor of poor predictions at 02136000 and 0217500.
Daily data for donor watershed 02135500 had miss-
ing data between 1992 and 2010 whereas donor
watershed 02175500 had missing data between 1987
and 1990. Therefore, although the predicted stream-
flow magnitudes (RFDC) are strong (NSE > 0.80), the
predicted daily streamflows are weak (NSE < 0.30)
due to weak predictions of sequence.

Use of more than one donor watershed and ensem-
ble methods significantly improved estimated daily
streamflow for watershed 022226500 because of high
density of gauged watersheds within its neighborhood
(Table 5; rows 5-7) and minimal missing data for
donor watersheds. However, use of two donor water-
sheds for sequence prediction did not improve the
estimated daily streamflows for watershed 02092500
as the difference between the distances from the
target to each of the nearest two donor watersheds
was 28.3 km. Work by Ssegane (2011) for the
Mid-Atlantic Appalachians, Piedmont, and Ridge and

FIGURE 5. Observed and Estimated Daily Streamflow for USGS Stream Gauge at
Satilla River Near Waycross, Georgia (02226500; DA = 3,108.0 km2). The sequence used to generate daily streamflows

is based on aggregation of daily streamflow of 02228000 (DA = 7,226.1 km2), 02317500 (DA = 3,626 km2), and
02227500 (DA = 1,675 km2) at Euclidean distances of 27.3, 50.6, and 55 km, respectively.
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Valley physiographic provinces on average, showed
no improvement if the difference between Euclidean
distances of the nearest and the second nearest was
greater than 20 km. Similar observations are made
at the sample validation watersheds for the South-
eastern Coastal Plain. The difference in distance for
02092500 is 28.3 km compared to 23.3 km for
02226500. Other factors such as a significant differ-
ence in levels of surface and subsurface storage and
urbanization between donor and target watersheds
may contribute to accuracy of sequence prediction.
On average, the use of geometric mean of multiple
sequences from neighboring donor watersheds gave
better estimates of streamflow sequence than other
aggregation methods.

Graphical results of using sequence estimated by
geometric mean aggregation of sequences from three
nearest donor watersheds for 02226500 are given by
Figure 5. The graph shows a strong agreement
between estimated and observed low flows (Table 5;
logE = 0.92), however, the daily flow peaks were un-
derpredicted (Table 5; NSE = 0.84). The underpredic-
tion of the peak daily flows was carried over from
prediction accuracy of the RFDC (Figure 3). Table 6
depicts additional metrics of prediction accuracy at
daily and monthly time scale, while Figure 6 depicts
variability in prediction accuracy at peak flows and
low flows on monthly time step. The accuracy of the
predicted daily and monthly flows follow similar
trends to accuracy of predicted magnitude (Table 6
and Figure 3), where strongest simulations were for
02226500 and the weakest for 02176500.

Comparison of our study results for Trent River to
modeling results by Qi et al. (2008) shows a better
simulation performance by our study approach at
both the daily and monthly time steps. Qi et al.
(2008) used U.S. Geological Survey’s Precipitation
Runoff Modeling System (PRMS) to model streamflow
for Trent River over the period of 1980-2000. Their
best PRMS model performance (NSE) was reported
as 0.58 compared to 0.74; Table 6 on a daily time step
and 0.79 compared to 0.85; Table 6 on a monthly
basis, yet their model simulations covered 21 years
compared to 51 years covered in this study. However,
our method’s current dependency on sequence of
gauged neighboring watersheds does not provide for
forecasting of hydrologic response to climatic, land
use, or land cover changes compared with the pro-
cess-based hydrologic models (e.g., PRMS) that are
designed to model such scenarios. Therefore,
although the approach developed herein provides a
relatively easier method for simulating long-term
daily streamflow data, it cannot assess impacts of
climatic and land use change on future streamflows,
a task that is not only appropriate but also increas-
ingly being demanded in recent years for hydrologic
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models. Future work will concentrate on use of spa-
tially distributed rainfall data, generic methods of
choosing optimum donor watersheds, and aggregation
techniques to utilize data from more than one donor
watershed.

SUMMARY AND CONCLUSIONS

Independent modeling of daily streamflow as a
composite of magnitude and sequence (SFS) for the
Southeastern Coastal Plain watersheds (ranging in

size from 24.8-7,226.1 km2) provided very good to sat-
isfactory results during model validation
(NSE � 0.86 for prediction of daily magnitudes-FDC
and 0.09 � NSE � 0.84 for prediction of daily
streamflow time series). This study directly regressed
drainage area (DA), hydrologic soil index (HSI), and
maximum 24-h precipitation with a return period of
100 years (RF1) to specific 19 streamflow percentiles
(Q0.01-Q99.9) along a flow duration curve in combina-
tion with linear interpolation to predict long-term
RFDC at ungauged sites. The three explanatory vari-
ables were the top three most selected watersheds
across the 19 streamflow percentiles using a greedy-
heuristic search process. The performance of the

FIGURE 6. Observed and Estimated Monthly Streamflow of Four USGS Validation Watersheds. Only data for 2000-2010 is shown although
the simulation covers the period 1960-2010. Refer to Table 6 for additional metrics of prediction accuracy.

TABLE 6. Statistics of Model Performance in Estimating Daily and Monthly Streamflow at Four USGS
Gauged Watersheds Used for Validation for the 1960-2010 Period.

Validation Watershed Temporal Scale NSE LogE MAE (mm) Observed (mm) Estimated (mm)

02226500
Satilla River, Georgia

Daily 0.84 0.92 0.26 0.84 0.80
Monthly 0.95 0.95 4.50 25.50 24.50

02092500
Trent River, North Carolina

Daily 0.74 0.82 0.44 1.08 1.21
Monthly 0.85 0.86 9.20 32.90 36.80

02136000
Black River, South Carolina

Daily 0.35 0.73 0.35 0.77 0.93
Monthly 0.67 0.83 8.15 23.40 28.20

02176500
Coosawhatchie River, South Carolina

Daily 0.09 0.69 0.48 0.78 1.08
Monthly 0.47 0.78 11.60 23.60 30.70

Note: The last two columns are the observed and estimated long-term averages on a daily and monthly time scale.
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RFDC for Southeastern Coastal Plain watersheds is
limited to the watershed characteristics within the
range used to develop them. This was demonstrated
by poor performance of the RFDC on two small
headwater forested watersheds. Comparison of
MIKE-SHE model and RFDC simulations on the two
headwater watersheds gave high NSE values
(NSE > 0.70) for daily FDC. However, examination of
the graphs and the respective MAE values
(MAE > 2.0 mm/day) showed that the FDC predic-
tions were weak for both models. Major conclusions
drawn from above results include: (1) accuracy of
estimated daily streamflow for an ungauged
watershed can never be greater than accuracy of esti-
mated magnitude (FDC); (2) high density of gauged
(donor) watersheds in proximity of ungauged
watershed provides better estimates of sequence and
therefore use of more than one donor watershed
whose distances from centroid of the ungauged are
within 50 km, improves sequence prediction; (3) the
Euclidean distance between the centroids of the
donor and target watersheds is a better predictor of
sequence than the ratio of the donor to target drain-
age areas, however, proximity does not always give
the best prediction of sequence; (4) RFDC tends to
overpredict high-flow magnitudes for watersheds with
high incidences of zero flow, for example, intermittent
streams, thus, SFS is most suited for predictions at
continuously flowing watersheds with perennial
streams; and (5) the prediction accuracy of both the
magnitude and the sequence should be strong to give
satisfactory simulations of daily streamflow at unga-
uged watersheds.

ACKNOWLEDGMENTS

The authors thank Weyerhaeuser Company for their financial
support to the University of Georgia through the USDA-Forest Ser-
vice Center for Forested Wetlands Research (Cordesville, South
Carolina) and Toby D. Feaster of U.S. Geological Survey (South
Calorina Water Science Center) for providing the 20 watershed
characteristics for over 800 watersheds in the Southeastern United
States. The authors also would like to acknowledge Andy Harrison,
Hydrologic Technician at Center for Forested Wetlands Research
for helping provide data for small watersheds (WS77 and WS80) at
Santee Experimental Forest.

LITERATURE CITED

Amatya, D.M., M. Miwa, C.A. Harrison, C.C. Trettin, and G. Sun,
2006. Hydrology and Water Quality of Two First Order Forested
Watersheds in Coastal South Carolina. Paper No. 06-2182, ASA-
BE, St. Joseph, Michigan, 22 pp.

Archfield, S.A. and R.M. Vogel, 2010. Map Correlation Method:
Selection of a Reference Streamgage to Estimate Daily Stream-
flow at Ungaged Catchments. Water Resources Research 46
(10):1-15.

Archfield, S.A., R.M. Vogel, P.A. Steeves, S.L. Brandt, P.W. Wei-
skel, and S.P. Garabedian, 2010. The Massachusetts Sustain-
able-Yield Estimator: A Decision-Support Tool to Assess Water
Availability at Ungaged Stream Locations in Massachusetts.
U.S. Geological Survey Scientific Investigation Report 2009-
5227, 41 pp. plus [CD-ROM].

Atallah, M.J., 1998. Algorithms and Theory of Computation Hand-
book. CRC Press LLC, Boca Raton, Florida.

B�ardossy, A., 2007. Calibration of Hydrological Model Parameters
for Ungauged Catchments. Hydrology and Earth System Sci-
ences 11(2):703-710.

Bastola, S., H. Ishidaira, and K. Takeuchi, 2008. Regionalisation of
Hydrological Model Parameters Under Parameter Uncertainty:
A Case Study Involving TOPMODEL and Basins Across the
Globe. Journal of Hydrology 357(3-4):188-206.

Borah, D.K. and M. Bera, 2004. Watershed-Scale Hydrologic and
Nonpoint-Source Pollution Models: Review of Applications.
Transactions of the ASAE 47(3):789-803.

Brandes, D., J.G. Hoffmann, and J.T. Mangarillo, 2005. Base Flow
Recession Rates, Low Flows, and Hydrologic Features of Small
Watersheds in Pennsylvania, USA. Journal of the American
Water Resources Association 41(5):1177-1186.

Castellarin, A., G. Camorani, and B. Allen, 2007. Predicting
Annual and Long-Term Flow-Duration Curves in Ungauged
Basins. Advances in Water Resources 30(4):937-953.

Cunnane, C., 1978. Unbiased Plotting Positions - Review. Journal
of Hydrology 37(3-4):205-222.

Dai, Z., D.M. Amatya, G. Sun, C.C. Trettin, C. Li, and H. Li, 2010.
A Comparison of MIKE SHE and DRAINMOD for Modeling
Forested Wetland Hydrology in Coastal South Carolina, USA.
In: Proceedings of the XVII World Congress of the International
Commission of Agricultural and Biosystems Engineering
(CIGR), Québec City, Canada, June 13-17, 2010.

Dai, Z., D.M. Amatya, G. Sun, C.C. Trettin, C. Li, and H. Li, 2011.
Climate Variability and Its Impact on Forest Hydrology on
South Carolina Coastal Plain, USA. Atmosphere 2:330-357.

Dixon, P.M., 2001. Bootstrap Resampling. In: The Encyclopedia
of Environmetrics, A.H. El-Shaarawi and W.W. Piegorsch (Edi-
tors). Wiley, New York, 9 pp.

Engeland, K. and H. Hisdal, 2009. A Comparison of Low Flow Esti-
mates in Ungauged Catchments Using Regional Regression and
the HBV-Model. Water Resources Management 23(12):2567-
2586.

Feaster, T.D., A.J. Gotvald, and J.C. Weaver, 2009. Magnitude and
Frequency of Rural Floods in the Southeastern United States,
2006, South Carolina. U.S. Geological Survey, Scientific Investi-
gations Report, 2009-5156, 226 pp.

Fennessey, N., 1994. A Hydro-Climatological Model of Daily
Streamflow for the Northeast United States. Ph.D. Dissertation,
Department of Civil and Environmental Engineering, Tufts Uni-
versity, Medford, Massachusetts.

Fernandez, W., R.M. Vogel, and A. Sankarasubramanian, 2000.
Regional Calibration of a Watershed Model. Hydrological Sci-
ences Journal 45(5):689-707.

Furey, P. and V. Gupta, 2005. Effects of Excess Rainfall on the
Temporal Variability of Observed Peak-Discharge Power Laws.
Advances in Water Resources 28(11):1240-1253.

G€otzinger, J. and A. B�ardossy, 2007. Comparison of Four Regionali-
sation Methods for a Distributed Hydrological Model. Journal of
Hydrology 333(2-4):374-384.

Grover, P.L., D.H. Burn, and J.M. Cunderlik, 2002. A Compari-
son of Index Flood Estimation Procedures for Ungauged
Catchments. Canadian Journal of Civil Engineering 29(5):734-
741.

Guimares, W.B. and L.R. Bohan, 1992. Techniques for Estimating
Magnitude and Frequency of Floods in South Carolina. USGS
Water Resources Investigations Report 91-4157.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION1164

SSEGANE, AMATYA, TOLLNER, DAI, AND NETTLES



Gupta, H.V., S. Sorooshian, T.S. Hogue, and D.P. Boyle, 2003.
Advances in Automatic Calibration of Watershed Models. In:
Water Science and Application 6:9-28.

Gupta, V.K., O. Mesa, and D. Dawdy, 1994. Multiscaling Theory of
Flood Peaks - Regional Quantile Analysis. Water Resources
Research 30(12):3405-3421.

He, Y., A. B�ardossy, and E. Zehe, 2011. A Review of Regionalisa-
tion for Continuous Streamflow Simulation. Hydrology and
Earth System Sciences 15(11):3539-3553.

Henderson, J.P. and H.D. Grissino-Mayer, 2009. Climate–Tree
Growth Relationships of Longleaf Pine (Pinus Palustris Mill.)
in the Southeastern Coastal Plain, USA. Dendrochronologia 27
(1):31-43.

Hughes, D.A., E. Kapangaziwiri, and T. Sawunyama, 2010. Hydro-
logical Model Uncertainty Assessment in Southern Africa. Jour-
nal of Hydrology 387(3-4):221-232.

Hughes, D.A. and V. Smakhtin, 1996. Daily Flow Time Series Patch-
ing rr Extension: A Spatial Interpolation Approach Based on Flow
Duration Curves. Hydrological Sciences Journal 41(6):851-872.

Krause, P., D.P. Boyle, and F. Base, 2005. Comparison of Different
Efficiency Criteria for Hydrological Model Assessment.
Advances in Geosciences 5:89-97.

Kroll, C., J. Luz, B. Allen, and R.M. Vogel, 2004. Developing a
Watershed Characteristics Database to Improve Low Stream-
flow Prediction. Journal of Hydrologic Engineering 9(2):116-125.

Lagarias, J.C., J.A. Reeds, M.H. Wright, and P.E. Wright, 1998.
Convergence Properties of the Nelder-Mead Simplex Method in
Low Dimensions. SIAM Journal of Optimization 9(1):112-147.

McIntyre, N., H. Lee, and H. Wheater, 2005. Ensemble Predictions
of Runoff in Ungauged Catchments. Water Resources Research
41(12):1-14.

Mohamoud, Y.M., 2008. Prediction of Daily Flow Duration Curves
and Streamflow for Ungauged Catchments Using Regional Flow
Duration Curves. Hydrological Sciences Journal 53(August):706-
724.

Nash, J.E. and J.V. Sutcliffe, 1970. River Flow Forecasting
Through Conceptual Models—Part I: A Discussion of Principles.
Journal of Hydrology 10(3):282-290.

Niadas, I.A., 2005. Regional Flow Duration Curve Estimation in
Small Ungauged Catchments Using Instantaneous Flow Mea-
surements and a Censored Data Approach. Journal of Hydrol-
ogy 314:48-66.

Ogden, F. and D. Dawdy, 2003. Peak Discharge Scaling in Small
Hortonian Watershed. Journal of Hydrologic Engineering 8
(2):64-73.

Omernik, J.M. and R.G. Bailey, 1997. Distinguishing Between
Watersheds and Ecoregions. Journal of the American Water
Resources Association 33(5):935-949.

Patil, S. and M. Stieglitz, 2012. Controls on Hydrologic Similarity:
Role of Nearby Gauged Catchments for Prediction at an Unga-
uged Catchment. Hydrology and Earth System Sciences 16:551-
562.

Pechlivanidis, I.G., N.R. McIntyre, and H.S. Wheater, 2010. Cali-
bration of the Semi-Distributed PDM Rainfall–Runoff Model in
the Upper Lee Catchment, UK. Journal of Hydrology 386(1-
4):198-209.

Perrin, C., C. Michel, and V. Andr�eassian, 2003. Improvement of a
Parsimonious Model for Streamflow Simulation, Journal of
Hydrology 279(1-4):275-289.

Qi, S., G. Sun, Y. Wang, S.G. McNulty, and J.M. Myers, 2009.
Streamflow Response to Climate and Landuse Changes in a
Coastal Watershed in North Carolina. Trans ASABE 52(3):739-
749.

Rao, A.R. and V.V. Srinivas, 2008. Regionalization of Watersheds:
An Approach Based on Cluster Analysis (Vol. 58). Water Science
and Technology Library, 58, Springer Science + Business Media
B.V., New York.

Reusser, D.E., T. Blume, B. Schaefli, and E. Zehe, 2009. Analysing
the Temporal Dynamics of Model Performance for Hydrological
Models. Hydrology and Earth System Sciences 13(7):999-1018.

Richter, D.D., 1980. Prescribed Fire: Effects of Water Quality and
Nutrient Cycling in Forested Watersheds of the Santee Experi-
mental Forest in South Carolina. Ph.D. Dissertation, Duke Uni-
versity, Durham, North Carolina, 194 pp.

Schilling, K.E. and C.F. Wolter, 2005. Estimation of Streamflow,
Base Flow, and Nitrate-Nitrogen Loads in Iowa Using Multiple
Linear Regression Models. Journal of the American Water
Resources Association 41(6):1333-1346.

Schroedl, S., 2010. Feature Selection Based on Interaction (Mutual)
Information. http://www.mathworks.com/matlabcentral/fileex-
change/26981-feature-selection-based-on-interaction-information,
accessed September18, 2012.

Segura, C. and J. Pitlick, 2010. Scaling Frequency of Channel-
Forming Flows in Snowmelt-Dominated Streams. Water
Resources Research 46:W06524.

Shu, C. and T.B.M.J. Ouarda, 2012. Improved Methods for Daily
Streamflow Estimates at Ungauged Sites. Water Resources
Research 48(2):1-15.

Singh, V.P. and D.K. Frevert, 2002a. Mathematical Models of
Large Watershed Hydrology. Water Resources Publications,
LLC, Highlands Ranch, Colorado.

Singh, V.P. and D.K. Frevert, 2002b. Mathematical Models of
Small Watershed Hydrology and Applications. Water Resources
Publications, LLC, Highlands Ranch, Colorado.

Singh, V.P. and D.K. Frevert, 2006. Watershed Models. CRC Press,
Boca Raton, Florida.

Sivapalan, M., K. Takeuchi, S.W. Franks, V.K. Gupta, H. Karamb-
iri, V. Lakshmi, X. Liang, J.J. McDonnell, E.M. Mendiondo,
P.E. O’Connell, T. Oki, J.W. Pomeroy, D. Schertzer, S. Uhlen-
brook, and E. Zehe, 2003. IAHS Decade on Predictions in Unga-
uged Basins (PUB), 2003-2012: Shaping an Exciting Future for
the Hydrological Sciences. Hydrological Sciences Journal-Jour-
nal Des Sciences Hydrologiques 48(6):857-880.

Smakhtin, V.Y., 1999. Generation of Natural Daily Flow Time-Ser-
ies in Regulated Rivers Using a Non-Linear Spatial Interpola-
tion Technique. October, 15(4):311-323.

Smakhtin, V.Y., D. Hughes, and E. Creuse-Naudin, 1997. Regionali-
zation of Daily Flow Characteristics in Part of the Eastern Cape,
South Africa. Hydrological Sciences Journal 42(6):919-936.

Smakhtin, V.Y. and B. Masse, 2000. Continuous Daily Hydrograph
Simulation Using Duration Curves of a Precipitation Index.
Hydrological Processes 1100(August 1999):1083-1100.

Ssegane, H., 2011. In Search of Causal Variables for Watershed
Classification and Daily Streamflow Prediction at Ungauged
Watersheds. Ph.D. Dissertation, Department of Biological and
Agricultural Engineering, University of Georgia, Athens, Geor-
gia.

USEPA, 2008. Handbook for Developing Watershed Plans to
Restore and Protect Our Waters. U.S. Environmental Protection
Agency (USEPA), Office of Water Nonpoint Source Control
Branch. DIANE Publishing, Washington, D.C.

U.S. Geological Survey, U.S. Dept. of Interior, 2000. The National
Flood Frequency Program - Methods for Estimating Flood Mag-
nitude and Frequency in Rural and Urban Areas in South Caro-
lina. USGF Fact Sheet 001-00, January, 2000.

Verdin, K.L. and B. Worstell, 2008. A Fully Distributed Implemen-
tation of Mean Annual Stream Flow Regional Regression Equa-
tions. Journal of the American Water Resources Association 44
(6):1537-1547.

Vogel, R.M. and N.M. Fennessey, 1994. Flow-Duration Curves .2.
New Interpretation and Confidence-Intervals. Journal of Water
Resources Planning and Management-ASCE 120(4):485-504.

Vogel, R.M. and A. Sankarasubramanian, 2000. Spatial Scaling
Properties of Annual Streamflow in the United States. Hydro-

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA1165

ESTIMATION OF DAILY STREAMFLOW OF SOUTHEASTERN COASTAL PLAIN WATERSHEDS BY COMBINING ESTIMATED MAGNITUDE AND SEQUENCE



logical Sciences Journal-Journal Des Sciences Hydrologiques 45
(3):465-476.

Wagener, T. and A. Montanari, 2011. Convergence of Approaches
Toward Reducing Uncertainty in Predictions in Ungauged
Basins. Water Resources Research 47:WO6301.

Wolock, D.M., T.C. Winter, and G. McMahon, 2004. Delineation
and Evaluation of Hydrologic-Landscape Regions in the United
States Using Geographic Information System Tools and Multi-
variate Statistical Analyses. Environmental Management 34
(Supplement 1):S71-S88.

Young, C.E., 1967. Streamflow - An Important Factor in Forest
Management in the Coastal Plain. South. Lumberman, Christ-
mas Issue 215(2680):109-110.

Zhu, Y. and R.L. Day, 2009. Regression Modeling of Streamflow,
Baseflow, and Runoff Using Geographic Information Systems.
Journal of Environmental Management 90(2):946-953.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION1166

SSEGANE, AMATYA, TOLLNER, DAI, AND NETTLES


