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Abstract Twenty 70-year-old longleaf pine trees from a spacing, thinning, and

pruning study were harvested, from which samples were analyzed for gross calorific

value (GCV). A strong correlation was found between GCV and extractive contents

for the unextracted wood samples. Although lignin content should impact GCV, no

correlation was found between the variation in GCV with lignin content for the

extractive-free wood samples. Mid-IR spectroscopy coupled with multivariate

analysis provided strong correlations between the mid-IR-predicted and calorime-

try-determined values for the unextracted wood samples. Plotting the regression

coefficients for GCV and extractive contents showed that the same mid-IR bands

were responsible for the strength of these models. Spectral differences were

observed between the different extract samples, and relative peak intensities

appeared to be dependent upon the extractive contents from the wood samples.

Thus, models were also built based on the corresponding wood extractive contents

using the actual extracts. These provided good correlations, suggesting a propor-

tional change in extractive compositions coinciding with the total amount of

extractives present in the unextracted wood samples.

Introduction

Increasing demand for bioenergy has led to a greater need to develop technologies

for assessing the energy content of available biomass resources. A measure of

energy content is gross calorific value (GCV), which is synonymous with higher
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heating value (HHV), as well as gross heat of combustion (GHC). Several studies

have attempted to relate these values for energy content to specific chemical

constituents in various biomass resources. For example, linear regression was used

by White (1987) to show that HHV values from several softwoods and hardwoods

could be correlated (R2 = 0.70) with lignin content. The correlation was slightly

improved (R2 = 0.76) by including a factor for extractive contents in the equation.

Analysis of extractive-free samples resulted in lower HHVs and a higher correlation

(R2 = 0.97) with lignin content alone. Similarly, Demirbas (2001) determined HHV

on an extractive-free basis for a variety of biomass sources with a wide range of

lignin values (15.01–55.29 %). In a later study, finding that extractive-free plant

parts resulted in lower HHVs than the unextracted plant parts, Demirbas (2003) then

also produced an equation relating HHV to extractive contents.

The application of near-IR (NIR) spectroscopy, coupled with multivariate

analysis, allows for the predictions of energy content. This technique has previously

been used as a rapid means to predict physical, mechanical, and chemical properties

of woody biomass (So et al. 2004). Regarding energy content, Lestander and Rhen

(2005) used this technique to determine the calorific content of Norway spruce

samples and suggested its applicability to process monitoring in biofuel plants. The

technique was also applied to the determination of calorific value for Populus spp.,

although the accuracies of the calibration models were limited (Maranan and

Laborie 2007). Gillon et al. (1997) found this technique to be half as accurate as the

direct determinations. Recently, NIR-based models were successfully used to

predict GCV in longleaf pine wood samples, and unlike previous studies, results

demonstrated that the GCV models were driven by the extractives and not the lignin

contents (So and Eberhardt 2010).

Compared to NIR spectroscopy, the application of mid-IR spectroscopy

provides the added benefit of allowing clearer spectral investigations of the

samples to determine those chemical features imparting the greatest effect. Given

that most correlations between chemical composition and GCV were based on

different plant species and/or plant parts with widely varying lignin contents, it

remained to be determined whether variability in the lignin content of wood from

a single species could be correlated. Only recently, Zhou et al. (2011) used mid-IR

spectroscopic data coupled with multivariate analysis to predict both the calorific

value and lignin content for a single species of wood, hybrid poplar, and

concluded that calorific value was unrelated to lignin content. Since only

extractive-free samples were analyzed, any relationship to extractives could not be

assessed.

In the current study, the impact of both extractive and lignin contents on GCV for

a single softwood species was investigated. Only the wood was used here, rather

than including other plant parts (e.g., leaves and bark), to focus specifically on the

impact of chemical composition. Samples were analyzed in an extractive-free

condition, but more importantly also analyzed in their native state (before

extraction). The application of mid-IR spectroscopy to rapidly determine GCV,

extractive, and lignin contents provided the added benefit of allowing spectroscopic

investigations into these relationships.
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Materials and methods

Materials

Twenty 70-year-old longleaf pine (Pinus palustris) trees were harvested from a

spacing, thinning, and pruning study on the Kisatchie National Forest, Louisiana,

USA. Disks (5 cm thick) were cut at a height of 1.4 m (i.e., breast height) and at a

mid-height along the length of the bole of each tree. The 40 disks were dried under

ambient conditions before sectioning to remove a 1-cm-thick slice along the north–

south direction and through the center of each disk. Any remaining bark was

removed and the wood strips were further reduced in size to allow grinding in a

large Wiley mill equipped with a 2-mm-mesh sieve plate.

Extractive and lignin contents

Milled wood samples were exhaustively extracted with acetone using a Soxhlet

apparatus. Extracts were concentrated by rotary evaporation, transferred to tared

vials, evaporated under a stream of nitrogen, and dried further in vacuo before

weighing. Extractive-free milled wood samples were dried under ambient condi-

tions in a fume hood and then further ground in a small Wiley mill equipped with a

40-mesh screen. Lignin content was determined using the acetyl bromide method

(Morrison 1972). A standard sample of extractive-free loblolly pine milled wood

was used with each set of reactions as a control. The acetyl bromide solution was

freshly prepared prior to each determination. Lignin contents were calculated using

an absorptivity value of 23.30 g-1 L cm-1 (Johnson et al. 1961). Moisture content

determinations were carried out in an oven (102 ± 3 �C) and used to adjust values

for extractive and lignin contents to a dry weight basis.

Calorimetry

This was conducted using a Parr oxygen bomb calorimeter 6100 (Parr Instruments,

Moine, Illinois, USA). GCV was determined in triplicate following the instructions

in the manufacturer’s operating manual (Parr Instruments 2006).

Mid-IR spectroscopy

Spectra of the samples were collected using a Nexus model 670 Fourier transform

IR spectrometer (Thermo Nicolet Instruments, Madison, Wisconsin, USA) equipped

with a Golden Gate MKII single reflection ATR accessory. Milled wood and extract

samples were applied directly to the diamond window. Three spectra were collected

for each sample.

Multivariate analysis

Analyses of the data were performed using the Unscrambler (version 8.0) software

(CAMO, Woodbridge, New Jersey, USA). The mid-IR data were first averaged to

Wood Sci Technol (2013) 47:993–1003 995

123



one spectrum per sample. Two data preprocessing techniques were applied to the

spectra, multiplicative scatter correction (MSC), and first-derivative transformations

(Savitsky Golay 5-point averaging). Both were evaluated for removing the

systematic variations in the spectral data unrelated to the properties studied.

Principal component analysis (PCA) was performed on the spectral data to observe

differences and groupings between the sample sets. Partial least squares (PLS)

regression was used to predict GCV, extractive content, and lignin content for the

samples. Calibration and test sets were randomly created for the analyses with 30

and 10 samples, respectively. Models were generated using cross-validation and

assessed using several common measures of calibration performance, including

correlation coefficient (R2), standard errors of cross-validation (SECV) and

prediction (SEP), which are determined from the residuals of each cross-validation

phase and prediction, respectively. A high SECV indicates that the sample excluded

in each cross-validation phase was not well predicted by the corresponding

calibration. SEP provides a measure of the effectiveness of a calibration in

predicting the parameter of interest for an unknown set of samples. The ratios of

performance to deviation (RPD) for calibration and prediction are calculated as the

ratio of the standard deviation of the reference data to the SECV and SEP,

respectively (Williams and Sobering 1993). This parameter accounts for their

various properties and their ranges. A RPD value of 2.5 is considered satisfactory

for screening, while 1.5 may be acceptable for preliminary use (Williams and

Sobering 1993).

Results and discussion

Extractives, lignin, and gross calorific value

The variation in extractive contents for the full set of longleaf pine wood samples

was large (0.0–20.6 %; SD = 5.0 %; mean = 5.9 %), but the range was not as wide

as reported by Via et al. (2007) with values as high as 33 %. The corresponding

values for GCV, before any extractions, ranged from 20.2 to 23.6 MJ kg-1

(SD = 0.8 MJ kg-1; mean = 21.2 MJ kg-1). The relationship between GCV and

extractive contents was investigated and a strong correlation (R2 = 0.91; p value

\0.0001) was found. Demirbas (2003) also reported a similar type of correlation

between differential HHVs and extractive contents, but for different plant parts from

several tree species. In contrast, Fuwape (1989) stated that the effect of extractives

on GHC was not statistically significant for a single species, Gmelina arborea

(Roxb). While this was true for the heartwood, bark, branches, and leaves, it was not

all encompassing since the data showed a statistically significant effect on the

sapwood.

Compared to the wide variation for extractive contents, the variation in lignin

content was much smaller (26.6–31.5 %; SD = 1.1 %; mean = 28.2 %); values for

lignin content were similar to those found by Via et al. (2007) and Koch (1972).

Following extraction, the lower GCVs covered an even narrower range

(19.5–20.6 MJ kg-1; SD = 0.3 MJ kg-1; mean = 20.1 MJ kg-1). Therefore, it
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was not surprising to find that the relationship between lignin content with GCV for

the extracted samples was poor (R2 = 0.12, p value = 0.0266). Similar lignin and

GCV values have previously been observed with extractive-free poplar samples

(Zhou et al. 2011). In reporting a poor relationship between lignin with GCV

(R2 = 0.0973, p value = 0.1344), Zhou et al. (2011) concluded that the lignin range

was too narrow to obtain usable calibration models. For comparison, Telmo and

Lousada (2011) used a variety of wood species thereby providing large ranges for

both lignin (22.2–41.4 %) and extractive (2.1–14.5 %) contents. A multiple linear

regression of the HHV of the unextracted wood with lignin and extractives gave an

equation with a R2 of 0.84 (r = 0.915). Curiously, lignin content was quoted on the

basis of the extractive-free samples while HHV and extractive contents were on the

basis of the unextracted samples; the lignin contents should have been normalized to

account for the extractives contributing to the HHV of the unextracted samples.

Nevertheless, it is readily apparent that the strength of these relationships is

dependent on the relatively wide value ranges. With respect to lignin content, the

necessary wide ranges have been obtained by using various tissues and/or species.

Mid-IR spectroscopy

The typical mid-IR spectrum of a milled sample of unextracted longleaf pine wood

is shown in Fig. 1a exhibiting the commonly observed bands at: 1,000-1,150 (C–O

stretch), 1,700–1,750 (C=O stretch), 2,800–3,000 (C–H stretch), and 3,100–3,600

(O–H stretch) cm-1. Figure 1c shows the spectrum of the corresponding extract,

likely comprising mostly of resin and fatty acids. Clearly defined peaks at 1,697,

2,928, and 2,955 cm-1, typical of the pine resin components, were greatly reduced

following extraction as shown in the spectrum of the corresponding extracted wood

sample in Fig. 1b. A difference spectrum was also calculated between the extracted

and unextracted wood spectra (Fig. 1d) and closely resembles the spectrum of the

extract. This difference spectrum was also very similar to a difference spectrum

between resinous and non-resinous Scots pine heartwood (Nuopponen et al. 2003).

PCA of unextracted wood samples

The resultant PCA scores plot of the mid-IR spectra clearly displayed differences

between the unextracted and extracted wood samples with two distinct clusters

along PC1 (plot not shown). Figure 1e is a plot of the PCA loadings for PC1,

explaining 93 % of the variation, resembling the (extracted–unextracted) difference

spectrum in Fig. 1d, except for the presence of the prominent C–O peak at

1,016 cm-1. Further analysis did not reveal any clear differences between the

samples taken at breast height and mid-height along the bole of each tree.

PLS of unextracted wood samples

Partial least squares regression was then carried out to determine calibrations for

extractive contents and GCV. The calibration for extractive contents from the

unextracted wood samples provided strong calibration statistics (R2 = 0.94;
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SECV = 1.46 %; RPD = 3.68; 2 factors) with MSC and is listed in Table 1. Meder

et al. (1999) built an extractive model based on mid-IR spectra from samples of

Pinus radiata wood with a resultant multiple correlation coefficient, r, of 0.87 using

four factors. The model based on GCV for the unextracted samples also provided a

strong correlation with 2 factors (R2 = 0.91; SECV = 0.28 MJ kg-1;

RPD = 3.09), but poorer than that based on extractive contents. Analyses were

also performed with the first-derivative spectral data providing similar results to that

for MSC with extractives (R2 = 0.96; SECV = 1.53 %; RPD = 3.50) and GCV

(R2 = 0.89; SECV = 0.30 MJkg-1; RPD = 2.83) using a different number of

factors. PLS regression for lignin content was not carried out with the unextracted

samples as the calculated lignin values would be a function of the extractive

contents.

PLS of extracted wood samples

Models based on GCV were also built with the extracted wood samples in the

current study (Table 1); however, these performed poorly with both MSC

(R2 = 0.58; SECV = 0.23 MJ kg-1; RPD = 1.06; 3 factors) and first derivatives

(R2 = 0.35; SECV = 0.23 MJ kg-1; RPD = 1.05; 2 factors). The use of a

narrower wave number range (650–1,800 cm-1) did not result in much improve-

ment with the GCV models. In contrast, Zhou et al. (2011) obtained strong

correlations with GCV from extractive-free hybrid poplar samples using the mid-IR

range of 700–2,000 cm-1 and a variety of preprocessing methods. The range of R2

values was from 0.86 to 0.90 using models based on raw spectra, automatic wave

Fig. 1 Mid-IR spectra of unextracted (a) and extracted (b) wood samples and resultant extract (c).
Difference spectrum (d) and PCA loadings plot (e) from unextracted and extracted wood samples
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number restriction with baseline correction, and other methods. The caveat here was

that these models required between 10 and 12 factors. The model based on first

derivatives provided a R2 of 0.873 and root mean squared error of cross-validation

(RMSECV) of 92 J g-1 requiring 10 factors.

Similar to the GCV model, the lignin model generated with MSC data performed

poorly (R2 = 0.61; SECV = 0.89 %; RPD = 1.01) when using 4 factors (Table 1).

Zhou et al. (2011) were able to build lignin models with R2 values ranging from 0.74

to 0.91. Preprocessing by automatic wavelength selection with vector normalization

provided the best correlation (R2 = 0.91 and RMSECV = 0.77 %), but required 12

factors. Wavelength restriction (1,380–1,650 cm-1) exhibited the largest lignin

differences and provided a R2 of 0.82 and RMSECV of 0.86 % while utilizing only

3 factors. Orthogonal signal correction was applied to mid-IR spectra from Sitka

spruce, in which a R2 of 0.78 was obtained with a root mean squared error of

estimation (RMSEE) of 0.8 % using 2 factors (Nuopponen et al. 2006). In the

current study, the application of the first-derivative transformation to the spectral

data resulted in a model with a R2 = 0.91 and SECV = 0.76 % using only 4

factors; however, the RPD value, while slightly better, was still very poor (1.18).

Furthermore, wavelength restriction (650–1,800 cm-1) did not improve the models

for the MSC or first-derivative data. A lignin model with first-derivative data was

also built by Zhou et al. (2011), but no improvement (R2 = 0.742;

RMSECV = 0.978 %; 4 factors) was observed.

PLS of extract samples

The spectra of the extracts were more resolved than those from the unextracted

wood samples, and a typical spectrum is shown in Fig. 1c. Spectral differences were

observed between the extract samples, and relative peak intensities appeared to be

dependent upon the extractive contents of the wood samples (Fig. 2). Thus, a model

was built based on the corresponding wood extractive contents from the extract

Table 1 Model statistics for the 30 calibration samples

Samples Treatment Property SD No. of factors R2 SECV RPD

Unextracted MSC GCV 0.85 2 0.91 0.28 3.09

Extractives 5.36 2 0.94 1.46 3.68

Extracted GCV 0.24 3 0.58 0.23 1.06

Lignin 0.90 4 0.61 0.89 1.01

Extract Extractives 5.36 3 0.88 2.40 2.23

Unextracted First derivative GCV 0.85 1 0.89 0.30 2.83

Extractives 5.36 3 0.96 1.53 3.50

Extracted GCV 0.24 2 0.35 0.23 1.05

Lignin 0.90 4 0.91 0.76 1.18

Extract Extractives 5.36 2 0.78 3.14 1.71

The units for SECV are expressed in GCV (MJ kg-1), extractives (%), and lignin (%), respectively.

Extractive models were also built using extract spectra and unextracted wood values
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spectra (MSC corrected). This provided a strong correlation (R2 = 0.88;

SECV = 2.40 %; RPD = 2.23; 3 factors), though not as strong as that obtained

from the unextracted wood samples. The models for extractive contents using the

unextracted wood samples are based on the amount of total extractives relative to

the wood polymeric matrix. That clearly is not the case for the models obtained

from the spectra of the actual extracts. Any correlation to the wood extractive

contents is instead based on the relative composition of the extractive components

comprising the extracts. Thus, by extension, it can be surmised that there is a

proportional change in the extractive composition coinciding with the amount of

total extractives present in the unextracted wood samples. Bands showing positive

trends (increasing peak height) with wood extractives at 2,928, 2,855, and

1,697 cm-1 can be assigned to resin and fatty acids. Thus, relative to other pine

extractives, such as the phenolic compounds known to occur in pine extracts (e.g.,

lignans and stilbenes), the increasing total extractive contents observed here can be

attributed to an increasing proportion of resin and fatty acid components. The

application of first derivatives to the complex spectrum of the extracts resulted in a

poorer model as compared with the MSC treatment. The authors are unaware of any

previously reported studies in which calibration models were built from the spectra

of the actual extracts.

Regression coefficients

The regression coefficients showing the bands which have the greatest influence on

the models, based on the unextracted wood samples and the extracts, are shown in

Fig. 3 for the MSC data. It can be clearly seen that the GCV model for the

Fig. 2 Mid-IR spectra of three extracts (obtained from low to high extractive wood samples)
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unextracted wood is influenced by many of the same bands as those for the

extractive model with the regression coefficients being similar. The C=O stretch

band at 1,697 cm-1 plays the most important role, followed by the C–H stretch

bands, between 2,800 and 3,000 cm-1, with them all providing clearly defined

peaks. These prominent bands were not so evident in the plot for GCV of the

extracted wood (not included in Fig. 3). The extractives regression coefficients plot

from the actual extracts provided many of the same main bands as those from the

unextracted wood and appear better resolved. Similarly, many of these bands

correlate with the extract spectra obtained from low to high extractive wood

(Fig. 2), with additional bands located at 1,363 and 1,100–1,200 cm-1. Figure 3

appears to support earlier findings of the relationship between GCV and extractives

(So and Eberhardt 2010).

Evaluation of prediction samples

The results from the test sets are shown in Table 2. The predictive ability for the

extractive contents for the unextracted samples appeared to perform the best, with

the RPD values closely matching those from the calibration models. This was also

observed for the extract with MSC data; however, first-derivative data from the

complex extract spectra performed poorer. There was significant deterioration from

the calibration results (Table 1) to the test results (Table 2) for GCV with the

unextracted samples. In the case of the extracted test samples, the RPD values

appeared better than those obtained from the calibration results. However, this may

be primarily attributed to the larger variation in lignin content and GCV for the test

Fig. 3 Regression coefficients for GCV and extractives (based on unextracted wood spectra and values).
An extractives model was also built using extract spectra and unextracted wood values
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sets. It can be seen that the SD’s for the test sets are larger than those for the

calibration sets. The samples in this study were taken at both breast height and mid-

height along the bole of each tree. Since the samples were randomly assigned to the

calibration and test sets (30 and 10 samples, respectively), this observation is merely

a manifestation of variability experienced in sampling, although the property range

of the calibration samples should encompass that of the test sets for good model

testing.

Conclusion

A strong relationship was apparent between the variation in GCV and variation in

extractive contents. Mid-IR spectroscopy coupled with multivariate analysis

provides a useful technique for demonstrating this relationship. Plotting the

regression coefficients for GCV and extractive contents showed that the same bands

were responsible for these strong models. Although total lignin content does impact

total GCV, no correlation was found between the variation in GCV with lignin

content for the extractive-free wood samples. Strong models were also built for

wood extractive contents using the actual extracts. Thus, there would appear to be a

proportional change in extractives composition coinciding with the total amount of

extractives present in the unextracted wood samples.
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