The use of broken power-laws to describe the distributions of daily flow above the mean annual flow across the conterminous U.S.

Catalina Segura a,b,*, Davide Lazzati c, Arumugam Sankarasubramanian d

a Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
b Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
c Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
d Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA

A R T I C L E I N F O

Article info:
Received 20 February 2013
Accepted 16 September 2013
Available online 21 September 2013
This manuscript was handled by Andras Bardossy, Editor-in-Chief, with the assistance of Purna Chandra Nayak, Associate Editor

Keywords:
Stream flow distribution
Ungauged basins
Broken power law
Daily flows
Statistical description of flow distribution

A B S T R A C T

A recent study employed a broken power-law (BPL) distribution for understanding the scaling frequency of bankfull discharge in snowmelt-dominated basins. This study, grounded from those findings, investigated the ability of a BPL function to describe the distribution of daily flows above the mean annual flow in 1217 sites across the conterminous U.S. (CONUS). The hydrologic regime in all the sites is unregulated and spans a wide range in drainage areas (2–120,000 km²) and elevation (0–3000 m). Available daily flow records in all sites varied between 15 and 108 years. Comparing the performance of BPL distribution and the traditionally used lognormal distribution, we found that BPL provides stronger fit in ~80% of the sites. Thus, the BPL function provides a suitable tool to model daily flows in most areas of the CONUS. The potential for developing a model for predicting the frequency distribution of daily flows in ungauged sites was analyzed. We found that such model is possible using drainage area, mean basin elevation, and mean annual precipitation as predicting variables for any site located above 600 m across the CONUS. We also found strong continental-wide correlations between 3 of the 4 parameters that describe the BPL and basin characteristics. Our results indicate that the BPL function provides a robust alternative to traditional functions such as the lognormal to model the statistical variation of daily flows above the mean annual in most basins of the CONUS.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Predicting the distribution of daily flows for ungauged sites or for river systems that lack hydrologic records is critical for a number of diverse problems in hydrology and water management that includes the estimation of the daily distributions of nutrients, pollutants, water temperature, watershed sediment yields, and for the estimation of design yield for runoff-the-river reservoir systems (Vogel and Fennessey, 1995). From the geomorphological perspective, predictions of the frequency of intermediate to high flows are of special interest since these flows transport the majority of the sediment load and determine the morphology of the river channel (Andrews, 1994; Emmett and Wolman, 2001; Whiting et al., 1999; Wolman and Miller, 1960).

In most drainage basins only a small fraction of the stream network is gauged. Hydrologic records from these gauges are vital, however, for developing fluvial-hydraulic models, which can then be applied to ungauged sites. Predicting flows in ungaged basins (PUB) have rich literature in hydrology (Sivapalan, 2003; and references therein). Approaches available to PUB include the application of hydrologic models (conceptual or physically based) and the extrapolation of response information from gauge to ungauged basins. Statistically the approach commonly used for formulating flow frequency distributions at ungaged locations involves two steps: First, a function that describes the frequency of flows at gauged locations needs to be found. Then, a proper scaling relationship has to be identified to extend the model from gauged to ungaged locations, based on one or more properties of the basin that correlate with the parameters of the function that describes the flow frequency distribution. These assumptions form the basis of the index flood procedure, which hydrologists have used for years in developing regional relationship for estimating peak flows (Pitlick, 1994; Potter and Faulkner, 1987; Vogel and Wilson, 1996). In principle, any other streamflow characteristic, including extreme flows and daily flows, can be regionalized with this same approach. However, the frequency distribution of daily flows is often complex (e.g., bimodal and non-symmetric, Vogel and Fennessey, 1995), thereby the identification of a function that describes it and the prediction of the frequency distribution to ungauged sites is difficult. To illustrate this complexity, Fig. 1 presents
Fig. 1. Frequency distributions of daily flows normalized by drainage area, DA, of 5 basins across the CONUS. The red area shows flows above the mean annual, Q_{ma} (i.e. range considered in this paper). The percentage of the flows above the mean annual flow varies between 17% and 25% and it is indicated in each panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Location and length of record of each studied gauge ($n = 1217$). Five regions considered in the analysis are also indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the histograms for the daily flow frequency distribution of 5 basins in different locations across the conterminous U.S. (CONUS). The primary interest to this paper is on the distribution of flows above the mean annual flows (shaded area in Fig. 1). From Fig. 1, basins with significant snowmelt (e.g. Site 4 and 5) have a lower number of flows in the right tail indicating the low frequency of extreme events. In these systems over 99% of all annual peak flows occurs during May–July and no peak flows have been even reported between September and January. In contrast, rainfall dominated regimes (e.g. sites 1, 2, and 3) produced distributions dominated by less sharp changes in the frequency of high flow events (i.e. right tail) indicating a more unpredictable hydrologic regime and a higher frequency of high flow events. In these sites the available record indicates that the annual peak flow has occurred in all months but mainly between January and May. Many statistical distributions have been used to model the frequency distribution of daily flows that include lognormal, exponential, gamma, pareto, and kappa (Castellarin et al., 2004; Fennessey and Vogel, 1990; Goodwin, 2004; Mueller and Pitlick, 2005; Nash, 1994; Potter, 2001). However, to our knowledge none of these functions has been proven to be an appropriate choice to model daily flows across the whole CONUS. An alternative function called the broken power law (BPL) was found to be a strong candidate to describe the distributions of daily flows above the mean annual in snowmelt dominated systems of Colorado and Idaho (Segura and Pitlick, 2010). The objectives of this paper are to (1) determine if the BPL function is adequate to describe the distribution of daily flows above the mean annual flow across unregulated sites of the CONUS and (2) explore correlations between basin characteristics and the parameters of the BPL function that could enable a model to predict the distribution of daily flows at ungauged sites.

This paper is organized as follows: The methodology section presents the data sources and candidate distributions for fitting the distribution of daily flows over the CONUS. Following that, in the results and discussion section, we analyzed the performance of 4 functions in over 1200 watersheds across the CONUS, and compared their performance. Then we seek correlations between the parameters of the best function (i.e. BPL), basin characteristics, and climate (i.e. mean annual precipitation). Finally, the conclusions summarize the salient findings from the study along with implications for extending the findings for predicting the distribution of daily flows at ungauged sites.

2. Methodology

2.1. Data sources

We selected 1217 watersheds across the CONUS (Fig. 2) from the Hydro-Climatic Data Network, HCDN (Slack et al., 1993) to quantify the spatial variability in the distribution of daily flows above mean annual flow. All sites have unregulated flow regimes with at least 15 years of daily streamflow data on record (Fig. 2). HCDN watersheds, identified by Slack et al. (1993), are basins whose streamflow records are minimally affected by anthropogenic influences such as upstream storages or groundwater pumping. The lowest accuracy rating of any of the data records was categorized as “good”. The original HCDN data set includes 1474 sites with acceptable flow time series for daily flow analysis (Slack et al., 1993). However, we exclude 257 sites that, according to information in the USGS website, have minor diversions. The drainage area (DA) of the selected basins spans 5 orders of magnitude between 3 and 120,000 km². The daily flow records from available complete water years between 1902 and 2010 were downloaded from the USGS website on each site. The average number of years of data available in all sites is 61.8 ranging from 15 and 108 years. Several studies have employed HCDN sites for understanding the scaling properties of annual flows over the continental US (Vogel and Sankarasubramanian, 2000) as well as for relating the long-term water balance to various basin characteristics (Sankarasubramanian and Vogel, 2002). Basin characteristics (DA and mean basin water elevation, BE) were also accessed from the USGS website. Precipitation normals between 1981 and 2010 were obtained from the 4 km gridded data developed by the PRISM Climate Group, Oregon State University (http://prism.oregonstate.edu, created 20 Jan 2012).

2.2. Distribution functions considered

We consider four functions for characterizing the daily flow distributions above the mean annual flow of the selected sites. Some of these functions are not integrable in the positive domain, but they can be used as probability density functions when they are truncated at the mean-annual flow. Three of the functions are power laws. The first is a simple power law:

\[
\frac{dN}{dQ} = b_Q Q^{b_1} \quad Q_{ma} \leq Q \leq \infty; \quad b_1 < -1
\]

(1)

where \(N\) is the number of days per year, \(Q\) is the discharge, \(Q_{ma}\) is the mean annual discharge, and \(b_0\) and \(b_1\) are the normalization parameter and the slope of the discharge-frequency relation, respectively. The second function consider corresponds to a broken power law (BPL). This function has been successfully used to describe the distribution of daily flows above the mean annual in snowmelt dominated systems (Segura and Pitlick, 2010):

\[
\frac{dN}{dQ} = \frac{a_0/a_1}{(Q/a_1)^\alpha + (Q/a_1)^\beta} \quad Q_{ma} \leq Q \leq \infty; \quad \alpha < \beta; \quad \beta > 1
\]

(2)

where \(a_0\) is a normalization parameter, \(a_1\) is a value of \(Q\) corresponding to the inflection point in the distribution, and \(\alpha\) and \(\beta\) are the slopes of the two separated power law segments of the function for low and high flows, respectively. The last power function consider is also a broken power law but inverted, having the slope for the second segment (\(\theta\)) smaller than the slope of the first segment (\(\phi\)). We refer to this function as an inverted broken power law (IBPL):

\[
\frac{dN}{dQ} = c_0 \left(\frac{Q}{c_1} \right)^{-\phi} + \left(\frac{Q}{c_1} \right)^{-\theta} \quad Q_{ma} \leq Q \leq \infty; \quad \phi < \theta; \quad \theta > 1
\]

(3)

where \(c_0\) and \(c_1\) are normalization parameters and \(c_1\) is a value of \(Q\) corresponding to the inflection point.

The fourth and final distribution function consider is the lognormal (LN). This function has been widely used to describe daily flows (Doyle and Shields, 2008; Fennessey and Vogel, 1990; Vogel et al., 2003). We use a truncated version of this function to model daily flows above the mean annual:

\[
\frac{dN}{dQ} = \frac{d_0}{Q^0 \sqrt{2\pi}} \exp \left[\frac{(\ln(Q) - \mu)^2}{2\sigma^2} \right] \quad Q_{ma} \leq Q \leq \infty
\]

(4)

where \(\mu\) and \(\sigma\) are the mean and standard deviation of the natural logarithm of \(Q\) when the whole range of flows is consider and \(d_0\) is a parameter introduce to correct the normalization for the effect of truncating the distribution at \(Q_{ma}\). Fig. 3 shows the fit for data above the mean annual flows for a site, USGS Gauge No. 05447500 – Green River near Geneseo, IL, for three of the candidate distributions considered. The inverted BPL is not shown because the best fit for this site yields \(\alpha = \beta\); \(\alpha = \beta\), which is the same as the PL.
2.3. Fitting methodology

Each probability density function described above is characterized by a set of \(n \) free parameters, \(n - 1 \) which correspond to shape parameters plus a normalization parameter \((a_0, b_0, c_0, \text{ or } d_0)\). The most probable set of the \(n - 1 \) shape parameters of each candidate function is obtained by maximizing the likelihood of the specified probability density function within a grid of values for the parameters (Bevington and Robinson, 2003). The range of parameter values tested for each function was wide enough to ensure capturing all possible variations (Table 1). The logarithm of the Likelihood (\(\log L \)) is computed as:

\[
\log L = \sum_i \log[f_i(Q_i)]
\]

where \(L \) is the likelihood, which is a function of the \(n - 1 \) shape parameters, \(f \) is each function (PL, BPL, IBPL, or LN), and \(Q_i \) are the daily flow data points. A value of \(\log L \) is computed for each choice of the parameter values and the parameters corresponding to the highest \(\log L \) are retained as the best set. The same procedure was repeated for each function \(f \), yielding four sets of best parameters per site.

The integral of any of the distributions must give the average number of days \((#_{ma})\) in which the flow is above the \(Q_{ma} \):

\[
\int_{Q_{ma}}^{\infty} \frac{dN}{dQ} dQ = #_{ma}
\]

(6)

The normalization parameter is computed from the data (i.e., \(#_{ma} \)) using Eq. (6) once the shape parameters have been determined.

Once the best parameter set is determined for every function, the strength of the fit is evaluated using \(\chi^2 \) minimization, since maximum likelihood can be used to compare fits but not to establish an absolute measure of the goodness of fit (Bevington and Robinson, 2003; Press et al., 2007; Segura and Pitlick, 2010). The \(\chi^2 \) is defined as

\[
\chi^2 = \sum_i \frac{(f_i - f(Q_i))^2}{\sigma_i^2}
\]

(7)

where \(f_i \) are the number of flows falling in a bin centered on flow \(Q_i \) and of width \(\Delta Q \) and \(\sigma_i \) is the uncertainty associated with \(f_i \). The uncertainty is assumed to be \(2 \sqrt{f_i} \) (Segura and Pitlick, 2010). The frequency distributions of all sites are constructed following the methodology described by Segura and Pitlick (2010). Histograms of daily flows above mean annual are made over 100 intervals of discharge equally sized in logarithmic space. The number of counts per bin is normalized by the bin width, \(\Delta Q \), to produce a frequency distribution where the frequency \(f_i \) is independent of the chosen interval width (Newman, 2005; Segura and Pitlick, 2010). If the number of observations in a given bin is less than ten, two consecutive bins are joined to improve statistics.

Our parameter fitting procedure assumes that the data are independent. However the distributions of daily flows are serially correlated and therefore the assumption is not met. In this case, the tested distributions are used only as mathematical functions for fitting the observations, and the Maximum likelihood scores are not used as the basis for hypothesis testing. To our knowledge

Table 1

Range of values considered for every free parameter \((x_{\text{min}}, x_{\text{max}})\) and range of values obtained for the normalization parameters \((x_0)\) of each distribution considered. PL = Power law, BPL: Broken power law, IBPL: Inverted broken power law, LN: Log normal.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Range of values tested</th>
<th>Units*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>PL</td>
<td>(16-4.8 \times 10^{16})</td>
<td>d/y</td>
</tr>
<tr>
<td>(b_1)</td>
<td>PL</td>
<td>1.1–10</td>
<td>–</td>
</tr>
<tr>
<td>(a_0)</td>
<td>BPL</td>
<td>0.008–1320</td>
<td>d/y</td>
</tr>
<tr>
<td>(a_1)</td>
<td>BPL</td>
<td>1.1–100</td>
<td>Q/Q_{ma}</td>
</tr>
<tr>
<td>(\beta)</td>
<td>BPL</td>
<td>5–7</td>
<td>–</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>BPL</td>
<td>1.1–20</td>
<td>–</td>
</tr>
<tr>
<td>(c_0)</td>
<td>IBPL</td>
<td>8.3 \times 10^{-13}–30.2</td>
<td>d/y</td>
</tr>
<tr>
<td>(d_1)</td>
<td>IBPL</td>
<td>1.1–100</td>
<td>Q/Q_{ma}</td>
</tr>
<tr>
<td>(\phi)</td>
<td>IBPL</td>
<td>1.1–20</td>
<td>–</td>
</tr>
<tr>
<td>(\theta)</td>
<td>IBPL</td>
<td>1.1–20</td>
<td>–</td>
</tr>
<tr>
<td>(d_0)</td>
<td>LN</td>
<td>0.2–10.6</td>
<td>–</td>
</tr>
<tr>
<td>(\mu)</td>
<td>LN</td>
<td>10^{-10}–10^{10}</td>
<td>d/y</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>LN</td>
<td>0.1–10</td>
<td>–</td>
</tr>
</tbody>
</table>

* d/y: Days per year; Q: discharge, Q_{ma}: mean annual flow.
there is no goodness-of-fit test that overcomes the problem of serial correlation in daily flows (Segura and Pitlick, 2010).

3. Results and discussion

3.1. Best function to describe the distributions of daily flows

We found that power law functions (PL, BPL, and IBPL) are superior to describe the daily flow distribution across the CONUS compare to the lognormal (LN) distribution. The maximum \mathcal{L} of the fit for the power functions is higher for 1008 gauges (83%) whereas it is higher for the LN in 209 sites (17%, Fig. 4a). Even though the LN function fit yields a higher maximum \mathcal{L} for 17% of the sites, the difference between the maximum \mathcal{L} for the power fits versus the LN fit is very small (Fig. 4b) and varied between 0.008 and 53. In fact the ratio between the maximum \mathcal{L} of the LN function to the best maximum \mathcal{L} of the 3 power functions varies between 0.98 and 1.03 in these 209 sites (Fig. 4b). On the other hand, the difference between the maximum \mathcal{L} of the power functions versus the maximum \mathcal{L} of the LN distribution for sites where the former is best varies between 0.0008 and 2241 with a ratio of maximum \mathcal{L}_{LN} to maximum $\mathcal{L}_{\text{power functions}}$ between 0.15 and 1.53. In other words, while the LN is only

![Figure 4](image-url)
marginally superior in some cases, there are many others in which the power-law functions are strongly superior. Therefore the LN distribution was discarded from the rest of the analysis. In order to compare models with different number of free parameters we use the likelihood ratio technique (Kendall and Stuart, 1977; Mood and Graybill, 1963). This technique is based on the fact that the ratio of the likelihoods of two models with different numbers of free parameters is distributed as a χ^2 with a number of degrees of freedom equal to the difference between free parameters in the two models. For example, when comparing a simple power-law (2 parameters) with a broken power-law (4 parameters), the latter is considered superior only if the likelihood of BPL is higher than the likelihood of the PL by 13.82 corresponding to a probability of 99.9% (for 2 degrees of freedom) that the BPL is superior than the PL ($L_{BPL} > L_{PL} + 13.82$). When instead comparing LN and BPL models (with 3 and 4 parameters, respectively) the latter is considered superior only if its likelihood exceeded by 10.8 the former.

Among power functions alone (i.e. not considering the LN distribution) the broken power law is the best at describing the daily flow frequency distributions, yielding the best maximum L for 993 sites (82%) compared to 54 sites for the IBPL (4%), and 170 sites for the PL (14%). The comparison of maximum L scores among functions allows finding the best set of parameters of each function to fit the daily flow data of every site. It is also useful to compare models and establish which function is the best at describing the data. However, it is insufficient to evaluate how strong the best fit is in absolute terms. To that end we used the χ^2 statistic as a goodness of fit measure and the reduced χ^2 ($\chi^2_{reduced}$) to have a direct comparison between the χ^2 and the number of degrees of freedom. When the $\chi^2_{reduced}$ is below or equal to one the fit is considered strong. The computed $\chi^2_{reduced}$ for BPL fits in the 993 sites ranged between 0.17 and 1700; it ranged between 0.17 and 48 for the 170 sites best fitted by the simple power law function, and between 0.26 and 57 for the 54 sites best described by the IBPL (Fig. 5).

Fig. 5. Histograms of the reduced χ^2 of the three power-law function to 1217 gauges in the CONUS. Panel a shows the 170 sites best described by the simple power law function, panel b shows the 993 sites best fitted by the broken power law function, and panel c shows the 54 sites best fitted by the inverted broken power law function.

Fig. 6. Distributions of the α parameter of the BPL by geographic region (Fig. 2).

Table 2

Variability of the α and β parameter of the BPL per region. \bar{x}: Mean; σ: standard deviation; x_5, x_{50}: fifth percentile; x_{50}, x_{95}: median value; x_{95}, x_{95}: nine-fifth percentile.

<table>
<thead>
<tr>
<th>Region</th>
<th>N</th>
<th>\bar{x}</th>
<th>σ</th>
<th>x_5</th>
<th>x_{50}</th>
<th>x_{95}</th>
<th>β</th>
<th>$\bar{\beta}$</th>
<th>β_5</th>
<th>β_{50}</th>
<th>β_{95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites</td>
<td>899</td>
<td>1.31</td>
<td>0.64</td>
<td>0.20</td>
<td>1.40</td>
<td>2.10</td>
<td>4.8</td>
<td>1.9</td>
<td>2.70</td>
<td>4.30</td>
<td>8.40</td>
</tr>
<tr>
<td>Southeast</td>
<td>223</td>
<td>1.26</td>
<td>0.77</td>
<td>0.00</td>
<td>1.40</td>
<td>2.30</td>
<td>4.2</td>
<td>1.5</td>
<td>2.80</td>
<td>3.90</td>
<td>6.61</td>
</tr>
<tr>
<td>Southwest</td>
<td>56</td>
<td>1.00</td>
<td>0.78</td>
<td>-1.00</td>
<td>1.20</td>
<td>1.80</td>
<td>3.7</td>
<td>1.4</td>
<td>1.93</td>
<td>3.20</td>
<td>6.78</td>
</tr>
<tr>
<td>West</td>
<td>273</td>
<td>1.14</td>
<td>0.53</td>
<td>0.22</td>
<td>1.20</td>
<td>1.80</td>
<td>5.7</td>
<td>2.2</td>
<td>2.52</td>
<td>5.40</td>
<td>9.30</td>
</tr>
<tr>
<td>Midwest</td>
<td>182</td>
<td>1.61</td>
<td>0.50</td>
<td>0.86</td>
<td>1.65</td>
<td>2.20</td>
<td>4.8</td>
<td>1.7</td>
<td>2.96</td>
<td>4.50</td>
<td>7.90</td>
</tr>
<tr>
<td>Northeast</td>
<td>165</td>
<td>1.43</td>
<td>0.54</td>
<td>0.30</td>
<td>1.50</td>
<td>2.10</td>
<td>4.4</td>
<td>1.5</td>
<td>3.10</td>
<td>4.20</td>
<td>6.63</td>
</tr>
</tbody>
</table>
Since a strong fit yields a χ^2 near one we set up a threshold of 1.5 to discriminate between weak and strong fits and found that 150 sites were strongly fitted by the PL, 43 sites by the IBPL, and 899 by the BPL. The following sections discuss the parameter variability of the BPL in the 899 sites with reduced χ^2 below 1.5. These sites cover the entire CONUS and span over all the five regions considered.

3.2. Variability of the broken power law function parameters

In this section we describe the statistical summary and the spatial variability of the four parameters of the BPL function in 899 sites across the CONUS. We also explore linear relationships between these parameters and basin characteristics including DA, BE, climate (mean annual precipitation, MAP), and the predictability of the hydrologic regime, measured as the lag-1 annual autocorrelation, $R-1$ (see explanation below), considering 5 geographic regions (Fig. 2). The motivation behind relating the parameters to basin characteristics is to develop a model that can predict the distribution of daily flows above the mean annual flows at ungauged sites.

3.2.1. Parameters α and β

The parameters that define the slopes of the two liner segments of the distribution show contrasting results. The parameter α (slope of the first power segment) varies over a smaller range than the parameter β (slope of the second power segment). In addition the shape of the distribution of α over the CONUS is more symmetric than the distribution of β (Fig. 6). The mean value and standard deviation of the α across all sites was 1.3 and 0.64 respectively compared to a mean value of 4.8 and standard deviation of 1.9 for β (Table 2, Figs. 6 and 7). The regional average of α ranged between 1.00 and 1.61 (Table 2). α did not reveal any trend or correlation with respect to BE, DA, MAP, or the regime predictability (i.e. $R-1$). Since the flows covered by the parameter α are primarily over the normal range of flow, the parameter exhibits low variability. Previous studies have suggested setting up a regional mean value for the parameter α to develop a regional scale model (Segura and Pitlick, 2010). Considering the low regional variability observed here for this parameter (Table 2, Fig. 6) it could be set to a mean regional constant. By doing this, the number of free parameters of the BPL function are reduced from 4 to 3. As expected, the variability of β is larger since the parameter captures the extreme daily flows (Fig. 7).

Therefore, assigning a constant regional value to this parameter was not an appropriate choice. Spatial inspection of β values across the CONUS revealed higher values in western mountainous basins than in the rest of the country (Fig. 8). The mean β for basins in Region 3 (i.e. Western) was the highest of all (Table 2). We found for snowmelt dominated systems in Colorado and Idaho that β was nearly constant and equal to 7 (Segura and Pitlick, 2010). The steeper the beta parameter the less likely is the occurrence of high extreme events in any given site and the extreme flows under these sites are predominantly controlled by snow storage. The correlation between BE and β was significant ($r = 0.47$, $p < 1E-15$, Table 3). The mean β value for basins located above 500 m was significantly higher ($p < 0.001$) than the mean value for sites at lower elevation. The variability of β with elevation (Fig. 9) indicated a strong correlation for sites above 500 m ($r = 0.98$, $p = 0.016$, Fig. 9). Conversely β could be set to a constant value of 4.4 for sites below 500 m (Fig. 9).

The annual hydrograph of western sites is often characterized by snowmelt regimes with peak annual flows between May and July. These regimes are therefore highly predictable compared to those in catchments in which high flows are dominated by the much less predictable occurrence of convective and frontal precipitation events. The degree of predictability of the hydrologic

Table 3

<table>
<thead>
<tr>
<th>Depended variable</th>
<th>DA</th>
<th>BE</th>
<th>$R-1$</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.068 (0.04)</td>
<td>-0.14 (0.000001)</td>
<td>-0.095 (0.004)</td>
<td>0.0013 (0.6)</td>
</tr>
<tr>
<td>β</td>
<td>0.011 (0.73)</td>
<td>0.47 (<1E-15)</td>
<td>0.66 (<1E-15)</td>
<td>-0.29 (<1E-15)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.74 (<1E-15)</td>
<td>-0.17 (0.00001)</td>
<td>0.05 (0.17)</td>
<td>0.17 (0.000002)</td>
</tr>
<tr>
<td>a_0</td>
<td>-0.14 (0.00002)</td>
<td>-0.05 (0.098)</td>
<td>-0.02 (0.004)</td>
<td>0.30 (<1E-15)</td>
</tr>
<tr>
<td>$#days$</td>
<td>-0.08 (0.016)</td>
<td>-0.13 (0.0004)</td>
<td>0.14 (0.0002)</td>
<td>0.41 (<1E-15)</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>0.77 (<1E-15)</td>
<td>-0.24 (<1E-10)</td>
<td>0.02 (0.43)</td>
<td>0.32 (<1E-15)</td>
</tr>
</tbody>
</table>

* Indicates that while the linear relationship between the variables is significant ($p < 0.05$) the independent variable is a poor predictor of the dependent variable.
The regime of a given site is thus likely to be positively correlated to β. We characterize the degree of predictability of the hydrologic regime with the lag-1 annual autocorrelation, $R-1$:

$$R - 1 = \frac{\int Q(t)Q(t + \delta t)dt}{\int Q^2(t)dt}$$ \hspace{1cm} (8)$$

where δt is the time shift (in this case 1 year), and $Q(t)$ is discharge. Values of $R-1$ close to one represent locations in which the flow experienced in any given day is significantly correlated to the flow experienced one year after that day and one year before that day. The $R-1$ values for the 899 sites varied between -0.01 and 0.82 (Fig. 10). Sites with predictable regimes (i.e. $R-1 > 0.6$) dominate in snowmelt-dominated systems in mountainous regions of Colorado, Idaho, Montana, and Wyoming, all located in Region 3 (Fig. 11). These sites exhibit a β value between 4.8 and 18 and a mean of 7.6. Low values of $R-1$ (i.e. $R-1 < 0.35$) characterize the Southeast (Region 2, Fig. 11) with β values varying widely between 2.3 and 15 and a mean of 4.2. Region 2 is predominantly a rainfall-runoff regime indicating a less role of storage in influencing the extreme flow values, which results in relatively lower values of β. The correlations between $R-1$ and β are strong and significant in all regions ($r = 0.24–0.77$, $p = 0.001–1E-15$, Fig. 11, Table 3) and indicate that the frequency of extreme events decreases with increasing level of predictability (i.e. there is a positive relation between $R-1$ and β). This relation was also evaluated considering BE (not shown here for brevity). The relationship for sites located above 500 m is stronger ($r = 0.81$, $p < 1E-15$) than for sites located below 500 m ($r = 0.39$, $p < 1E-15$). This again indicates the ability to determine β is much easier for basins at higher elevations.
3.2.2. Parameters a_0 and a_1

The flow at which the break in the broken power distribution occurs corresponds to the a_1 parameter. This discharge level varies between 0.57 and 3492 m3/s over the 899 sites considered. This discharge divides intermediate and large flow levels and is strongly correlated to DA, ($r = 0.74$, $p < 0.000001$, Fig. 12a). The slope of this relation is less than one, which indicates that the frequency of extreme events decreases with drainage area. This is further emphasized by normalizing the a_1 values by DA (Fig. 12b). If the inflexion in the distribution would scale linearly with drainage area, the slope of this relation would be zero; instead it is -0.19. The physical explanation for this finding is beyond the scope of this paper however we found for 64 snowmelt dominated systems that it may be related to scale-dependent variations in runoff and sediment supply, which influence downstream trends in the bankfull channel geometry and intensity of sediment transport (Segura and Pitlick, 2010). Some of the variability of a_1 was also explained by MAP ($r = 0.17$, $p = 0.0000002$, Table 3). This parameter was not correlated to either BE or $R-1$ (Table 3). The values of a_0 are directly computed from the data (Eq. (6)) based on the number of days the daily discharge is above the mean annual flow ($#days$) and the mean annual flow (Q_{ma}). a_0 varied between 0.48 and 548.6 with a mean value of 68.6 and was correlated to MAP ($r = 0.30$, $p < 1E^{-15}$, Table 3). However this correlation had significant scatter (not shown here for brevity). Considering that a_0 is computed based on the $#days$ and Q_{ma} (i.e. Eq. (6)) we also explored the correlations between these variables and DA, BE, $R-1$, and MAP (Table 3). We found that $#days$ is significantly correlated to MAP ($r = 0.41$, $p < 1E^{-15}$, Table 3, and Fig. 13). This relation is stronger for sites located above 600 m (Fig. 13, panel a) than for sites located at lower elevations (Fig. 13, panel b). The Q_{ma} is found to be strongly correlated to DA and MAP ($r = 0.32$–0.77, $p < 10E^{-15}$, Table 3, and Fig. 13) and to the product of MAP and DA (i.e. total volume of precipitation, Fig. 13, panel d). Based on the mentioned relations (Fig. 13a and d) a_0 can be computed at ungauged sites located above 600 m (i.e. using Eq. (6)).
3.3. Approximation to a regional scale model

According to the results presented here, a rigorous model to predict the frequency distribution of daily flow above the mean annual flow at the CONUS scale is not possible. However, we found that it is possible to (1) set the a parameter to a constant in each of the 5 geographic regions (see Table 2); (2) predict the slope of the second segment of the distribution, β based on BE; (3) predict the inflection discharge of the distribution, a_1, based on DA, and (4) predict the normalization parameter a_0 based on MAP and DA for any site located above 600 m. The relations to predict β, a_1, and a_0 based on MAP, DA, and BE are shown for all sites in Figs. 9, 12, 13 and Table 3. These relations were adjusted including only sites above 600 m:

Fig. 12. Relationship between drainage, DA, area and the parameter a_1 of the broken power law (BPL) function. Panel a shows the relation between DA and a_1 and panel b the relation between a_1 normalized by DA and DA.

Fig. 13. Relationship between mean annual precipitation, MAP, and the number days the daily discharge is above the mean annual flow (#days) and mean annual flow (Q_{ma}) and between drainage area (DA) and Q_{ma}. Panel a presents the relation between MAP and #days for sites located above 600 m and panel b presents this relation for sites located below 600 m. Panel c presents the relation between DA and Q_{ma} for all sites and panel d the relation between MAP and Q_{ma} for all sites.
\[\beta = 2.68\ln(BE) - 13.54 \] (9)
\[a_1 = 15.3DA^{0.67} \] (10)
\[#_{ma} = 20.7MAP^{0.23} \] (11)
\[Q_{ma} = 0.0054(MAP \times DA)^{0.81} \] (12)
\[a_0 = \frac{a_1 \times #_{ma}}{\int_{Q_{ma}}^{Q_{10}} \frac{dQ}{Q_{ma}}/Q_{ma}} \] (13)

In order to test the predicting power of a model based on a constant alpha (Table 2) and Eqs. (9)–(13) for predicting the daily flow distribution in ungauged sites, we computed the 2 year flow \(Q_2 \) at 278 sites above 600 m elevation by using both the best fit BPL function as well as a BPL function with the parameters derived with Eqs. (9)–(13). Fig. 14 presents a comparison between the \(Q_2 \) computed directly from the data on every site versus \(Q_2 \) computed by the fitted BPL. The correlation between these two estimates of \(Q_2 \) is strong \((r^2 = 0.99, p < 1E-15) \) and highlights the strength of the fit to the daily flow frequency distributions. The relationship between \(Q_2 \) computed from the observations and \(Q_2 \) computed from the parameters estimated with the mentioned relations based on \(DA, MAP, \) and \(BE \) for sites located above 600 m (Eqs. (9)–(13)) has more scatter around the 1:1 but it is strong \((r^2 = 0.83, p < 1E-15) \), Fig. 14. This means that knowing only basic watershed data (i.e. \(DA, BE, \) and \(MAP \)) one can use the model to estimate, at the order of magnitude level, the flow quartiles of an ungauged basin with \(BE > 600 \) mm.

4. Conclusions

The goal of this paper was to determine if the broken power law function was adequate to describe the flow frequency distribution of daily flows above the mean annual in 1217 sites across the CONUS and to study the spatial variability of the function parameters. The results indicate that the frequency distribution of daily flows is better described by power law functions than by the log-normal distribution. Among power functions, the 4-parameter broken power law (BPL) was superior over the other two alternatives power functions in 82% of the considered sites. The distribution of the BPL parameter that describes the slope of the first log segment, \(\alpha \), revealed low variability and highlighted the possibility of setting this parameter to a regional average reducing the number of free parameter from 4 to 3. The \(\beta \) parameter of the BPL that describes the slope of the second segment (i.e. frequency of extreme events) increases as a function of both elevation and regime predictability measured with the one-year autocorrelation indicating that predictable regimes (e.g. snowmelt) are characterize by high values of beta and therefore lower probability of high flows. We found that the \(a_1 \) parameter that defines the inflection point in the BPL distribution increases with drainage area, \(DA \); however, we find that the relation between \(a_1 \) and \(DA \) is nonlinear. This implies a reduction in the frequency of large flows in the downstream direction. Finally the parameter \(a_0 \) can be computed for any location above 600 m based on \(DA \) and \(MAP \). We believe that the broken power law function offers advantages over other functions to model the distributions of daily flows and should be considered in regional models to predict daily flows at ungauged locations.

References

Pitlick, J., 1994. Relation between peak flows, precipitation, and physiography for 5 mountainous regions in the Western USA. J. Hydrol. 158.